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Unexpected and significant disruptions in the global supply chain may require swift and substantial adjust-

ments to corporate physical operations, such as downsizing or reshoring. We conjecture that integrated risk

management (IRM), incorporating appropriate financial hedging, can mitigate the extent of these adjust-

ments, thereby strengthening operational resilience. Our approach is normative. Using an unreliable supply

newsvendor model, we identify, develop, and evaluate classes of such hedges by analytically deriving and

comparing the optimal standalone operational policies with the optimal IRM policies. Our theoretical find-

ings reveal four major features: i) Financially-driven operational expansion: The optimal size of operations

increases with the use of hedging and with greater hedge complexity. ii) Disruption-driven operational con-

traction: When supply reliability decreases, firms should scale down their operations; iii) Demand-driven

operational fragility : Conventional IRM strategies centered on demand hedging may intensify the operational

adjustments necessitated by a disruptive event, thereby weakening operational resilience. iv) Financially-

driven operational resilience: Optimal IRM policies incorporating supply risk hedging significantly mitigate

disruption-driven operational reductions compared to purely operational approaches, thereby enhancing

operational resilience. We extend and empirically validate these findings using a novel multinational capac-

ity allocation model. This model is applied to a representative European gas firm managing the balance

between Russian natural gas and U.S. LNG procurement following the supply chain disruptions caused by

the Russo-Ukrainian war and the sabotage of the Nord Stream pipelines. Our analysis demonstrates that

optimal IRM policies incorporating gas supply risk hedging (or even cross-hedging) could have mitigated

the reshoring requirements prompted by these events.

Key words : Financial Hedge Design, Integrated Financial-Operational Risk Management (IRM), Interfaces

of Finance, Operations, and Risk Management (iFORM).
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1. Introduction

Extreme events, such as pandemics, geopolitical crises, and natural catastrophes, can result in

sudden disruptions of firms’ supply chains (Birge et al. (2023)). This phenomenon often necessitates

undertaking prompt and significant changes in physical operations, primarily involving updates

in quantity ordering and capacity relocation. For example, in 2022 Apple announced plans to

partially reshore their production to Vietnam amid escalating geopolitical tensions between China

and the United States, as well as recurrent supply disruptions stemming from China’s zero-COVID

policies (Ting-Fang (2022)). Similarly, BP and Shell have disclosed their intentions to divest from

all Russian oil and gas projects following the Russo-Ukrainian war outbreak (Bousso (2022)).

It turns out that only a few actors actually execute these operational changes, while some cannot

do so even though they recognize the need. For instance, Capgemini (2022) highlights that 92% of

a representative pool of interviewed firms are fully aware of their relocation needs, yet only 15%

declare themselves appropriately equipped to handle the related processes. More broadly, Cohen

et al. (2018) reveal that sourcing decisions might be unresponsive to the latest events. The primary

reason for this inertia lies in the burden of these actions in terms of temporal, physical, and financial

resources required for their execution. In this context, a major role is played by supply chain (SC)

resilience, defined as firms’ ability to recover from a temporary change and “to proactively plan

for adapting ... to ‘new normal’ conditions and risks, and preparing it to effectively mitigate future

shocks of an unknown nature” (Cohen and Kouvelis (2021)).

While existing practices and academic research emphasize the use of operational tools to ensure

and support resilience (Lücker et al. (2024)), we focus instead on leveraging financial flexibility.

Specifically, we propose a novel method to mitigate the effects of sudden SC disruptions on physical

operations. Our approach centers on the adoption of appropriate financial hedges within an inte-

grated risk management (IRM) framework and seeks to explore whether, and to what extent, this

strategy can enhance operational resilience. A positive outcome from this inquiry could significantly

contribute to addressing the managerial challenge of identifying and developing cost-effective, flexi-

ble, and efficient strategies to mitigate SC disruptions. Furthermore, it would provide international

policymakers with a new approach to implement actions that fortify the global SC, particularly in

the context of geopolitical tensions.
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1.1. Research Question and Key Findings

Historical observations of SC disruptions highlight two important phenomena. First, such dis-

ruptions are occurring with increasing frequency (World Economic Forum (2021)). Second, their

transitory or permanent nature is difficult to determine upfront and may turn out to be mixed

(Simchi-Levi et al. (2014)). A quintessential example is the Covid-19 pandemic: while some dis-

ruptions were temporary and companies adapted, the pandemic has led to lasting changes in how

supply chains are managed and structured (Knut et al. (2021)).

We argue that an effective way to manage corporate risks in such a context is to mitigate the

immediate impact of disruptions on operations. If the disruption proves temporary, the firm can

more easily revert to its original configuration. Conversely, if it turns out to be permanent, the firm

can allocate the savings from a reduced impact toward additional time and resources to facilitate

further adjustments. In either case, mitigating operational shifts strengthens the firm’s operational

resilience. Our study demonstrates that appropriate financial hedging mitigates the operational

shift required by optimal operational handling, thereby bolstering operational resilience. This intu-

ition can be elucidated by outlining the logical pathway of our approach.

Consider a firm operating in a market under a normal regime, where the SC functions ordinarily.

Let their business revenues be adjustable through an operational variable, say a procurement,

a production, or a capacity allocation order. They maximize a decision criterion and select the

optimal naked operational level under normalcy, where the term “naked” emphasizes the absence

of any hedge. Suppose an unexpected event occurs, leading to a transition to a disrupted regime

featuring unreliable supply. The firm must now adjust its operations to a new level, referred to as

the optimal naked operational level under disruption. In general, operations may either expand or

contract. The absolute variation in the optimal naked operational level resulting from the regime

switch, with no hedging in place, defines the naked operational shift that follows an SC disruption.

This shift represents the firm’s operational effort required to maintain optimal decision-making.

When a firm is risk-averse (or risk-constrained), overall revenues can benefit from financial

hedging (Ding et al. (2007)). Instead of selecting an operational level alone, the firm chooses a

combination of this level with a financial hedge—an IRM policy—to maximize a risk-adjusted (or

risk-constrained) decision criterion. This results in two IRM policies that establish the optimal

hedged operational level either under normalcy or under disruption. The absolute change in this
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Figure 1 The logical pattern of financially-driven operational resilience enhancement.

level when transitioning from normal to a disrupted regime, with a hedge in place, defines the

hedged operational shift that follows an SC disruption.

Our main research question is whether and how a firm can leverage financial hedging to mitigate

disruption-driven operational shifts, thereby enhancing resilience. Figure 1.1 illustrates this point in

the context of capacity planning. It is well established that appropriate financial hedging increases

capacity allocation relative to the no-hedging case under normalcy (rightmost right-downward

arrow indicating capacity expansion) (Ding et al. (2007)). We confirm this result and extend it,

showing: i) Financially driven operational expansion under disruption: Optimal capacity alloca-

tion grows with hedging and with increasing hedge complexity under disruption as well (leftmost

right-downward arrow indicating capacity expansion); ii) Disruption-driven operational contrac-

tion: Supply chain disruption reduces capacity allocation both under pure operational handling

and under IRM (leftward arrows showing capacity curtailment); iii) Demand-driven operational

fragility : Conventional demand hedging may exacerbate capacity curtailment, weakening opera-

tional resilience (i.e., increasing fragility). iv) Financially driven operational resilience: Suitable

financial hedging mitigates the degree of capacity curtailment vs. operational handling alone (right-

downward dashed arrow showing curtailment mitigation), thus enhancing operational resilience.
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1.2. Literature Review and Contribution

We examine the effect of supply chain disruptions on optimal physical operations and identify

financial tradables that mitigate this impact, thereby enhancing operational resilience. Thus, our

study aims to contribute to the literature on disruption risk and IRM, bridging these two streams.

This positions our research agenda at the interface of finance and operations (Babich and Kouvelis

(2018), Wang et al. (2021)).

Disruption risk is traditionally associated with exposure to supply uncertainty, often modeled

using random production yield and/or capacity (Wang and Gerchak (1996)). The operations man-

agement (OM) literature has extensively analyzed the impact of disruption risk on physical opera-

tions and developed operational strategies to mitigate this impact, such as supplier diversification,

inventory management, or emergency supply, thereby enhancing operational resilience (e.g., Tang

and Kouvelis (2011); Ang et al. (2017); Jain et al. (2022); Birge et al. (2023); Chen (2024)).

The use of non-operational tools, such as insurance contracts or financial claims, to address

supply disruption risk—potentially alongside operational measures—remains uncommon. Some

authors focus on non-tradable instruments. For instance, Babich (2010) propose the combined

adoption of financial subsidies for supply (a non-operational tool) and capacity ordering (an oper-

ational tool) to mitigate disruption risk, while Dong and Tomlin (2012) advocate using business

interruption insurance contracts (a non-operational tool) in conjunction with inventory manage-

ment and emergency sourcing (operational tools) to manage supply risk. Our study advances the

literature by examining IRM with tradable securities to enhance operational resilience.

