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Abstract 

How do the choice of firm boundaries and contractual incentives within firms interact to 

shape innovation outcomes? We address this question using granular data on drug 

development projects submitted for FDA approval and hand-collected data on managerial 

compensation. We find that, when a company introduces drug project progression goals as a 

component of managerial compensation, it creates an agency problem that induces managers 

to advance to clinical trials more and less promising internally developed drug projects, 

controlling for possible sources of heterogeneity across drug projects and across companies. 

This novel mechanism, which reduces innovation efficiency and results in suboptimal firm-

boundary decisions as reflected in the choice between internal development and licensing, 

does not occur with in-licensed drug projects. It is also distinct and coexists with selection 

effects and contractual inflexibility. 
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1. INTRODUCTION 

The way R&D activities are organized within and across firms has long been 

identified as an important driver of the successful development of innovations (e.g., Aghion 

and Tirole, 1994). This makes the design of innovation mode an important element for both 

corporate strategy and economic growth (Arora, Fosfuri, and Gambardella, 2001). 

Over the years many studies have documented the importance of organizational 

design for effective R&D investment. Two aspects have been shown to play an important role 

in innovation mode design. First, whether innovation projects are performed within a 

company or through strategic alliances, which shapes company-level contractual boundaries 

and incentives. Second, how incentives are designed within the company, which determines 

the behavior of innovation managers. 

The first aspect has been developed in a large literature on internal capital markets, 

starting with the seminal contribution of Stein (1997). This literature studies the trade-offs 

implied by the choice of firms’ boundaries (Seru, 2014). Research projects performed 

internally can be better controlled by headquarters. These allocate capital among competing 

projects and nurture success by shifting resources from low-performing to high-performing 

projects (‘winner picking’) using soft information that would be difficult to contract upon 

with external parties. Moreover, internal project development is often financially more cost-

effective as it is often internally funded, which is cheaper than raising debt or equity. 

However, internal capital markets also have a ‘dark side’ because they cannot contractually 

commit to an efficient ‘winner picking’ when they face a soft-budget constraint, as first 

argued by Scharfstein and Stein (2000). Sourcing R&D projects outside the firm boundaries, 

typically through strategic alliances, including licensing, allows firms to engage in a wider 

variety of projects than would be possible to develop internally. Such contracts, however, 

make it more difficult to terminate a project for non-technical reasons, limiting headquarters’ 
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ability to engage in winner-picking. Within this context, Robinson (2008) showed that 

strategic alliances, in a situation where winner-picking is non-contractible, provide an 

efficient way to pursue innovative R&D projects. 

The second aspect relevant to innovation mode design has also been studied 

extensively, but largely in isolation from the first one. An important assumption of the 

literature on firms’ boundaries is that the agents involved in research projects act in sync with 

their principal, the firm that employs them. However, several studies document the pervasive 

presence of agency problems within hierarchies that may tilt incentives on the wrong side 

(see Mookherjee, 2013, for a survey). This adds an important dimension to the choice of firm 

boundaries that can lead to different conclusions than those the internal capital markets 

literature has reached. 

In this study, we consider these two aspects jointly, and analyze empirically how 

contractual incentives provided by managerial compensation affect the efficiency of the 

innovation process in a situation where companies license some R&D projects to improve the 

quality of their innovation output. We argue that asymmetric information about the success 

probability of drug projects creates an agency problem between the firm and its managers. 

We then provide evidence that managerial compensation based on drug project progression 

goals leads to inefficient firm-boundary decisions, as reflected in the choice between internal 

development and licensing.  

We therefore provide empirical evidence on how the joint effect of contractual 

incentives and institutional design affects firm performance, more specifically the success 

rate of innovative projects, in the context of R&D by biopharma companies. This allows us to 

address the theoretical contract literature started by Holmström (1984) and later advanced by 

Dessein (2002), which discusses under which conditions a principal can motivate an agent 

who possesses private information to act on its behalf, and the literature on organizational 
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structure and internal capital markets in R&D intensive firms, as exemplified by Robinson 

(2008). We provide evidence that innovation mode design may become ineffective, and lead 

to inefficient decisions when the interaction between its components fails to align.  

We do so by looking at the biopharmaceutical industry, where established companies 

develop their pipeline of new drugs to advance through clinical trials towards regulatory 

approval by relying both on in-licensing of drug projects developed by specialized start-ups 

and on internally developed drug projects.  

Several characteristics of the biopharmaceutical (‘biopharma’) industry make it an 

excellent ground for studying how the interplay between contracting and incentives affects 

innovation. First, this industry has since long relied on several modes of innovation, where 

large incumbents engage in internal R&D, cooperate with other incumbents in R&D joint 

ventures, or delegate exploration of new drug compounds to specialized start-ups from which 

they license. We focus on the comparison between internally developed and in-licensed drugs 

since in both modes of innovation incumbents have control over project development. This 

allows us to compare these two different modes of organization of R&D activities in a 

homogeneous industry environment. Drug projects are also inherently risky, as only a very 

small percentage of those that enter clinical development eventually receive regulatory 

approval. Second, clinical trials provide a suitable structure to compare the success of internal 

and in-licensed innovation by mandating standardized development phases. Third, the 

standardized regulatory processes result in data on clinical trials at a granular level, which 

allows us to control for different effects and for alternative mechanisms that may drive our 

results.  

We build on the work of Robinson (2008), who develops a model in which contractual 

rigidity explains why companies choose to in-license some innovation development projects. 

Licensing contracts limit a company’s flexibility to reduce funding or terminate an in-
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licensed project (winner picking), compared to internally developed projects. Robinson 

theorizes that incumbents select alliances to overcome internal incentives to divert resources 

away from risky innovative projects, which he calls ‘longshots.’ Longshot projects are those 

with a low probability of success but high value if successful: high risk and high reward. 

These projects are therefore a natural choice to organize as alliances – since it is more likely 

that resources would be diverted away from risky longshot projects organized internally. 

Drug projects fit perfectly the longshot characterization of high-risk and high-reward 

projects. 

We build on Robinson’s empirical analysis, which uses industry-level data, in two 

major ways. First, and most important, we consider that firm managers respond to incentives, 

which shape their decisions on the continuation of drug development projects. Second, we 

exploit the detail of our data to analyze potentially competing explanations for the observed 

outcomes of different innovation modes. 