First, we develop a NV model for capacity allocation model featuring unreliable supply and

risk-averse preferences. This model differentiates between disruption and normal states through a

quantification of supply reliability. For both the naked and IRM cases, we: (1) Derive generalized

critical fractile equations and establish positive monotonicity of the optimal order quantity with

respect to supply reliability, business profitability, and the firm’s risk propensity; (2) Identify

conditions under which hedging induces a counterbalancing expansion of operations as supply

reliability decreases; and (3) Demonstrate that appropriate hedging enhances operational resilience

to supply disruptions. In a similar NV model without parametric control over supply reliability,

Tekin and Özekici (2015) show that risk aversion, with or without hedging, reduces the order

quantity compared to the risk-neutral case, a conclusion that aligns with our findings.
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Second, we expand our analysis to a capacity planning problem across two locations and propose a

new capacity reshoring model incorporating supply risk within the framework of Ding et al. (2007).

This model characterizes corporate behavior in allocating capacity before and after a disruptive

event. We calibrate a model instance with real data to account for the European gas SC disruption

following the Russo-Ukrainian war in 2022. Our analysis demonstrates IRM policies that could

have mitigated the need for capacity relocation from Russian to U.S. supply sources. Interestingly,

Zhao and Huchzermeier (2017) develop an IRM capacity planning model with random capacity

and production decision making. Their study focuses on complementarity and substitution effects

of IRM strategies, while we focus on identifying and quantifying resilience and fragility effects from

SC disruptions. In this regard, our studies are complementary.

A unique aspect that distinguishes our model from all previously mentioned IRM-based studies is

its clear differentiation between standard supply risk (i.e., arising from routine business operations)

and disruption risk (i.e., resulting from exceptional events), as proposed by Kleindorfer and Saad

(2005). Operational methods aimed at enhancing resilience are typically either disruption-targeted

or dual-purpose (Lücker et al. (2024)). Following this approach, we define a standard supply short-

age as any downward sample in random supply yield, while an SC disruption is represented by any

shift in the supply yield distribution that decreases the supplier’s reliability. Accordingly, disruption

risk is classified as a form of model risk.

This distinction underpins our approach to achieving financially-driven operational resilience,

which is the main contribution of this study. Since its inception in Ritchken and Tapiero (1986),

IRM has focused on enhancing the risk-return trade-off for various business operations by counter-

balancing adverse fluctuations in operating revenues with financial hedging payoffs (e.g., Caldentey

and Haugh (2006); Ding et al. (2007); Chod et al. (2010); Wang and Yao (2017)). All the afore-

mentioned IRM models addressing supply risk adopt this model-endogenous approach, which is

effective for managing business risk under normal conditions. However, when facing disruption risk,

it is necessary to examine the impact of a drop in supply reliability (i.e., an exogenous shift in a

model parameter) on optimal operations with and without financial hedging. Operational resilience

is achieved when hedging mitigates this impact differential on the level of optimal operations, as

illustrated in Subsection 1.1. To our knowledge, this is the first study to propose a model risk

approach to disruption risk using financial hedging within an IRM framework.
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2. A Newsvendor Model with Unreliable Supply

In a single-sourcing context, supply chain (SC) disruptions may call for operational downsizing in

terms of capacity, labor, and inventory. Enhancing operational resilience entails mitigating these

downsizing requirements. We investigate this concept using an unreliable supply newsvendor model

and develop analytic IRM strategies to bolster resilience against capacity downsizing demands.

2.1. Setup

Consider a one-period time frame {0,1}. Time 0 denotes the present moment, when all relevant

information for decision-making is gathered; time 1 represents the point at which all uncertainty

regarding the risk factors affecting operating revenues is resolved. This uncertainty is described

by a probability space (Ω,F ,P), where Ω is the set of all possible future outcomes, F is the f-

algebra containing all events formed by these outcomes, and P is a probability measure reflecting

the likelihood of these events, based on historical data, subjective beliefs, or a combination of both.

Monetary values are expressed in U.S. dollars, and physical quantities are measured in “units”.

For simplicity, we assume the time value of money is negligible and therefore disregarded. This

setup naturally suits one-stage decision problems. It also accommodates two-stage scenarios with a

deterministic control problem in the second stage, such as when operating revenues are structured

as real options, e.g., newsvendor (Van Mieghem (1998)) and capacity planning (Ding et al. (2007)).

A firm faces random product demand � ⩾ 0 (1st state variable) with a finite mean ` and variance

f2 and distribution function ��. Each ordered item costs 2 > 0 and, when received, it is sold at a

price ? > 2. Product onerousness is measured by the cost-to-price ratio 2/? and defines profitability

through the critical fractile 1 − 2/?. The firm addresses demand by issuing an order quantity @,

incurring a pay-per-order overall cost of 2@ dollars (Babich et al. (2007)) and receiving a random

(i.e., unreliable) supply of @. product units (Wang and Gerchak (1996)). Examples of such orders

include capacity installment (Ding et al. (2007)) or a procurement order in a vertically integrated

corporation that features production insourcing (Dada et al. (2007)).

We model unreliable supply using the all-or-nothing random proportional yield, whereby supply

either succeeds or fails (Babich et al. (2007), Yang et al. (2009)). This property is represented by a

(dimensionless) Bernoulli-distributed yield factor . ∈ {0,1} (2nd state variable), which determines

actual supply @. as either zero or the full order quantity @ with probability d ∈ [0,1]. The cor-

responding supply function is a random map: order @→ supply @. . The odds d quantify product
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supply reliability and define a standing supply regime. Any change in this parameter captures the

effects of events that disrupt the underlying supply chain. Interestingly, the nature of such events

is irrelevant for the definition of our model: whether caused by a global pandemic, geopolitical tur-

moil, or physical failure, the impact is represented through an exogenous drop in supply reliability.

Note that the reliability odds d match the expected yield factor (EP [. ]) under the assumed proba-

bility distribution. Last, we assume that product demand � and production yield . are statistically

independent (Dada et al. (2007), Kouvelis and Li (2019)).

Naked operating revenues result from meeting demand � up to the actual supply @. :

cd (@) := ?min(�, @. ) − 2@. (1)

Adding salvage or goodwill loss components would be immaterial to our results, as they would

merely modify the critical fractile equations through their incorporation into underage or overage

costs. The firm is risk-averse (Eeckhoudt et al. (1995)) and adopts mean-variance (MV) preferences,

defined by a target criterion MV [·] := E [·] − (0/2)V [·], where E and V denote the expectation and

variance operators, respectively, and the coefficient 0 quantifies the firm’s aversion to risk. The

reciprocal risk aversion 0−1 defines the firm’s risk propensity. Appendix EC.2.1 provides regularity

conditions that ensure the well-posedness of the optimization problems under investigation.

This completes the description of the Unreliable supply risk-averse NewsVendor (UNV) model,

M(d, 0), featuring supply reliability d and firm risk aversion 0. Additional parameters defining a

specific model instance (i.e., a demand distribution ��, a selling price ?, and a unit cost 2) are

assumed to be provided. The UNV model generalizes both the standard (i.e., reliable supply, d = 1,

and risk-neutral, 0 = 0) and the reliable supply risk-averse NV models (Van Mieghem (2007)).

The optimal standalone (or pure, or naked) operational handling stems from maximizing the

MV target of operating revenues cd (@) in a class Q of admissible order quantities, namely:

�
∗
0 :=max

@∈Q
MV[cd (@)] → argmax =: @∗0, (2)

where the subscript “0” highlights the lack of hedging. Note that the optimal order quantity in

principle depends on all model parameters, namely @∗0 = @∗0(d, 0, 2, ?): when needed, we indicate its

restriction to a parameter (or subset of parameters) # by @∗0(#).

When following an IRM approach, the firm must identify a class H of financial contingent claims

to trade in. We assume that each claim � is priced as +� according to a valuation theory to
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specify upfront. Given a set Q ×H of admissible integrated operational-financial policies and a

dollar budget F to use for hedging purposes, the firm selects the IRM policy that maximizes the

MV target of hedged revenues Πd (@, �) := cd (@) +�, namely:

�
∗
Q×H := max

(@,� ) ∈Q×H: +�⩽F
MV

[
Πd (@, �)

]
→ argmax =:

(
@∗Q×H , �∗

Q×H

)
. (3)

Henceforth, we omit indicating Q = [0,∞) and denote the optimal IRM by
(
@∗
H
, �∗

H

)
. Revenues

Πd (@
∗
H
, �∗

H
) are the optimal IRM revenues. When the optimal order quantity @∗

H
is strictly positive,

we say that the business is viable. In addition, if the hedging class is a set H/ of financial contingent

claims written on an underlying index (or array of indices) /, then the optimal IRM can simply

be denoted as
(
@∗
/
, �∗

/

)
whenever the context is clear.