Our study also provides the first large-scale rigorous documentation that internally 

developed drug projects have a significantly lower success rate than in-licensed ones: 

innovation mode therefore matters for the success of innovation projects. This is a well-

documented stylized fact in the trade literature on R&D alliances in biopharma (Kola and 

Landis, 2004; DiMasi et al., 2010; Smietana et al., 2016; Markou et al., 2023). We exploit 

drug project-level data to show that this result holds not just at a descriptive level, but even 

when controlling for possible sources of heterogeneity across drug projects, including the 

phase, the therapeutic area, and several other drug project characteristics. This allows us to 

rule out drug-level effects as possible alternative explanations. In particular, drug 

development involves separate phases: Phase 1 tests the safety of a drug in a small group of 

participants; Phase 2 tests the drug for dosing and efficacy in a larger group of patients with 

the disease to be treated; Phase 3 tests the safety and efficacy of the new drug in a much 
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larger group of patients; and the Review phase involves the approval from a regulatory 

agency (in our case the US Food and Drug Administration, FDA). We show that the higher 

success rate of in-licensed drug projects cannot be explained simply by the trial phase at 

which projects enter the incumbents’ pipeline. Indeed, we find that most in-licensed deals are 

concluded by the start of Phase 2 of clinical trials. 

We then explore three potential mechanisms that could drive the pattern we document. 

First, incumbents could be particularly good at selecting promising drug project candidates to 

license, an explanation that builds on the ‘absorptive capacity’ literature (Cohen and 

Levinthal, 1990; Nerkar and Roberts, 2004). Second, incumbents could use in-licensing 

contracts to commit not to terminate ‘longshot’ projects; such contractual arrangements may 

prevent in-licensors from terminating projects due to strategic reasons unrelated to the drugs’ 

quality, and thus contribute to the higher success rate of in-licensed drug projects (Robinson, 

2008). Third, we posit that one also needs to consider the interaction between contractual 

arrangements and the incentives provided by the incumbent to its R&D managers, because 

managerial incentives could mitigate or amplify the productivity differential of internal and 

in-licensed projects. Therefore, we explore the possibility that the interaction between 

licensing and incentives may lead internal R&D teams to bring forward less promising drug 

projects due to monetary and career incentives within the incumbent. This interaction 

between contracting and incentives creates an agency problem within the firm, which has not 

yet been studied in the literature and could contribute to lowering the success rate of 

internally developed drug projects vis-à-vis externally sourced ones. 

Our focus on the role of managerial incentives within incumbent firms comes from 

the observation that, for biopharma companies, these incentives have been changing since the 

beginning of the century. Attempting to contrast the secular decline in R&D productivity 

(DiMasi et al., 2010; Paul et al., 2010; Pammolli et al., 2011; Schuhmacher et al., 2023), 
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since the early years of this century biopharma companies have increasingly adopted 

compensation schemes that reward managers for achieving annual R&D goals, often 

measured by the number of pipeline projects that are advanced to the next phase of clinical 

trials. It is common practice to set R&D goals at the corporate level and then cascade down 

through the R&D organization to team and individual goals to create alignment with 

corporate annual goals (Loch, 2008). Roche provides an example of how corporate goals 

connect to managers’ variable compensation in their 2020 annual report: “Firstly, the variable 

components are intended to create additional financial incentives to achieve corporate goals 

and to keep innovation at a consistently high level while increasing the value that the 

company creates for all stakeholder groups. Secondly, in order to allow employees and 

managers to participate in the company’s business success, adequate compensation measures 

are key. Both objectives are incentivised by annual bonus payments and long-term securities-

based programmes.” We document that the fraction of biopharma companies in our sample 

adopting R&D-based incentive compensation schemes increased from 14% in 2000 to 69% in 

2020. While the stated goal of these schemes is to increase R&D productivity by rewarding 

employees based on drug project performance, they can have the unintended effect of 

reducing the success rate of internally developed drug projects by giving R&D managers 

private incentives to advance the development of even lower-quality projects. By contrast, we 

expect agency issues to be less pressing for in-licensed projects because of close pre-

licensing managerial scrutiny due to the higher costs of in-licensing compared to those of 

internal projects, and also due to milestone payments typical with progressing in-licensed 

projects to the next phase (Edwards, 2019; Markou et al., 2023). 

This agency problem is likely to emerge in drug development phases in which R&D 

teams hold private information regarding the underlying quality and prospects of drug 

projects. In Section 2.1, we argue that this is the case for Phase 2 of drug project trials, which 



 

7 
 

has the lowest success rate among all phases. We also bring anecdotal evidence that industry 

executives and observers are aware of agency issues in a way that corroborates our 

conjecture.  

Our results paint an interesting picture of how incentives interact with the effects of 

in-licensing. The key finding is that the data confirm the importance of considering both the 

contracting and incentives aspects of innovation modes. We show that when information 

asymmetries are minor, R&D-based managerial compensation has either no effect or a 

positive effect on the success rate of internal drug projects vis-à-vis in-licensed drug projects. 

This is the case with Phase 1 and Phase 3 of clinical trials. By contrast, in Phase 2, 

characterized by the presence of more private information held by R&D teams, R&D-based 

managerial compensation has the effect of reducing the success rate of internal vis-à-vis in-

licensed drug projects. Indeed, we find that the difference in success rate between internal 

and in-licensed drug projects is mostly driven by firms that adopted R&D-based managerial 

compensation.  

We also find evidence for other mechanisms that build on previous results in the 

literature. First, consistent with a selection effect, we find that in-licensed drug projects have 

a higher likelihood of approval (LOA), than similar internally developed drug projects as 

assessed by industry analysts at the time of the licensing deal. We also find that in-licensed 

drug projects have higher sales potential than internally developed ones. This suggests that 

biopharma companies are selecting in-licensed drug projects that are more likely to be 

successful–both technically and commercially–than similar internally developed projects. 

Consistent with an absorptive capacity argument, we also find that companies that invest 

more in R&D select better in-licensing projects, pointing to a role of internal R&D beyond 

that of discovering and developing new drugs. Yet, we do not find evidence that this “winner-

picking” is significantly different for firms that adopt R&D-based managerial compensation, 
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which suggests that the two mechanisms are distinct. Second, consistent with Robinson 

(2008), we find that contractual arrangements prevent licensees from terminating projects due 

to strategic reasons unrelated to the drug, and thus contribute to the higher success rate of in-

licensed drugs. Yet, our results continue to hold when we exclude projects terminated for 

non-technical reasons, and therefore we conclude that contractual inflexibility does not 

entirely explain our results. 