2.2. An Illustrative Example

The role of financial hedging in empowering operational resilience plastically emerges in a UNV

model featuring predictable demand, wherein all derivations are analytic. Let the firm face supply

risk only (. random), while product demand is constant, say � = 3. Assume that @ ⩾ 0 is a capacity

allocation (or, simply, capacity) leading to operating revenues cd (@) = ?min(3, @. ) − 2@. These

revenues entail a target:

MV[cd (@)] = d?min(3, @) − 2@ −
0

2
V[. ] (?min(3, @))2 =





(d? − 2)@ − 0
2V[. ]@

2, (@ ⩽ 3)

d?3 − 0
2V[. ]3

2 − 2@, (@ ⩾ 3)

(4)

which proportionally decreases with increasing supply risk V[. ] and risk aversion 0.

We can disentangle three supply regimes and as many optimal naked capacity allocations. If

d ⩽ 2/?, supply is unreliable, MV is decreasing in capacity @, and the optimal naked allocation

prescribes to stay idle (@∗0 = 0). If 2/? < d ⩽ 2/? + (03/?)V[. ], supply is mildly reliable and MV

exhibits a global maximum at @∗0 = (d?− 2) (0V[. ])−1, a quantity comprised between the idle state

0 and full demand 3. If d > 2/?+ (03/?)V[. ], supply is highly reliable, MV is increasing in capacity

@, and the optimal naked allocation matches product demand (@∗0 = 3). The interval (2/?,1] of

reliability odds entailing a viable business (@∗0 > 0) defines the viable reliability region.

Let supply yield forwards trade in a frictionless, arbitrage-free, and complete risk-neutral market.

Then, the physical probability P serves as a pricing measure, and the forward supply yield is
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Supply Regime Operational Handling
@∗
0

Integrated Risk Management
(@∗

.
, \∗

.
)

Unreliable
d∈[0,2/?]

0 (0,0)

Mildly reliable
d∈ (2/?,2/?+(03/?)V[. ] ]

(d? − 2) (0V[. ])−1 (3,−?3)

Highly reliable
d∈ (2/?+(03/?)V[. ],1]

3 (3,−?3)

Table 1 Optimal operational handling and IRM across supply regimes.

the expected spot yield, EP [. ] = d . When conducting IRM with supply yield forwards, the firm

encounters the following instance of the optimization problem (3):

max
@⩾0, \∈R

MV[cd (@) + \ (. − d)] → argmax =:
(
@∗. , \

∗
.

)
. (5)

Clearly, zero budget constraint is implied by the very definition of forward price. Conditional to

a capacity allocation @, the hedged revenues MV target attains a maximum value at the (short)

forward holding:

\∗(@) = −?min(3, @), (6)

which noticeably is independent of supply reliability d. The optimal MV target reads as:

MV[cd (@) + \
∗(@) (. − d)] = d?min(3, @) − 2@ =




(d? − 2)@, 0 ⩽ @ ⩽ 3,

d?3 − 2@, @ > 3.

(7)

The message is clear: hedging supply risk fully removes the target loss brought over by the firm’s

aversion to supply risk; however, it cannot handle the depressive effect of unreliable supply on

gross revenues via the d?3 term. The effect of financial hedging supply risk on capacity allocation

emerges from analyzing the optimal conditional MV target (7). If supply is unreliable (d ⩽ 2/?),

this quantity decreases in capacity allocation @ and attains a maximum at zero. The optimal

IRM
(
@∗
.
, \∗

.

)
= (0,0) requires the firm to drop out of the game. However, in the viable reliability

region (2/?,1], target (7) increases in capacity allocation @ and it attains a maximum at product

demand 3. The optimal IRM
(
@∗
.
, \∗

.

)
= (3,−?3) requires a short forward position with size matching

the dollar value of operating gross revenues and demand is fully served. A comparison between

optimal capacity allocations with and without hedging is offered in Table 1. IRM clearly makes
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optimal capacity allocation independent of risk aversion, of supply reliability, and of supply risk. In

particular, for a mildly reliable supply, hedging shifts capacity allocation from (d? − 2) (0V[. ])−1

to full demand 3.

The effect of financial hedging supply risk on operational resilience in the aftermath of an SC

disruption, say upon (2/? <)d1 ↓ d2, results from comparing the curtailment of naked capacity

@∗0(d1) − @∗0(d2) and the curtailment of forward-hedging capacity @∗
.
(d1) − @∗

.
(d2) . The optimal

naked capacity @0(d) vanishes over the interval [0, 2/?] and equals (d?− 2)/(0d(1− d)) in the com-

plementary region (2/?,1], where it is an increasing function of d. Consequently, the curtailment

of optimal naked capacity is strictly positive provided the initial reliability exceeds the threshold

2/?. Since the optimal forward hedged capacity @∗
.
(d) is independent of supply reliability d, then

the forward hedged capacity curtailment vanishes. Consequently, financial hedging mitigates (in

this case, it annihilates) the capacity curtailment that follow a reliability drop. It thus enhances

operational resilience. This shows our main result within the simplest nontrivial model setup.

2.3. Operational Handling

Consider the problem (2) of optimal operational handling in a UNV model M(d, 0). A well-

established result in OM states that the optimal quantity @∗
#+

:= @∗0(1) in a standard newsvendor

model M(d = 1, 0 = 0) satisfies the critical fractile equation:

�� (@) = 1−
2

?
. (8)

Focusing on symmetric demand distributions, Schweitzer and Cachon (2000) classify a product as

high profit or low profit depending on whether the critical fractile exceeds or falls short of 1/2

or, equivalently, onerousness 2/? is less than or greater than 1/2 . They also demonstrate that

the optimal quantity is greater than the average demand for high-profit products and smaller for

low-profit products. A similar argument can be extended to any UNV model. First, note that

the designation of high or low profit can apply equally to a product, a business, or a production

process. Therefore, we use these terms interchangeably. Additionally, we observe that expected

revenues E[cd (@)] increase with both profitability 1− 2/? and supply reliability d. Consequently,

lower supply reliability requires higher profitability to maintain the same level of expected revenues.

This relationship suggests that a product can be characterized by the balance between competing

factors of reliability and profitability.
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We classify a product (or a business, or a production process) as high yield or low yield based

on whether its onerousness 2/? is less than or greater than its supply reliability d. Intuitively,

products with a reliable supply side (i.e., a large d) can tolerate higher onerousness 2/?, meaning

lower profitability 1− 2/?, while still achieving a given level of expected profits. Interestingly, we

can characterize the optimal order quantity @∗0 in terms of the supply regime d:

Proposition 1 (Optimal Quantity in a Naked UNV Model). The optimal order quantity @∗0 for a

high-yield product (2/? < d) is the unique solution to the generalized critical fractile equation:

�� (@) = 1−
1

d(1− 0?Ψd (@))
×
2

?
, (9)

where:

Ψd (@) := (1− d)@ + d

∫ @

0

�� (G) 3G. (10)

The optimal order quantity for a low-yield product (2/? > d) is zero. In all cases, the optimal

quantity is bounded above by the optimal quantity in the standard NV model M(1,0), i.e., @∗0 ⩽ @∗
#+

,

and they are equal if and only supply is fully reliable (d = 1) and the firm is risk neutral (0 = 0).

This result indicates that any business involving a low-yield product is not viable. It also demon-

strates that the lower the supply reliability d, the lower the cost-to-price threshold 2/? required to

achieve a positive order quantity. This theoretical result reflects an empirical observation: when an

SC disruption decreases supply reliability, say d1 ↓ d2, all products with profitability levels between

d2 and d1 shift from high-yield to low-yield and are no longer ordered or produced (@∗0 = 0). The

extent of this effect is closely tied to product profitability, with less profitable products (high oner-

ousness) typically abandoned before highly profitable ones (low onerousness). Notably, the decision

to cease production or procurement is independent of the firm’s risk aversion 0, whereas the optimal

order size depends on all model parameters.

The generalized critical fractile equation (9) can be analytically solved in a few cases.

Example 1 (Risk neutral firm). Consider a risk-neutral firm (0 = 0) facing unreliable supply

(d < 1). Then, the optimal order quantity for a high-yield product (2/? < d) aligns with a standard

newsvendor model featuring onerousness proportionally reduced onerousness by d−1, i.e.,

@∗0 = �−1
�

(
1− d−1 ×

2

?

)
. (11)

If the product is low-yield, the optimal order quantity becomes zero, and the business remains idle.
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Example 2 (Risk averse firm and uniform demand). Consider a risk-averse firm (0 > 0)

facing unreliable supply (d < 1) to meet a uniformly distributed U[0, 3] product demand. Then, the

optimal order quantity @∗0 for a high-yield product (2/? ⩽ d) satisfies a cubic equation:

0?
d

232
@3 −

0?

3

(
1−

d

2

)
@2 −

(
1

3
+ 0?(1− d)

)
@ + 1−

2

d?
= 0. (12)

This equation can be solved either analytically by employing Cardano’s formulas or numerically

through standard root-searching methods (e.g., Newton-Raphson method).

Uniform demand is often used as a benchmark assumption (Ding et al. (2007)). Accordingly, we

solve equation (12) in Appendix EC.1.1 and develop a numerical example in Subsection 3.2.

We conclude this section with an in-depth examination of how the optimal order quantity depends

on the supplier’s reliability, the firm’s risk aversion (or propensity), and the product’s onerousness

(or profitability). Intuitively, any parametric change that expands the firm’s action range should

lead to a higher operational level. Thus, we anticipate that increases in supply reliability, risk

propensity, and/or product profitability will correspond to a larger order quantity. In a standard

NV model, M(1,0), the critical fractile equation (8) indicates that the optimal quantity increases

with product profitability 1 − 2/?, or, equivalently, decreases with product onerousness 2/?. In a

UNV model, M(d, 0), the endogenous (i.e., quantity-dependent) bias Ψ in the generalized critical

fractile equation (9) influences the impact of onerousness on the optimal order quantity. This effect

further depends on the firm’s risk aversion 0 and supply reliability d. The intricate relationship

among these quantities is unraveled in the following:

Proposition 2 (Properties of the Optimal Order Quantity in a UNV Model). In a UNV model

M(d, 0), the optimal capacity @∗0 increases with the supplier’s reliability d, the firm’s risk propensity

0−1, and the product profitability 1− 2/?.

These properties reflect well-established managerial behavior: a reliable production process facil-

itates business operations, thereby incentivizing increased activity; a risk-averse firm, acting cau-

tiously, tends to reduce its operations, while a risk-seeking firm behaves in the opposite manner,

expanding operations; finally, a company dealing with a highly profitable product is more inclined

to order greater quantity, feeling confident in its investment. This proposition also asserts that,

for a given order quantity, the three factors—supply reliability, the firm’s risk propensity, and

product profitability—trade off against one another. Interestingly, the property whereby capacity

is increasing in risk propensity may read as decreasing in risk aversion.



:

13

2.4. Integrated Risk Management

The problem of IRM in a UNV model M(d, 0) amounts to solving an optimization (3) for a selected

class H of financial hedges � that are priced by some valuation method � → +� . We take up

the perspective of a firm having access to an arbitrage-free and complete financial market. For

simplicity, we assume a zero risk premium so that the pricing and the physical measures, Q and P,

match. Consequently, any security price is the conditional P-expectation of its (discounted) cash

flows �, +� (C) = EP [�] . A feasible hedge � in a class H is one fulfilling the firm’s budget condition

+� (C) ⩽ F. The adoption of a MV target entails a binding budget constraint at the optimal hedge

(+�∗
(C) = F) and we may assume a zero budget (F = 0) with no loss of generality.

We consider the cases of no hedging, demand hedging, supply hedging, and combined demand-

yield hedging using forward contracts. Appendix EC.2.2 gives a precise description of the related

hedging classes H0, H�, H. , and H�. , and shows that all claims share a common functional form

� (X, h) = X� + h. + ^. Here, constants X and h denote forward holdings and ^ = −X` − hd is a cash

amount ensuring a zero budget constraint. We identify each hedge � with a forward holding pair

according to: H0 ∋ � ↔ (0,0), H� ∋ � ↔ (X,0), H. ∋ � ↔ (0, h), and H�. ∋ � ↔ (X, h).

An IRM policy (@, �) is defined by a control triplet (@, X, h) leading to hedged revenues:

Πd (@, X, h) := Πd (@, �) = cd (@) + X[� − `] + h[. − d], (13)

with a slight abuse of notation. The IRM problem (3) featuring a combined forward hedge on

demand � and supply yield . boils down to the nested two-program optimization:

�
∗
�. :=max

@⩾0

(
max

(X,h) ∈R2
MV

[
Πd (@, X, h)

] )
. (14)

By adding a constraint h = 0 or X = 0, we get to IRM under either demand or supply hedging only,

and the corresponding optimal MV targets are denoted by �
∗
�

and �
∗
.
, respectively. Clearly, a

zero budged constraint is implicitly accounted for by the adoption of forward hedges. The inner

optimization is a financial hedging problem conditional to a value taken by the operational variable

@. It leads to an optimal conditional forward hedge. The outer optimization is an operational

handling problem corresponding to the optimal conditional forward hedge obtained in the inner

problem. More precisely, we have a (1+2)-step algorithm:
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Step 1. The optimal conditional financial hedges over classes H�, H. , and H�. are given by:

�� (@) := max
(X,h) ∈R2:h=0

MV[Πd (@, X,0)] → argmax =:
(
X∗� (@), h∗� (@) ≡ 0

)
, (15)

�. (@) := max
(X,h) ∈R2:X=0

MV[Πd (@,0, h)] → argmax =:
(
X∗. (@) ≡ 0, h∗. (@)

)
, (16)

��. (@) := max
(X,h) ∈R2

MV[Πd (@, X, h)] → argmax =:
(
X∗�. (@), h

∗
�. (@)

)
. (17)

where �#(@) is the financially optimal conditional MV target when hedging in H# (# = �,., �. ).

Step 2(a). The order quantity in the optimal IRM over a class H# (# = �,., �.) is given by:

@∗# := argmax
@⩾0
MV[Πd (@, X

∗
#(@), h∗#(@))] . (18)

Step 2(b). The financial hedge in the optimal IRM over a class H# (# = �,., �.) is the optimal

conditional financial hedge over H# evaluated at that optimal order quantity over H#:

�∗
# =

(
X∗#(@∗#), h

∗
#(@∗#)

)
. (19)

In conclusion: for a class of financial hedges H# (# = �,., �.), the optimal IRM policy is
(
@∗
#
, �∗

#

)

and the optimal IRM MV target is the optimal MV conditional to the optimal order quantity, i.e.,

�
∗
# =�#(@∗#). (20)

A solution to the optimal conditional hedging problems stated as step 1 is given in the following:

Proposition 3 (Optimal Conditional Financial Hedge in a UNV Model). Consider the IRM

problem in a UNV model with demand distribution �� and a class H# of financial forward hedges

with underlying # = �,.,or �. . Then, the optimal conditional hedge is given by:

�∗
#(@) = X∗#(@) [� − `] + h∗#(@) [. − d], (21)

with forward holdings X∗
�
(@) = X∗

�.
(@) = −d?�(@) and h∗

.
(@) = h∗

d,�.
(@) = −?�(@), and side terms

�(@) :=
1

f

(
(@ + `)

∫ @

0

�� (G) 3G − 2

∫ @

0

G�� (G) 3G

)
, (22)

�(@) = @ −

∫ @

0

�� (G) 3. (23)

The corresponding optimal conditional MV target is given by:

�#(@) =�0(@) +
0d?2

2

(
d�(@)21{�,�. } (#) + (1− d)�(@)21{.,�. } (#)

)
, (24)

where �0(@) :=MV[cd (@)] denotes the MV target of naked revenues conditional to an order quantity

@ and the indicator function 1�(#) equals 1 if # ∈ �, and 0 otherwise.
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The optimal hedges are all short positions because business revenues increase with product

demand and supply reliability. Their sizes increase with risk aversion 0, with selling price ?, and

with order quantity @ since terms �(@) and �(@) are always positive and increasing (�(0) = �(0) = 0

and m@�(@), m@�(@) ⩾ 0). Interestingly, if the demand distribution has a density, then any hedging

size is convex in order quantity: doubling an order entails more than doubling the notional of any

optimal forward hedge. Supply reliability d has a positive (resp., negative) effect on demand (resp.,

supply yield) hedging size. Last, the optimal combined forward holdings match those in the two

one-underlying forward hedges since demand and supply yield are independent. In case of mutual

dependence, these holding can still be analytically computed by using a general expression derived

in Roncoroni and Id Brik (2017).

The order quantity (18) in the optimal IRM solves a further generalized critical fractile equation.