Overall, we document that, given the presence of private information regarding the 

quality of R&D projects, R&D-based managerial compensation can impose large agency 

costs on biopharma companies (Jensen and Meckling, 1976) and decrease the relative 

efficacy of licensing as an innovation mode. Documenting the negative incentives that 

contracting under asymmetric information creates when they interact with licensing of R&D 

contracts contributes a new perspective on how organizational design affects innovation 

efficiency.  

Our paper contributes to several streams of research on the organization of innovation 

activities within and across firms. First, we contribute to the literature on internal capital 

markets as a form of capital allocation mechanism (e.g., Gertner and Scharfstein, 2013). 

Second, we contribute to the literature on devising optimal innovation modes, particularly on 

the choice between in-licensing and internal R&D (e.g., Robinson, 2008). Third, we 

contribute to the literature on agency problems and incentives in R&D and their effect on 

R&D productivity (e.g., Arora et al., 2009).  

The rest of the paper is organized as follows. We present our sample in Section 2, and 

our methodology in Section 3, and report our results in Section 4. The paper closes with a 

conclusion in Section 5. An Online Appendix reports further results.  

 

2. SAMPLE AND DATA  
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In this section, we describe our sample and data to illustrate why biopharma is an 

ideal testing ground for our study. We start with a description of the regulatory context in 

which biopharma companies innovate and of the way decisions about drug project 

management take place. We then describe our data sources and how we built our sample, and 

discuss the variables we use in the analysis.  

 

2.1 Institutional context 

R&D is considered the lifeblood of the biopharmaceutical industry (Szustek, 2015; 

Masson, 2023), as the success of a biopharma company depends on a steady stream of new 

drugs (Kola and Landis, 2004; Schuhmacher et al., 2023). Developing a new drug, however, 

is a long, costly, and uncertain endeavor. It takes over 13 years to develop a new drug from 

discovery to regulatory approval (Martin et al., 2017), with an estimated cost of $2.6 billion, 

including the costs of drug candidates that fail during development (DiMasi et al., 2016). 

Drug development is a highly regulated process that is structured into preclinical 

research followed by three separate clinical trial phases, with each phase increasing in the 

number of participants and cost ((Scott Morton and Kyle, 2012)). Developing a new drug 

begins in the discovery phase. Thousands of compounds are screened against a disease target 

before finding a promising candidate (Hughes et al., 2011). About half of potential drug 

candidates fail even prior to preclinical testing (Paul et al., 2010). Preclinical research tests 

drug candidates for biological activity and potential toxicity in animals before clinical trials 

in humans. Each phase of clinical trials is then designed to answer specific questions related 

to the benefits and risks of a new drug. Phase 1 tests the safety of a drug in a small group of 

participants, usually healthy volunteers, and measures safe dosage ranges and the metabolism 

of the drug. Phase 2 tests the drug for dosing and efficacy in a larger group of patients with 

the disease to be treated. Phase 2 is sometimes split into two trials: Phase 2a to study dose 
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ranging and Phase 2b to assess efficacy. Phase 2 is considered ‘proof of concept’ for new 

drug safety and efficacy and has the lowest clinical phase success rate. Phase 3, which on 

average takes longer than the previous phases, is pivotal for regulatory approval and multiple 

clinical trials can test thousands of patients to demonstrate the treatment benefit and safety of 

a new drug. After successful clinical studies, approval from a regulatory agency, like the US 

FDA, is required to obtain permission to market a new drug (FDA, 2018) through the Review 

phase.   

Overall, roughly 90% of drug candidates that make it to Phase 1 clinical testing fail 

prior to approval (Hay et al., 2014; Thomas et al., 2016; Dowden and Munro, 2019). An 

analysis of 9,704 development projects developed by 1,779 companies between 2011 and 

2020 reported the following average phase success rates: 52% for Phase 1, 29% for Phase 2, 

58% for Phase 3, 91% for Review, and therefore just 8% for overall success across all phases 

(Thomas et al., 2021). 

Biopharma firms typically adopt a stage-gate (“go/no-go”) governance process to 

evaluate which compounds should advance to the next phase of development (Bode-Greuel 

and Nickisch, 2008). Most projects are terminated due to technical reasons, such as lack of 

drug efficacy or safety. However, project attrition is also due to non-technical reasons such as 

commercial potential, strategic fit in the firm’s portfolio, strategic realignment, or budget 

constraints. An analysis of 30 biopharma firms between 2013 to 2018 found that 20% of 

project terminations were due to non-technical issues (Dowden and Munro, 2019). Similarly, 

Hay et al. (2014) report that 20% of 359 Phase 3 terminations between 2003 and 2011 were 

due to commercial reasons, and Waring et al. (2015) report that 21% of Phase 1 and Phase 2 

drug candidates at four large biopharma companies between 2000 and 2010 were terminated 

due to rationalization of the portfolio and 7% for commercial reasons. 
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The standardized structuring of the drug development process into clinical trial phases 

is useful to understand the configuration of the agency problems we explore empirically since 

each phase is characterized by a different level of uncertainty and of private information held 

by R&D managers. Agency problems between shareholders and R&D managers are likely to 

be highest for projects entering Phase 2 of clinical trials, which has the lowest success rate, as 

R&D teams and management know that the failure of an occasional weak project will 

unlikely lead to finger-pointing. Industry analyses support the existence of such agency 

issues. Peck et al. (2015), for instance, note that “even when weak projects are eventually 

terminated, it is accepted as part of the high risk of drug development, and team members 

may be praised for their perseverance.” A project team may advocate for a “go to Phase 2” 

decision to R&D managers, even if they suspect evidence of activity or efficacy could be 

lacking. Compensation linked to phase progression goals could therefore nudge R&D 

managers—those with close knowledge of achievement against annual R&D goals—to 

approve advancing a less promising project into Phase 2 instead of requesting additional data 

collection or terminating the project. The amount of private information held by R&D teams 

is likely to be lower in Phase 1, Phase 3, and Review Phase. Projects entering Phase 1 

generally have standard preclinical data for evaluating safety and enabling an Investigational 

New Drug (IND) application to the FDA to start clinical studies in human subjects. Projects 

entering Phase 3 have robust safety and efficacy data to support End-of-Phase-2 meetings 

with the FDA and enable Phase 3 clinical study designs with statistical power. Moreover, the 

large investments required during Phase 3 are likely to increase scrutiny of projects’ quality 

and reduce the scope for pursuing lower-quality projects for private benefits (DiMasi et al., 

2016). Finally, projects entering the Review Phase have little or no information asymmetry 
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due to the large body of evidence generated by Phase 3 clinical studies and documentation 

required by the FDA for submission for approval.1 

Our proposed mechanism, which looks at the potentially negative interaction of 

managerial contracts with incentives provided by licensing of R&D projects, is corroborated 

by anecdotal evidence. For instance, an AstraZeneca publication on their own productivity 

stated: “A surprising factor contributing to project failure was the transitioning of projects to 

the next phase in the absence of sufficiently robust data. For example, 18% of projects that 

failed in Phase II owing to a lack of clinical efficacy (5 out of 28) were identified as having 

transitioned into this phase based on weak clinical evidence, which is indicative of inadequate 

project governance. One potential reason for this observation might be that […] the use of 

volume-based metrics encouraged project teams and leadership groups to progress projects to 

the next phase in order to meet yearly goals” (Cook et al., 2014). A Pfizer evaluation of its 

success rates also noted that it advanced projects into Phase 2 that lacked sufficient data, 

“Something that came as a surprise was the observation that a significant number of programs 

failed to gather a compelling body of evidence to demonstrate a thorough understanding of 

the degree of modulation of the pharmacological target by the NME [new molecular entity, 

i.e., a novel drug] under investigation. As a consequence, a team in this situation was unable 

to deduce whether lack of efficacy in the clinical POC [proof of concept, i.e., Phase 2] study 

was caused by the NME not achieving pharmacologically relevant activity or whether the 

target was not relevant for the chosen indication” (Morgan et al., 2012). A joint publication 

by Boston Consulting Group and Bristol Myers Squibb provided this summary: “It is not 

unusual for R&D staff to progress candidate assets even when continuation may, for strategic 

reasons, be unwarranted. This ‘progression-seeking’ tendency is a rational response to the 

 
1 Fernando et al. (2022) estimates the average development costs as about $30 million for Phase 1, $70 million 
for Phase 2, and $310 million for Phase 3. DiMasi et al. (2016) reports similar estimates. 
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organizational context - rewards such as raises, job security and prestige are associated with 

progressions - but is clearly misaligned with a company’s overall goals” (Tollman et al., 

2016). Hal Barron, the R&D chief of GSK at the time, provided a simple explanation: “If you 

reward progression, you will get progression” (Terry, 2018). 

 

2.2 Data sources 

We build our data mainly from three databases: Biomedtracker, Cortellis, and 

Evaluate Pharma, which are global providers of data and analysis of the biopharmaceutical 

industry. Each database provides accurate historical data on clinical trials, current drug 

project status, and licensing deals. These databases are extensively used by investors, 

companies, and researchers (e.g., Hermosilla, 2018; Krieger, Li, and Thakor, 2022). The 

Biomedtracker database, published by Citeline, is our main source for drug project data, as it 

contains information on drug development history and attributes, likelihood of approval 

(LOA) estimates of drug projects, and clinical trial, regulatory, and partnering events. The 

Cortellis Competitive Intelligence database, published by Clarivate, provides data on the 

reasons for project discontinuation. Evaluate Pharma, published by Evaluate, has an extensive 

archive of annual sales, financial, and pipeline data for biopharmaceutical firms. For drug 

projects for which these databases do not contain information on whether they are internally 

developed or in-licensed, we use AdisInsight, another provider of data and analysis for the 

biopharmaceutical industry, published by Springer, to identify the originator of the project. 

Finally, we hand-collect information on managerial compensation schemes from firms’ 

annual reports and proxy statements. In the following sections, we describe the datasets we 

created for our analyses from these databases. 

 

2.3 Sample construction  
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We build our sample through the following procedure. First, we identify the top 50 

biopharmaceutical companies measured by pharmaceutical sales in 2020 (Christel, 2021). We 

exclude two private companies that do not disclose executive compensation details and six 

firms that did not develop investigational drugs for the US market. The resulting set of 42 

companies represents an estimated 70% of 2020 global biopharma R&D spending (see Table 

A1 in the Online Appendix). We then search the Biomedtracker database for all the drug 

projects developed by each company. A drug development project (or simply drug project) is 

defined as the combination of a drug candidate and a therapeutic indication that 

Biomedtracker uniquely identifies by a drug indication ID.2 We focus on drug projects 

intended for eventual FDA approval that are developed to treat diseases, symptoms, or 

medical conditions. These include New Molecular Entities (NMEs), which are novel small 

molecule drugs that are chemically synthesized; biologics, which are novel drugs derived 

from living organisms; and non-NME line extensions, which are drugs that have been 

previously approved by the FDA and have been reformulated or tested in new indications. We 

exclude generic drugs and biosimilar drugs that copy a previously approved drug since these 

do not require the standard clinical trial phases for FDA approval. Following previous 

literature (Kola and Landis, 2004; DiMasi et al., 2010; Smietana et al., 2016; Dowden and 

Munro, 2019), we also exclude vaccines since these are primarily preventative agents.  

For our analysis, we measure drug development project phase success events over a 

15-year period between 2006 and 2020. An observation is defined by drug project i at 

development phase t, where the development phase can be Phase 1, Phase 2, Phase 3, and 

Review. Our sample contains 3,802 drug development projects for 2,245 drugs tested in 456 

therapeutic indications across 18 therapeutic areas. Table 1 provides definitions for all 

 
2 Therefore, if a drug targets two (or more) diseases, this will result into two (or more) separate drug 
development projects, whose outcomes are independent.  
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variables; it is divided into four panels that correspond to the four datasets that we use for our 

analyses. 

 

2.4 Phase success dataset variables 

For each drug project, we determine whether it successfully progressed to the next 

phase or failed to do so. Phase transition success is defined as advancement to the next 

development phase. For example, Phase 2 success would be achieved upon initiation of Phase 

3, and Phase 3 success upon FDA submission for approval. Phase transition failure of a 

clinical phase is defined as a suspension event for the drug project or as elapsing of more than 

1.5 times the median phase duration since the start of the current phase (Martin et al., 2017).3 

We use a 1.5 multiplier to be conservative and account for projects in therapeutic areas that 

take longer than average (e.g., see Smietana et al., 2016; Wong et al., 2019). Wong et al. 