Proposition 4 (Optimal Order Quantity in a Financially Hedged UNV Model). The optimal order

quantity @∗
#

is the unique solution of the IRM generalized critical fractile equation:

�� (@) = 1−
1

d(1− 0?Ψd (@))
×

[
2

?
− ℎ0,d,#(@)

]
, (25)

where Ψd (@) is defined in formula (10) and:

ℎ0,d,#(@) :=
d0?

2

(
dm@�(@)

2
1{�,�. } (#) + (1− d)m@�(@)

2
1{.,�. } (#)

)
, (26)

with �(@) and �(@) given in formulae (22) and (23), respectively.

We conclude by demonstrating that financial hedging does not alter the monotonic properties

of optimal ordering with respect to key model parameters.

Proposition 5 (Properties of Order Quantity in the Optimal IRM of a UNV Model)). For any

hedging class # (# = �,., �.), the order quantity @∗
#
in the corresponding optimal IRM (expression

(18)) increases with supply reliability d, the firm’s risk propensity 0−1, and product profitability

1 − 2/?. Additionally, when a supply yield hedge is used, the order quantity in the optimal IRM

vanishes if supply reliability falls below the cost-to-price ratio, i.e., @∗
.
(d) = @∗0(d) = 0 for all d ⩽ 2/?.

This result is subtler than it initially appears: while asserting that financial hedging does not

change the direction of the effects of key parameters related to production characteristics and firm

preferences, it implicitly raises the question of the degree to which these effects are influenced. This

intriguing issue lies at the heart of our research on the impact of financial hedging on operational

resilience. To the best of our knowledge, it also represents one of the few analytical quantifications

of the effect of financial flexibility on operations (e.g., Wang et al. (2024a)).
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3. Operational Resilience to Capacity Downsizing

The decision of whether to adopt an IRM approach largely hinges on the influence of financial hedg-

ing on optimal physical operations, in particular on operational effectiveness and on operational

resilience enhancement .

Operational effectiveness can be measured by the change in the optimal order quantity that

results from transitioning between two alternative hedging classes (Guiotto and Roncoroni (2022)).

We identify cases in which this variation is nonnegative and instances where it remains unchanged.

Proposition 6 (Operational Effectiveness of IRM in a UNV Model)). Consider the optimal IRM

policy in a UNV model M(d, 0) over the alternative financial hedging spaces H0,H� ,H. ,and H�. .

Then, for any supply regime d ∈ [0,1], the optimal operational quantity @∗
#
= @∗

#
(d) increases with

hedge complexity:

@∗0 ⩽ @∗� , @
∗
. ⩽ @∗�. . (27)

In addition, no financial hedging is relevant for increasing the order quantity above the no-hedging

case when the supplier is fully unreliable (d = 0):

@∗�. (0) = @∗� (0) = @∗. (0) = @∗0(0), (28)

and hedging reliability makes no additional contribution when the supplier is fully reliable (d = 1),

irrespective of whether a demand hedge is in place or not:

@∗�. (1) = @∗� (1) and @∗. (1) = @∗0(1). (29)

This result indicates that no hedge has any impact when the SC is fully unreliable. However, when

the SC is partially unreliable, hedging demand and/or supply risk may exert an expansionary

effect on physical operations and never lead to a contractionary outcome. This effect may address

the issue of underinvestment by upstream firms, identified as the main factor contributing to the

insufficient resilience of supply systems, as recently highlighted by Capponi et al. (2024).

Operational resilience enhancement represents a further and particularly striking effect of finan-

cial hedging on physical operations. Consider a firm adopting an IRM approach utilizing one of

the aforementioned hedging classes. This enhancement occurs when the operational adjustments

needed to restore optimality after a disruption are mitigated. Specifically, we aim to show that the

optimal IRM featuring a financial hedge against the yield factor . results in a weaker reaction of
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the optimal order quantity to any decrease in reliability odds d compared to the case of no hedging.

Let us formalize this property.

As long as we are concerned with model changes that reflect an SC disruption, regardless of the

event causing the shock, the relevant parameter is the supply reliability d. We adopt a model risk

approach based on sensitivity analysis, where d is treated as a deterministic yet unknown parameter

(Borgonovo and Plischke (2016)), and we examine changes in model output, here the optimal order

quantity, that follow a hypothetical variation in the value of d. (This approach contrasts with a

Bayesian approach, where model parameters are considered random variables with distributions

that can be updated as observations are made.) Any event that harms an SC results in a sudden

decrease in the supply reliability parameter, say from d1 to d2(< d1). This change correspondingly

modifies all model outputs: the optimal operational quantity declines from @∗0(d1) to @∗0(d2) in the

case of no hedging (Proposition 2), and from @∗
#
(d1) to @∗

#
(d2) when operating revenues are hedged

using a class of claims H# (Proposition 5). Each operational reduction,

�#(d1, d2) := @∗#(d1) − @∗#(d2), (30)

is referred to as an operational curtailment and quantifies the operational effort required to main-

tain optimality following a disruptive event. Consider two IRM policies featuring financial hedges

in classes H1 and H2, respectively. We say that H2-IRM entails a financially-driven operational

resilience enhancement over H1-IRM if:

�H2
(d1, d2) < �H1

(d1, d2). (31)

In other words, an SC disruption results in a lower operational effort when revenues are managed

using policy H2 compared to when they are managed using policy H1.

A benchmark case involves an SC transitioning from full to partial reliability, i.e., from d1 = 1

to d2 < 1. According to Proposition 6, we have the following insights: (i) Introducing supply yield

hedging entails an increase in the optimal order quantity, i.e., @∗
.
(d) ⩾ @∗0(d) for all d ∈ [0,1], unless

supply is fully reliable, in which case @∗
.
(1) = @∗0(1); (ii) Any drop in reliability results in a decrease

in the optimal order quantity. Thus, the operational curtailments under supply hedging and no

hedging are related to one another as follows:

�. (1, d2) := @∗. (1) − @∗. (d2) = @∗0(1) − @∗. (d2) ⩽ @∗0(1) − @∗0(d2) :=�0(1, d2).
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This inequality is strict in the viable operational region [2/?,1). It indicates that hedging against

supply yield results in a smaller decrease in the optimal order quantity compared to not hedging,

thus demonstrating an enhanced operational resilience driven by suitable financial hedging.

Two natural questions arise: Does this result hold true if the supply was initially unreliable, yet

viable, i.e., 2/? < d1 < 1, and then it worsens as a consequence of an SC disruption, i.e., d1 ↓ d2?

What happens in the case where hedging against risk sources other than supply yield, such as

demand, is simultaneously in place? We can offer an answer to both questions in the following:

Proposition 7. Consider a viable business. Then, there exists a threshold d0 ∈ (2/?,1) such that

for any supply regime drop from d1 to d2 with d0 ⩽ d2 < d1 ⩽ 1, an IRM featuring supply hedging

(H =H. ) enhances operational resilience compared to pure operational handling (H =H0):

�. (d1, d2) < �0(d1, d2). (32)

Additionally, an IRM featuring a combined demand-supply hedging (H = H�. ) enhances opera-

tional resilience compared to an IRM featuring demand hedging alone (H =H�).

��. (d1, d2) < �� (d1, d2). (33)

This result demonstrates that operational resilience improves as long as post-disruption supply

reliability remains above a certain threshold, which depends on the specific case. An example

presented in Subsection 3.2 illustrates the extent to which IRMs with appropriate financial hedges

enhance the firm’s resilience by mitigating disruption-driven reductions in optimal ordering.

3.1. Efficiency Analysis

The relevance of alternative IRMs can be further appreciated by analyzing their efficiency. This

characteristic can be evaluated using efficient frontiers and efficiency profiles. We now describe

both metrics, derive an analytical result, and defer a numerical assessment to the next Subsection.

The notion of efficient frontier is standard in financial portfolio management. There, the oper-

ational variable is represented by a vector of portfolio allocations. In the context of OM, it has

been introduced by Wang and Yao (2017) as a way to qualitatively rank alternative classes of

IRM policies in terms of the reward-risk trade-off they entail on hedges revenues. Specifically, an

efficient frontier is a locus of mean (or, absolute return) and standard deviation (or, risk) pairs
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(<H (@) , fH (@)) of financially optimal hedged revenues Πd (@, �
∗) over a range of operational levels

@. In the UNV model, fH (@) consistently increases with @, while <H (@) increases until reaching

a threshold @̄H, after which it decreases. Return-risk configurations for order quantities exceeding

this threshold are inefficient, as they involve both an increase in risk and a reduction in return.

Therefore, IRM ranking is grounded on curves obtained by letting order quantity @ range between

0 and the smallest order quantity @̄ for which at least one of the efficient frontiers reverts to inef-

ficient return-risk configurations, that is @̄ :=min{H} @̄H, where {H} denotes an array of hedging

classes under exam.

The notion of an efficiency profile aims to quantitatively rank alternative classes of IRM policies.

In the context of IRM for a standard NV model, this notion has been introduced in Guiotto and

Roncoroni (2022) as an adaptation of the Brown and Toft (2002) efficiency index to MV preferences.

More precisely, the efficiency profile of a hedging class H maps an order quantity @ to the MV gain

of H relative to the MV gain of combined hedging. In the context of IRM for a UNV model, we

modify this notion by defining the efficiency profile as a map of reliability odds d to the MV gain

of forward hedging (i.e., using either H� or H. ) over the MV gain of combined hedging, i.e.,

ℰ#(d) :=
�

∗
#
(d) −�

∗
0 (d)

�
∗
�.

(d) −�
∗
0 (d)

, # = �,., (34)

where the optimal MV targets with hedging �
∗
· (· = �,., �.) and without hedging �

∗
0 are given

by (20) and (2), respectively. Here, an explicit dependence of all terms on the reliability d has

been introduced. The relative efficiency profile d ↦→ℰ#(d) is well-defined and positive as long as

combined hedging provides an upper bound to the MV targets achieved by using either of the

two one-underlying hedges, i.e., �∗
�.

(d) ⩾�
∗
�
(d),�∗

.
(d). The resulting ranking enables a firm to

evaluate the relative merits of product demand versus supply yield forward hedging.

The appropriateness of transitioning from an IRM with a one-underlying hedge to an IRM with

a combined custom hedge should depend on the relative proximity between competing hedges in

terms of target performance (Brown and Toft (2002)). Therefore, we can use the relative efficiency

of an IRM to determine which is more appropriate—hedging product demand risk or hedging

supply yield risk—in an SC context defined by a given reliability d. We begin with a definition:

an IRM policy is considered fully efficient or inefficient for a reliability d if its relative efficiency

is approximately one or zero, respectively.
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Proposition 8 (Mean-Variance Efficiency of IRM in a UNV Model). The optimal IRM with for-

wards on product demand � is inefficient when production is fully unreliable (d ≈ 0) and becomes

fully efficient when production is fully reliable (d ≈ 1). Symmetrically, the optimal IRM with for-

wards on supply yield . is inefficient when production is fully reliable and becomes fully efficient

when production is fully unreliable.

This result highlights a significant trade-off between product demand hedging and supply yield

hedging. It also indicates that in the extreme cases of full reliability (d = 1), which encompasses

the majority of NV model instances discussed in the OM literature, and supply default (d = 0),

one of the two hedges becomes immaterial. A continuity argument proves the existence of a unique

reliability threshold, above which the firm should prefer hedging against demand risk rather than

supply risk, and below which it should reverse this preference. We elaborate on the use of these

notions in a numerical example.

3.2. A Numerical Experiment

In the setup of Example 2, we consider a firm with risk-aversion coefficient 0 = 2 × 10−5, facing

a demand uniformly distributed as U[0,1000] for a product sold at a unit price ? = $100 and

procured at unit cost 2 = $20. Here, expected sales amount to 500 product units. The optimal order

quantity for naked revenues is derived in Appendix EC.1.1 (formula (EC.3)). When adopting an

IRM approach, the optimal order quantity stems from numerically solving the IRM generalized

critical fractile equation (25).

Figure 2 presents graphs of optimal order quantities and their curtailment against decreasing

supply reliability. These curves represent optimal naked revenues (dotted line) and optimal IRM

revenues hedged using forwards on demand (dot-dashed line), on supply yield (dashed line), and

combined forwards on demand-supply (solid line). The left panel reveals that: (i) all order quan-

tities decrease as reliability decreases; (ii) they vanish below a critical reliability point, d2 = 20%;

(iii) above that threshold, all financial hedging strategies lead to an ordering excess over the no-

hedge case, regardless of reliability (except for fully reliable supply, where yield hedging becomes

inconsequential); (iv) as reliability decreases, this ordering excess consistently deteriorates when

hedging demand, while it improves up to a peak at d ≈ 42.3% when hedging supply yield, before

deteriorating again; (v) at a break-even point, d ≈ 69.4%, the ordering expansiveness hierarchy
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Figure 2 Optimal order quantity profiles d ↦→ @∗
#
(d) (left panel) and operational curtailment profiles d ↦→ @∗

#
(1) −

@∗
#
(d) (right panel) for optimal naked operational handling (# = 0) and IRM policies (# = �,., �.).

of these hedges swaps. This uneven performance of one-underlying hedges presents a dilemma

regarding which strategy to adopt. Combining claims resolves this issue, providing consistent per-

formance across the entire reliability range. The right panel shows that all curtailment curves are

nonnegative and increase as reliability deteriorates, until they reach the critical reliability point,

where orders vanish and curtailments stabilize. The impact of hedging depends on whether supply

yield . is included in the hedging instrument. Although demand hedging is effective in expanding

orders, it exacerbates order curtailment compared to the no-hedge scenario, indicating a reduction

in operational resilience. This is a significant drawback of demand hedging, which has been over-

looked in existing studies. In contrast, supply yield hedging results in the lowest curtailment curve,

demonstrating the greatest operational resilience. Notably, this curve is even lower than that of

the combined hedge, which is affected by the downside of demand hedging. Yield hedging clearly

dominates all other alternatives.

Figure 3 presents graphs that highlight IRM performance in terms of efficiency-related metrics.

The left panel shows efficiency profilesℰ� (d) andℰ. (d) for optimal IRM policies featuring demand

and supply hedges. The profiles clearly reflect the alternative outlined in Proposition 8 and suggest

switching from demand to supply hedging when supply reliability is doomed to fall below a break-

even point, d ≃ 80%. This threshold represents a slight forward shift from the break-even reliability

d ≈ 69.4% identified in terms of order quantity expansion. As a result, a dilemma arises between

whether to ground hedge switching on efficiency or on quantity expansion. This issue can be resolved

by turning to operational resilience, which clearly indicates the superiority of yield hedging over
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Figure 3 Left panel: Efficiency profiles d ↦→ℰ# (d) for optimal IRM revenues hedged on demand (# = �) and on

supply (# = .). Right panel: Efficient frontiers {(<# (@), f# (@)), @ ∈ [0, @̄]} for optimal naked (# = 0)

and IRM (# = �,., �.) revenues under fair reliability odds d = 0.6.

demand hedging (Figure 2, right panel). The right panel shows the efficient frontiers for naked and

IRM revenues hedged with alternative classes of claims when supply is fairly reliable (d = 0.60). A

bold dot indicates the return-risk point corresponding to the optimal order quantity for the hedging

class represented by the curve on which it lies. These graphs show that demand hedging enhances

returns without affecting risk (horizontal shift of the bold dot), resulting in a modest increase

in optimal capacity by 12.6%, from 413 to 465 units. Supply yield hedging, on the other hand,

brings with a sharper increase in returns and a significant decrease in risk, with order size rising by

up to 29.2%, from 413 to 534 units. Combined demand-supply hedging leverages the advantages

of both one-underlying hedges to varying extents, offering the best return-risk trade-off and an

order size increase of 49%, from 413 to 617 product units. Interestingly, demand hedging in this

context demonstrates a contribution to risk reduction, despite being immaterial when considered

in isolation.

Two key insights emerge from this analysis: (i) An optimal IRM featuring supply yield hedging

consistently outperforms any alternative IRM strategy, including combined hedging, across all

reliability odds in terms of resilience enhancement. It also surpasses both naked positioning and

demand hedging in terms of the return-risk trade-off; (ii) An optimal IRM featuring combined

demand-supply hedging outperforms any alternative hedging strategy in terms of order sizing and

the return-risk trade-off.
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4. An Extension to Capacity Relocation

In a multi-sourcing context, an SC disruption may necessitate operational relocation (Kouvelis

et al. (2024)). Resilience can be enhanced by mitigating the need for such relocation. We develop

this concept through a novel capacity reshoring model, which we empirically test on the case of

gas capacity reshoring from Russia to the U.S. following the 2022 SC disruption.

4.1. A Capacity Reshoring Model

Let a firm commit to selling a product in the domestic market at a future time. Both product

demand � and selling price % are random. They allocate production capacity between two facilities,

each operating at full capacity. Facility � is fully reliable, supplying a quantity equal to the allocated

capacity. Facility �, however, is unreliable: its actual supply may fall short of the installed capacity.