(2019) report that the durations of terminated projects are similar to those of successful ones 

in Phase 1, eight months shorter in Phase 2, and three months longer in Phase 3. The 1.5 

multiplier is conservative since it exceeds the 95th percentile of clinical phase durations 

reported in Wong et al. (2019). We define Review phase failure as the receipt of an FDA 

complete response letter (CRL) that informs a company that the drug will not be approved in 

its current form or as the passing of more than 1.5 times the standard 12-month FDA review 

time since the date of submission. To ensure that we only include phases where the 

incumbent licensee has full control over the process, we exclude from the phase success 

calculation drugs that were licensed after the start of that phase. For example, a drug that was 

acquired midstream during Phase 1 would not be included in Phase 1 success calculation, but 

would be included in success calculations for later phases. Some drug projects can 

occasionally be allowed by the FDA to skip phases and these are considered successes. 

 
3 See Table B1 in the Online Appendix for data on phase duration benchmarks. 
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Next, we research the drug project’s originator in Biomedtracker, Cortellis, and 

AdisInsight. Internal drug projects are originated by incumbent biopharma companies 

themselves. In-licensed drug projects are originated by another company, typically a 

specialized start-up, and later in-licensed by a biopharma company. Since there was 

considerable consolidation of the biopharma industry over the sample period (Thomas et al., 

2024), we also include drug projects that were in-licensed by companies that later merged 

with, or were acquired by, a company in our sample. For example, Merck & Co inherited in-

licensing agreements made by Schering-Plough before their 2009 merger. However, we do 

not include projects internally developed by a company later acquired by a focal biopharma 

company through a merger or acquisition since, unlike in-licensing, mergers typically are not 

decisions regarding individual drug projects. Moreover, we exclude out-licensing deals and 

in-licensing deals where the biopharma company was not the lead partner since our focus is 

on projects in which the focal biopharma company had decision rights. 

Table 2 shows that the overall success rate for in-licensed projects is 13.6%, which is 

more than twice the success rate of internally developed projects (5.3%). Moreover, Table 2 

shows that in-licensed projects have a higher average success rate in each Phase. The phase 

success rates reported in Table 2 are comparable to studies and industry reports covering a 

similar time period (Hay et al., 2014; Hermosilla, 2021; Smietana et al., 2016; Thomas et al., 

2021). Table 3 further shows that most licensing deals occur in the early phases of 

development. Hence, the difference in overall success rate is not simply driven by incumbent 

firms in-licensing projects at a later phase of development.  

From Biomedtracker we further obtain drug project-level characteristics. Table 4 

reports the distribution of these characteristics in our sample. First, drug classification 

captures drug project novelty and includes NMEs, biologic, and non-NMEs as categories. 

Novel drug projects have lower success rates than non-NME line extensions. Table 4 shows 
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that nearly two-thirds of the drug projects in Phase 1 are NMEs, and almost one-third are 

biologics. A therapeutic area is a grouping of diseases with common characteristics into 18 

groups, usually aligned with a medical specialty, such as oncology or neurology. Phase 

success rates vary markedly by therapeutic area (Danzon, Nicholson, and Pereira, 2005; 

Thomas et al., 2021). Historically, oncology, neurology, and cardiovascular drugs have the 

lowest success rates; Table 4 shows that they are also among the therapeutic areas with the 

most drug projects. Biomedtracker also divides therapeutic areas into 67 sub-categories, for 

example, solid tumor is a sub-therapeutic area of oncology, and neurodegenerative is a sub-

therapeutic area of neurology. Indication is the disease that the drug is intended to treat, such 

as Alzheimer’s disease, which has a notoriously low success rate (Kim et al., 2022); there are 

456 in our sample. A drug can be tested for many therapeutic indications, the lead indication 

is the one the firm believes has the strongest scientific rationale and higher likelihood of 

approval. We see from Table 4 that, depending on the phase, between 40 to 60% of the drug 

projects are lead indications. Molecule type groups drug projects into 19 categories such as 

small molecule, monoclonal antibody, natural protein, etc. Molecule type can influence phase 

success rates; for example, monoclonal antibodies generally have higher success rates than 

traditional small molecule-based drugs due to their targeted mechanism of action and 

specificity. Finally, the FDA regulatory designations can significantly impact the likelihood 

of approval by offering various benefits to facilitate development and streamline the 

regulatory review process. Table 4 shows that the most common regulatory designation is 

rare disease, which is given to almost one out of five drug projects in Phase 1. 

 

2.5 Managerial compensation variables 

For each firm and year in the sample, we manually collect information on managerial 

compensation schemes from firms’ annual reports and proxy statements between 2000 and 
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2020. In particular, we record if a firm included R&D-based performance metrics, such as 

achieving a certain number of development phase progressions, regulatory submissions, or 

approvals, in the goals used for determining variable executive compensation. We then record 

if R&D performance metrics were used to determine short-term incentives pay (i.e., annual 

cash bonus) and/or long-term incentives pay (i.e., grants of stock-based compensation that 

vest over time) for managers. We measure each of these corporate policies building dummy 

variables for whether they are present or not. We also measure the intensity of incentive 

compensation as the fraction of variable executive compensation determined by R&D-based 

performance metrics. For example, R&D goals accounted for 30% of Amgen’s 2020 

executive short-term annual incentive compensation: this included a 10% weight for 

“Advance Early Pipeline” performance metrics and a 20% weight for “Execute Key Clinical 

Studies and Regulatory Filings” performance metrics, as reported in their 2021 proxy 

statement and notice of annual meeting of stockholders. Table 5 reports descriptive statistics 

for these variables, both by year and for the whole sample period. R&D performance metrics 

are used in about 42% of the company-year observations, and are more common for short-

term compensation than for long-term compensation. We also observe an increasing use of 

both types of compensation, as shown in Figure 1. The intensity of R&D-based managerial 

compensation appears to be relatively stable over time around, with a weight of about 25% of 

variable pay, which provides a substantial incentive for managers to achieve the target 

performance metrics.  