Let the index 8 = �, � represent either facilities, and @8 denote the production capacity allocated

to facility 8 at the outset (time 0). By assumption, capacity @� translates into an equal actual

delivery, while capacity @� is subject to a random yield factor . equal to either 1 (full delivery)

or H ∈ [0,1) (default), resulting in an actual delivery of @�. product units. Here, scalar H ∈ [0,1)

identifies a recovery yield in case of supply default. We define facility � supply reliability as d :=

P(. = 1). Operational costs consist of a constant unit allocation and production term 2
20?

8
(8 = �, �),

and a variable unit localization cost associated with adapting and transporting products from the

production facility to the end market (Ding et al. (2007)). While the localization cost for the

unreliable facility is a constant 2;>2
�

, the cost for the reliable facility additively combines a fixed

term 2;>2
�

and a market-driven term -, e.g., a commodity price or shipping freight index.

This structure of reliability and costs creates a trade-off in capacity allocation: the firm may

choose between a reliable supplier with a fluctuating cost and an unreliable supplier with a pre-

dictable cost. Capacity allocation and production costs apply to the entire allocation @8, while

localization costs are incurred only for the actual delivery. The firm prioritizes facility � if 2' (-) :=

2
20?

�
+ 2;>2

�
+ - < 2

20?

�
+ 2;>2

�
:= 2�, and prioritizes facility � otherwise. Operating profits read as:

Π(@�, @�;%, �,., -) =
[
(% − 2;>2� − -)+min(@�, �) + (% − 2;>2� )min(@�., (� − @�)+)

]
1{2� (-)<2� }

+
[
(% − 2;>2� )+min(@�., �) + (% − 2;>2� − -)+min(@�, (� − @�. )+)

]
1{2� (-)⩾2� }

− (2
20?

�
@� + 2

20?

�
@�), (35)
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where @� and @� are operational control variables, %, �,., and - are state variables, and

2
20?

�
, 2;>2

�
, 2

20?

�
,and 2;>2

�
are parameters. This model shares the piecewise linear structure of the

global allocation model developed in Ding et al. (2007), excluding FX risk (which can be accounted

for with minimal additional effort) and including an extension to incorporate supply risk.

The firm optimizes the mean-variance of its revenues over a set of admissible IRM policies, each

combining capacity allocations @� and @� to facilities � and �, with a financial hedge � to select

in a given class H . For a set Q ×Q ×H of admissible IRM policies, the optimal IRM satisfies:

�
∗
H := max

(@�,@� ,�)∈Q×Q×H: EQ [� ]=0
MV

(
Π(@�, @�) +�

)
→ argmax =:

(
@∗�H , @∗�H , �∗

H

)
. (36)

The CRS model IRM optimization (36) decomposes into nested problems:

�
∗
H

(
@�, @�

)
:= max

�∈H: EQ [� ]=0
MV

[
Π(@�, @�) +�

]
→ argmax =: �∗

H

(
@�, @�

)
, (37)

max
(@�,@� ) ∈Q×Q

MV

[
Π(@�, @�) +�∗

H

(
@�, @�

)]
→ argmax =:

(
@∗�
H
, @∗�

H

)
. (38)

Problem (37) determines the optimal conditional hedge; problem (38) delivers the operational

handling term of the optimal IRM; and the financial hedging term of the optimal IRM stem from

inserting operational handling term into the optimal conditional hedge, i.e., �∗
H
= �∗

H

(
@∗�
H
, @∗�

H

)
.

Suppose that an SC disruption brings about a drop d1 ↓ d2 in the unreliable facility’s reliability.

This exogenous change typically leads to variations @∗�
H
(d2) − @∗�

H
(d1) and @∗�

H
(d2) − @∗�

H
(d1) in the

optimal operational levels of facilities � and �, respectively. The corresponding operational effort

can be measured by the overall relocation size, defined as:

'H (d1, d2) :=
��@∗�H (d2) − @∗�H (d1)

��+
��@∗�H (d2) − @∗�H (d1)

�� .

Consider IRM policies with financial hedging in H1 and H2.

We say that optima IRM with hedging in H2 entails a financially-driven relocation resilience

enhancement over optimal IRM with hedging in H1 upon a reliability shock d1 ↓ d2 when:

'H2
(d1, d2) < 'H1

(d1, d2).

In summary, an SC disruption leads to a smoother reshoring effort when revenues are managed

under an IRM policy with hedging in H2 compared to an IRM policy with hedging in H1. In

what follows, we focus on situations where a drop in the unreliable facility’s reliability leads to a

curtailment in its allocated capacity and an expansion in the reliable facility’s capacity.
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4.2. Operational Resilience to Capacity Reshoring

We empirically test the CRS model and evaluate the ability of IRM to boost relocation resilience

upon the European gas SC disruption occurred in 2022. Consider a vertically integrated gas com-

pany that previously allocated capacity, operated production, and imported natural gas from the

Russian Federation (RF), benefiting from the relatively low costs associated with these operations.

Imports were conducted via the two NordStream pipelines crossing the Baltic Sea, with supply risk

considered relatively low at the time (German Federal Ministry for Economic Affairs & Energy

(2021)). In that context, procuring U.S. Liquid Natural Gas (LNG) was not a viable option due

to the high cost of processing, which involves gas liquefaction at −260◦F, seaborne shipment under

controlled temperature, and subsequent regasification.

The situation changed dramatically with the outbreak of the Russo-Ukrainian war in February

2022, further exacerbated by the sabotage of the NordStream pipelines in September of the same

year. These events caused a significant disruption in the gas SC across continental Europe, leading

to a sharp rise in gas prices (International Energy Agency (2022)). As a result, U.S. LNG became

competitive with inshore gas procurement. The company then faced the decision of whether to

allocate gas capacity to the inexpensive but unreliable Russian supply unit, ”'�”, or to the costly

yet reliable U.S.-based supply unit, ”*(”.

We can design a CRS model instance around this trade-off. The selling price of gas is represented

as a constant end-consumer tariff ?, the market-driven cost term - corresponds to the LNG

shipping freight rate for seaborne transportation across the Atlantic Ocean, and the supply costs

associated with the reliable U.S. supply are assumed to exceed those of the unreliable Russian

supply, i.e., 2*(
20? + 2

*(
;>2

> 2'�20? + 2
'�
;>2

. Operating revenues are then expressed as follows:

Π(@*( , @'�) = [(? − 2'�;>2)
+min(@'�., �) + (? − 2*(

;>2 − -)+min(@*( , (� − @'�. )+)]

− (2*(
20?@

*( + 2'�20?@
'�). (39)

Appendix EC.2.3 reports a comprehensive implementation and calibration of model (39) to histor-

ical data. All optimal pure and IRM problems are solved using numerical optimization.

Prior to February 2022, the Russian supply operated in a normal regime (d = 1). Following the

2022 supply disruption, its reliability decreased to some d < 1. Consequently, the IRM optimal

allocated capacity to Russian supply dropped from @∗'�
H

(1) to @∗'�
H

(d). The capacity allocated
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Figure 4 Capacity reshoring. Optimal Russian (left panel) /U.S. (right panel) capacity allocation profiles d ↦→

@
∗'�/*(

H
(d) for optimal naked operational handling and IRM with freight - and supply yield . forwards.

to U.S. supply experienced both expansion and contraction effects: on one hand, the decreasing

reliability of Russian suppliers made U.S. LNG supply relatively more attractive, leading to an

increase in U.S. capacity allocation; on the other hand, the negative correlation between Russian

supply yield and U.S.-to-Europe LNG shipping freight rates resulted in increased shipping costs for

the U.S. supply, exerting a contractionary effect. Overall, the net effect was a capacity expansion

of the reliable source, with @∗*(
H

(d) − @∗*(
H

(1) > 0. This numerical finding aligns with the analytical

results of Chopra et al. (2007), which show that a surge in disruption risk is accompanied by

increased reliance on the costlier, more reliable supplier at the expense of the cheaper, less reliable

one. Figure 4 exhibits the optimal capacity @∗'�
H

(d) allocated to the Russian unreliable supply

(left panel) and @∗*(
H

(d) allocated to the U.S. reliable supply (right panel) as a function of Russian

supply reliability d. Allocations refer to naked operational handling (H =H0) and to IRM with

freight rate - cross-hedging (H = H-) and with supply yield hedging (H = H. ). These graphs

indicate that standalone operational handling requires a sharp reduction in the capacity allocated

to the Russian unit once its reliability falls below the relatively high threshold of approximately

95%. In contrast, an ideal forward hedge written on the Russian supply yield . delays this reduction

until the reliability drops to around 65%. A more realistic forward hedge on U.S.-to-Europe LNG

shipping freights rate - still enhances operational resilience, though with a higher triggering point

of around 75%. In general, financial hedging “postpones” important operational adjustments to

regimes with lower reliability odds, thus improving the company’s operational resilience. However,

this benefit comes at the cost of a more pronounced capacity curtailment in the Russian facility
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Overall relocation size 'H (1, d)

Reliability d Naked IRM with IRM with
% handling freight hedging supply hedging

100 0 0 0

95 210 109 29

85 4588 239 116

75 6284 1195 239

65 6291 5741 4922

55 6226 6356 6335

45 6139 6299 6270

Figure 5 Operational resilience. Overall relocation size profiles d ↦→ 'H (1, d) for optimal naked operational han-

dling and IRM with freight - and supply yield . forwards (left panel) and sample values (right panel).

and a capacity expansion in the U.S. facility at these triggering reliability levels. Interestingly,

after U.S. capacity allocation reaches its peak, each capacity allocation curve gradually reverts

and declines as Russian supply reliability decreases further. This is due to a net contraction effect

driven by the inverse relationship between Russian supply yield and LNG shipping freight rates.

The extent of financially-driven relocation resilience enhancement over the pure operational

handling of naked revenues can be assessed by calculating the overall relocation size. In the present

CRS model instance, this quantity is defined for each hedging class H as:

'H (1, d) :=
��@∗*(

H
(1) − @∗*(

H
(d)

��+
��@∗'�H (d) − @∗'�H (1)

�� .

Resilience is enhanced when 'H8
(1, d) < 'H 9

(1, d) for all (8, 9) = (0, -), (0,. ), (-,. ). Figure 5 shows

the related size profiles d ↦→ 'H (1, d), for naked, U.S.-to-Russia freight cross-hedged, and Russian

supply hedged revenues (left panel) and sample values in tabular form (right panel). While a drop

in Russian supply reliability triggers an almost immediate reshoring effect on a naked business,

hedging postpones this impact until the reliability drop exceeds 22 percentage points in the case

of cross-hedging using shipping freight forwards and 30 percentage points in the ideal scenario of

Russian supply hedging. Beyond these thresholds, the underlying disruption becomes particularly

severe, and all relocation efforts tend to converge.

So far, we have examined the effect of financial hedging on capacity reshoring and operational

resilience. A firm might wish to couple financial instruments with operational tools to improve

these effects. The simplest case involves any action that could increase the recovery yield H in case
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Figure 6 Joint financial hedging and recovery yield handling: Efficient Frontiers for recovery yield H = 20% (left

panel), H = 40% (right panel), and shared supply reliability d=80%.

of supply default. An experiment reported in Appendix EC.1.2 shows that recovery yield handling

entails an increase the optimal capacity allocated to the Russian supplying unit for each value

of supply reliability d. The joint role of financial hedging and recovery yield can be appreciated

by analyzing their effect on efficient frontiers. Figure 6 reports frontiers for the cases of naked

positioning, cross-hedging, and perfect hedging of supply risk, under a relatively low recovery yield

H = 0.2 (left panel) and a higher recovery yield H = 0.4 (right panel). Here, reliability odds are set

to d = 0.80 in both cases. In both scenarios, hedging consistently offers a leverage to counteract

the reshoring effect of the Russian facility supply risk: RF capacity allocation increases at the

expense of the U.S.-based production unit. This effect leads to an increase in expected revenues by

enabling allocation in the cheaper and more profitable RF unit, despite the associated supply risk.

However, the difference between cross-hedging and perfect hedging is primarily confined to the risk

reduction side, where the latter definitively outperforms the former. Doubling the recovery yield has

an impact on capacity allocation, expected returns, and their standard deviation. However, these

effects are significantly stronger in the no-hedging case than in the two hedging cases. Specifically,

risk increases more sharply in the naked business relative to the hedged businesses. Symmetrically,

this makes hedging increasingly more effective in terms of risk reduction from the no-hedging case.

In other words, the operational strategy of increasing recovery yield enhances the risk-reduction

power of financial hedging, further strengthening its role in mitigating supply chain risks. A further

(and subtler) interaction between the operational handling of recovery yield and financial hedging

is discussed in Appendix EC.1.2.
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5. Conclusion

5.1. Summary and Managerial Considerations

We conjecture that IRM can enhance operational resilience to supply disruptions. This model risk

hypothesis is examined within the context of capacity planning across one or two sourcing entities.

Our analysis identifies financial hedges that mitigate operational shifts, such as sourcing contraction

(downsizing) or relocation (reshoring), resulting from disruptions that impair supply reliability.

We validate our conjecture using an unreliable supply newsvendor model and a capacity reshoring

model: with the former, we analytically prove that appropriate hedging (or even cross-hedging)

of supply risk (a) counterbalances capacity allocation shrinkage due to supply disruptions and

(b) significantly reduces this operational contraction compared to purely operational strategies,

thereby enhancing operational resilience; with the latter, we empirically show that a suitable hedge

of supply risk can reduce the extent of capacity reshoring required by the European gas supply

chain disruptions following the 2022 Russo-Ukrainian war outbreak. Furthermore, we reveal that

traditional IRM strategies based on demand hedging may intensify the operational adjustments

required by a supply chain disruption, thereby increasing operational fragility. We argue that our

IRM approach to operational resilience may provide distinct advantages in flexibility, timing, and

cost savings, making it a valuable complement to conventional operational tools.

Three major assumptions in the UNV model may limit the practical application of its prescrip-

tions in real-world scenarios: (1) full knowledge of supply reliability d; (2) the ability to trade

derivatives written on product demand � and supply yield . ; and (3) the one-period setup. In

practice, d is often unobservable, � and . are nonclaimable, i.e., financially uninsurable, and a

reliability drop would necessitate hedge updating at an intermediate point in time. The first issue

can be addressed either by estimating a proxy for reliability odds, such as the Overall Equipment

Effectiveness (OEE) index, or by adopting a conservative approach based on a worst-case scenario.

The second issue can be tackled using the cross-hedging approach proposed by Gaur and Seshadri

(2005). The third issue may be resolved by either extending the model to a multi-period framework

or incorporating into end-of-period business revenues the P&L from financial hedge transitioning

from �∗
#
(d1) to �∗

#
(d2) following a reliability drop d1 ↓ d2. Appendix EC.1.3 provides a detailed

elaboration on these solutions, including a few technical specifics.
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5.2. Future Developments

Future research could explore theoretical advancements and practical applications.

A first research direction could explore the case of outsourced procurement (Dada et al. (2007)).

This scenario involves paying costs only for the actual supply @. . While this may appear to be

a minor adjustment, it introduces significant analytical complexity: a drop in supply reliability

generates competing effects—reducing the order size, as in our UNV model, and increasing it to

compensate for lower yield, with no cost incurred for undelivered items. A priori, the net effect is

uncertain, as is the impact on the effectiveness of a financial approach to operational resilience.

A second research direction could incorporate statistical dependence between supply yield .

and product demand �, a realistic yet underexplored scenario. Examples include Babich (2010)

(joint capacity ordering and financial subsidy policies), Allon and Van Mieghem (2010) (base-surge

sourcing in offshore-nearshore sourcing), Sting and Huchzermeier (2012) (dual sourcing analysis),

Boyabatli and Feng (2024) (joint capacity investment and hedging decisions), and Wang et al.

(2024b) (preference for expensive over cheaper suppliers under demand-supply correlation). We

conjecture that demand-supply correlation may mitigate, or even invert, the fragility effect of

demand hedging. Additionally, it causes combined hedging to deviate from a simple assemblage of

optimal forwards (Guiotto and Roncoroni (2022)), necessitating the evaluation of the effectiveness

of genuine combined forwards (Roncoroni and Id Brik (2017)).

A third research direction could extend our results to a dynamic framework, either in discrete

time (Kouvelis et al. (2018)) or continuous time (Caldentey and Haugh (2006); Wang and Yao

(2017)). Such extensions would allow for differentiating between disruption risk, modeled via regime

changes, and normal supply risk, captured through jump terms. Additionally, they could enable

distinguishing between permanent and temporary disruptions by incorporating recovery probabil-

ities. Furthermore, these extensions would facilitate an analysis of the trade-off between execution

costs and resilience benefits when transitioning from static to dynamic hedging.

Other research directions could focus on relaxing the constraints of our model, such as allow-

ing for market incompleteness (Gaur et al. (2011)) or exploring alternative target objectives, such

as expected utility (Chod et al. (2010)) or CVaR (Zhao and Huchzermeier (2017); Wang et al.

(2024b)). Finally, our model could be integrated into a general equilibrium production network

(Pellet and Tahbaz-Salehi (2023), Como et al. (2024)), to provide insights into the systemic impli-

cations of operational and financial resilience strategies.
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