 

2.6 Additional data 

 To test the selection and contractual inflexibility mechanisms, we employ additional 

datasets, as described below. Panels B–D of Table 1 provide the definitions of the variables in 
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these datasets. We report the descriptive statistics for these datasets in Section 3.3, where we 

bring them into the analysis. There, we also discuss their role in the analysis.  

 Likelihood of Approval. Biomedtracker maintains estimates of drug projects’ 

Likelihood of Approval (LOA), which is the estimated probability of reaching FDA approval 

from the current phase. Analysts with advanced degrees in life sciences or medicine adjust 

LOA estimates up or down in real time using information from press releases, analyst calls, 

and presentations at investor and medical meetings, as these become available. We use these 

data to determine whether in-licensed drug projects have a significantly higher LOA than 

internally developed projects at the time of the licensing deal. 

Peak sales forecasts. From Evaluate Pharma’s archive of consensus sales forecasts, 

we collect sales forecasts between 2006 and 2020 for drug projects developed by sample 

firms from Phase 1 through Review. We then build the peak annual sales forecast variable by 

taking, for each firm, the mean of consensus peak sales forecasts by phase and year. We use 

these data to determine whether in-licensed drug projects have a significantly higher 

estimated commercial potential than internally developed projects. 

Project discontinuation reason. We collect data on the reasons for the discontinuation 

of projects in our sample from the Cortellis database.  

 

3. METHODOLOGY 

 We begin our analysis of what factors determine clinical trial phase success by 

focusing on the role of the choice of firm boundaries through the internal development versus 

in-licensing of new drugs. We estimate the difference in the success rate between internally 

developed and in-licensed drug projects in each clinical trial phase with the following linear 

probability model: 𝑌𝑖𝑗𝑡 =  𝛽 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑗 +  𝑋𝑗′ ∙ 𝛾 + 𝛿𝑖 + 𝜂𝑡 + 𝘀𝑖𝑗𝑡                  (1) 
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where i denotes firms, j drug projects, and t years. Our unit of observation is a drug project j 

by firm i, which started the clinical trial phase in year t. We estimate Equation (1) separately 

for each of the four clinical trial phases. The dependent variable 𝑌𝑖𝑗𝑡, is Phase Success, which 

is a dummy variable that equals 1 if the drug project succeeds in transiting to the next clinical 

trial phase, and 0 if it was suspended or did not advance within 1.5 times the mean phase 

duration. The coefficient of main interest is β, which represents the difference in phase 

success probability between internal and in-licensed drug projects, where we use a dummy 

indicating whether the project was internally developed (Internal) as the main independent 

variable. The vector 𝑋𝑗′ includes variables that vary at the level of the drug project, and γ is 

the associated vector of coefficients. The terms δi and ηt represent firm and phase start year 

fixed effects, respectively; we also test a specification where these two terms enter as an 

interaction, as well as a specification where we further interact them with a set of molecule 

type dummies. Finally, εijt represents the error term.  

 To rule out the possibility that differences in success rates are simply driven by drug 

characteristics, we exploit the granularity of our data and deploy a rich set of drug-project-

level variables (𝑋𝑗′), including the drug project’s classification, its indications and lead 

indication, its regulatory designations, therapeutic or sub-therapeutic areas, and its molecule 

type. The structure of our data also allows us to account for differences in success rates being 

driven by firm-level factors with firm fixed effects and vectors of interaction effects. Firm 

fixed effects account, for instance, for firms’ portfolio strategy, technological and commercial 

capabilities, orientation towards licensing, and ability to perform screening, due diligence, 

and management of in-licensed drug projects, which are important elements for post-

licensing success (Palermo et al., 2019). Moreover, we use year fixed effects to account for 

industry-wide variations in success rates and for other time-varying factors, like variations in 

scientific discoveries. We employ also firm × year fixed effects to further address concerns 
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about unobserved factors and control for effects that vary across both companies and time. 

Additionally, we employ a specification where we interact sub-therapeutic areas with year to 

control for time-varying market-level effects, where we identify a market with a sub-

therapeutic area (Brooks, 1995). Finally, we estimate a specification with a triple interaction 

of molecule, firm, and year to control for firm-level time variation in the ‘science’ the firm is 

developing, which we define at the level of the molecule (Drews, 2000; Sarantos and Cleo, 

2013). We further discuss these fixed effects when presenting our results. Finally, since the 

error term of projects within the same drug project pipeline may not be independent, we 

cluster standard errors by firm.  

We then move to testing whether the difference in success rate between internal and 

in-licensed projects is partly driven by agency problems internal to the biopharma company. 

For this, we study whether the effect of the Internal dummy is affected by the use of R&D-

based managerial compensation, using a variation of Equation (1) where we interact the 

Internal dummy with one of our four measures of R&D-based managerial compensation: 𝑌𝑖𝑗𝑡 =  𝛽1 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑗 + 𝛽2 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑗 ∙ 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛𝑖𝑡 +                 𝛽3 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛𝑖𝑡 +  𝑋𝑗′ ∙ 𝛾 + 𝛿𝑖 + 𝜂𝑡 + 𝘀𝑖𝑗𝑡          (2) 

Next, we run an event study to further examine the dynamics of the effects of R&D-

based managerial compensation. Given the changes in the institutional and competitive 

contexts over time, the effect of R&D-based managerial compensation on the phase success 

rate of internal projects is likely to differ among cohorts of firms that introduced these 

compensation schemes in different years. Hence, we run the event study using the 

methodology of Sun and Abraham (2021), which is robust to treatment effects heterogeneity. 

As a first step, we estimate the following model: 𝑌𝑖𝑗𝑡 = 𝛽1 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑗 + ∑ ∑ 𝛽2𝑒𝑙(𝟏{𝐸𝑖 = 𝑒} ∙ 𝟏{𝑡 − 𝐸𝑖 = 𝑙}𝑙≠−1𝑒 ∙ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑗) + ∑ 𝛽3𝑙𝑙≠−1 𝟏{𝑡 − 𝐸𝑖 = 𝑙} +  𝑋𝑗′ ∙ 𝛾 + 𝛿𝑖 + 𝜂𝑡 + 𝘀𝑖𝑗𝑡                                  (3) 
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where 𝐸𝑖 is the calendar year in which firm i introduced the R&D-based managerial 

compensation, 𝟏{𝐸𝑖 = 𝑒} is an indicator for firm i being in cohort e of firms that introduced 

the R&D-based compensation in the same year, 𝟏{𝑡 − 𝐸𝑖 = 𝑙} is an indicator for firm i in 

year t being l periods away, backward or forward, from the introduction of the R&D-based 

compensation.4 The treated cohorts include all internal drug projects of firms that introduce 

the R&D-based compensation during the sample period. Firms that never introduced R&D-

based compensation packages (i.e., with ∞ ∈ 𝑠𝑢𝑝𝑝{𝐸𝑖}) constitute the control cohort of 

“never treated”. Firms that already had R&D-based compensation packages at the beginning 

of the sample period (i.e., with 0 ∈ 𝑠𝑢𝑝𝑝{𝐸𝑖}) are “always-treated,” and their internal drug 

projects are excluded from the estimation as in Sun and Abraham (2021). The coefficient 𝛽1 

captures the average phase success rate difference between internal and in-licensed projects 

(e.g., among the never treated firms). Coefficients 𝛽2𝑒𝑙 measure, for firms in cohort e, the 

success rate difference between internal and in-licensed projects l years away from the 

introduction of R&D-based compensation, where the year before the introduction (𝑙 = −1) 

serves as the baseline category and is omitted. Coefficients 𝛽3𝑙  measure the phase success rate 

of in-licensed projects l years away from the introduction of R&D-based compensation. In 

more restrictive specifications with firm × year fixed effects, these coefficients are absorbed 

by the fixed effects. 

  The second step of the procedure estimates the sample shares of each cohort e in each 

relative time period l. Finally, the interaction-weighted (IW) estimator of Sun and Abraham 

(2021) is the weighted average of the estimates of 𝛽2𝑒𝑙 from Equation (3), with weights set to 

the estimated cohort shares. 

 
4 We assume that the R&D-based managerial compensation is introduced if the firm did not report it in the 
previous year but did so in the current and following year. 𝐸𝑖 is the year in which the firm introduced the 
compensation. 
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Lastly, to test alternative theoretical mechanisms, we run OLS models similar to (1), 

which we describe in Section 4.3.  

 

4. RESULTS 

4.1 Difference in phase success rate between internal and in-licensed projects 

We now move to study what determines the differences in success rates between 

internal and in-licensed drug projects within phases that we document in Table 2. 

Specifically, our next step is to study whether these differences remain when comparing 

similar drug projects. We estimate several specifications of the linear probability model of 

Equation (1), where the dependent variable is a dummy indicating whether the drug project 

has progressed to the next phase. In Table 6, we consider drug project success in Phase 1, 2, 

3, and Review, respectively. In each case, the key independent variable is a dummy indicating 

whether the drug project is internally developed.  

The granularity of our data allows us to compare internally developed drug projects 

with in-licensed drug projects along several dimensions, using a variety of fixed effects. All 

specifications include controls for Drug Classification, Lead Indication, and a vector of 

Regulatory Designations (see Table 1 for definitions). Drug classification accounts for basic 

differences in compound type; lead indication notes that the project is pursuing the indication 

that the firm believes has the highest likelihood of success; and regulatory designations 

control for a variety of specific project characteristics that may affect its clinical 

development. Specification (1) adds Therapeutic Area, which controls for the market size, 

medical challenges, and the typical likelihood of success of a specific set of diseases; these 

characteristics affect the likelihood of licensing (Hermosilla and Wu, 2018) and innovating 

(Acemoglu and Linn, 2004). Specification (1) also adds firm fixed effects to account for firm-

specific commercial, scientific, and technological capabilities, as well as licensing strategy 
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and capabilities. Specification (2) employs more fine-grained sub-therapeutic areas and adds 

year fixed effects to account for any cyclical and year-specific factors that may affect the 

drug project success. Specification (3) adds Molecule Type which controls for variation in the 

specific molecular nature of the drug project (the ‘science behind it’); it also substitutes firm 

and year fixed effects with their interaction. Firm × year fixed effects are a particularly 

powerful control that allows us to account for firm-level variation in factors such as size, 

pipeline, commercial success, financial strength, and competitive positioning that may affect 

the choice between internal development and in-licensing (Hermosilla, 2021; Krieger, Li, and 

Thakor, 2022). Firm × year fixed effects also account for changes in external or internal 

business conditions that affect a specific firm in a specific year (Hermosilla, 2021). 

Specification (4) replaces the 67 Sub-Therapeutic area fixed effects with a vector of 456 

Indication fixed effects, which are a much more granular control for the targeted disease. 

Finally, specifications (5) and (6) employ interaction effects that control for changes in the 

‘market,’ interacting sub-therapeutic area with year, and for changes in the ‘science,’ by 

interacting molecule with firm and year.  

Notice that our choice of excluding singletons (Correia, 2015) reduces the number of 

observations in specifications (3), (4), (5), and (6). Notice also that the number of 

observations slightly increases when moving from Phase 1 to Phase 2 to the next, which 

might seem puzzling. This is because firms may test a drug in multiple indications after it has 

been shown to be safe in Phase 1. Firms may also in-license drug projects at any Phase, 

though this becomes much less common after Phase 2.   

The results reported in Table 6 clearly show that internal drug projects are less likely 

to experience phase success than in-licensed projects, even once we control for drug project 

characteristics. Specifically, the success rate from Phase 1 to Phase 2 is 12 to 17 percentage 

points higher for in-licensed drug projects than for internal ones, depending on the 
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specification. This difference is not trivial, considering that the average success rate for Phase 

1 is about 50% (see Table 2). In-licensed projects are also about 6–8 percentage points more 

likely to successfully transition from Phase 2 to Phase 3, against an average success for that 

phase of about 30%. For Phase 3 the probability of going to the Review phase is 11 to 18 

percentage points higher for in-licensed drugs, against an average success rate of about 62%. 

Finally, we see that the success rate difference in the Review Phase, while keeping its 

negative sign, is significant only in one specification. Overall, these results indicate that in-

licensed projects are substantially more successful than internally generated ones, with a 

phase success probability between 20% and 30% higher. 

 

4.2 The effect of R&D-based managerial compensation 

Next, we explore the role of R&D-based managerial compensation. Table 5 shows 

that, out of the total firm-year observations in our sample, 42.1% adopted R&D-based 

managerial compensation, including 37.9% with short-term compensation and 12.8% with 

long-term compensation (see Panel A of Table 1 for definitions). The average weight of 

R&D-based managerial compensation, given by the fraction of variable compensation 

dependent on R&D targets, for firms that have such schemes, is 26.4%. Figure 1 shows that 

the fraction of companies utilizing R&D-contingent compensation increased substantially 

over the analysis period, rising from about 14% in 2000 to 69% in 2020.  

 Table 7 reports the results of different specifications of the linear probability model in 

Equation (2), which adds a variable capturing the firm’s R&D-based managerial 

compensation and interacts it with Internal, our key explanatory variable. The structure of the 

table is similar to that of Table 6, but we build a different Panel for each clinical trial phase. 

In each Panel, we report results for the four measures of incentive compensation that may 

motivate the choices of biopharmaceutical companies’ R&D managers. This model allows us 
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to test whether the difference in success rate between internal and in-licensed projects varies 

across firms with and without R&D-based managerial compensation.  

Panel A of Table 7 focuses on Phase 1. The first set of regressions, using the R&D-

based Managerial Compensation dummy, provides some evidence that the use of incentive 

pay attenuates the difference in the success rate of internally developed projects vis-à-vis in-

licensed projects. This result may suggest that R&D-contingent compensation achieves the 

desired effect of increasing R&D productivity in Phase 1. Alternatively, it may indicate that 

the introduction of the R&D-based managerial compensation leads managers to terminate 

internal projects at a lower rate in this phase. Yet, this result does not hold any longer when 

we measure R&D-contingent compensation with short-term incentives (R&D STMC), long-

term incentives (R&D LTMC), or with its weight on managerial variable pay (R&D-based 

Managerial Compensation Intensity). 

 Panel B of Table 7 reports results from the regressions for Phase 2. Here we find that 

the presence of R&D-contingent managerial compensation significantly reduces the success 

rate of internal projects vis-à-vis in-licensed projects. This result holds when considering both 

the R&D-based Managerial Compensation dummy and the R&D-based Managerial 

Compensation Intensity. Interestingly, when looking at the distinct effect of short-term 

incentives (R&D STMC) and long-term incentives (R&D LTMC), we see that the effect is 

largely driven by short-term incentives. Overall, these results are in line with our hypothesis 

that the presence of R&D-based managerial compensation creates an agency problem by 

providing R&D managers with a monetary incentive to bring forward lower-quality projects 

in Phase 2. We further explore this mechanism in the rest of our analysis.  

 Panel C of Table 7 reports results from the regressions for Phase 3. Specifications (3) 

and (4) provide some evidence that the success rate of internal projects vis-à-vis in-licensed 

projects improves with R&D-based managerial compensation, particularly with short-term 
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incentives. However, this result is not robust across all specifications. Finally, Panel D of 

Table 7 shows that there is no significant difference in the Review Phase. 

A possible explanation for the result that R&D-based managerial compensation leads 

to a lower success rate for internal drug projects entering Phase 2 is one of reverse causality: 

companies with a lower success rate in Phase 2 may react by introducing R&D-contingent 

compensation to stimulate R&D productivity. To test this possibility, we examine the 

dynamics of the effects of R&D-based managerial compensation, using the event study 

methodology of Sun and Abraham (2021), as described in Section 3. We estimate Equation 

(3) for projects in Phase 2 up to seven years before and after the introduction of R&D-based 

compensation.5 Figure 2 reports the estimates for each of models (1)-(6) of Tables 6 and 7. 

Overall, the graphs indicate that the phase success rate difference between internal and in-

licensed projects does not exhibit a clear trend before the introduction of R&D-based 

compensation, and that it increases after these monetary incentives are introduced. Figure C1 

in Online Appendix C complements these findings by showing that the success rate of in-

licensed drug projects remains largely constant before and after the introduction of R&D-

based compensation. 

These results align with our hypothesis that R&D-based managerial compensation 

reduces the phase success rate of internal drug projects by rewarding managers for holding in 

the pipeline lower-quality projects. To further explore this mechanism, we test whether the 

number of internal drug projects in the pipeline increases after the introduction of these 

compensation schemes. To do so, we create a dataset consisting of a panel of firm-year 

observations measuring the number of internal projects in the firm’s pipeline among all 

phases for each year between 2001 and 2020. We build this dataset using data from 

 
5 We bin more distant leads and lags into those at +/– 7 years, respectively, due to the scarcity of these 
observations. 
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Evaluate Pharma. While our main analysis suggests that the agency problem manifests in 

Phase 2, we lack data on the number of internal projects by phase, so this analysis remains at 

the firm level. 

We apply the event study methodology of Sun and Abraham (2021) to this dataset, 

using never-treated firms as the control cohort and excluding always-treated firms from the 

estimation. Aggregating data across phases allows us to extend to ten the number of leads and 

lags from the introduction of the R&D-based compensation. Figure 3 shows that the number 

of internal projects remains stable before the introduction of the compensation schemes, 

increases by about one unit around four years after the introduction, and by two around nine 

years after the introduction. Since the median number of internal projects is 6 (the mean is 

about 15), these increases are economically meaningful. 

 

4.3 Alternative mechanisms 

 After establishing our main results, that adopting R&D-based managerial pay creates 

an agency conflict that leads to a lower Phase 2 success rate, we now explore two other, 

alternative, mechanisms that could also explain the difference in success rate between 

internally developed and in-licensed drug projects. First, it could be that firms have R&D 

absorptive capacity (Cohen and Levinthal 1989, 1990) that allows them to select, and in-

license externally developed projects that are more likely to be successful (the ‘selection’ 

mechanism). Second, following the findings by Robinson (2008) that contractual obligations 

create costs in terminating licensing agreements, it could be that in-licensed drugs are less 

likely to be discontinued due to non-technical reasons and therefore are more likely to reach 

FDA approval (the ‘contractual’ mechanism). We now examine both mechanisms in turn. 
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Selection. The first mechanism that we examine is that some firms develop superior 

absorptive capabilities that allow them to scout for, screen, and select externally developed 

drugs that are more likely to be successful. Cohen and Levinthal (1989, 1990) introduced the 

concept of absorptive capacity as a firm’s ability to recognize the value of new information, 

assimilate it, and apply it to commercial ends. The authors suggested that absorptive capacity 

is a function of the firm’s level of prior related knowledge and is cumulative. Developing 

absorptive capacity is thus considered a major factor in a firm’s innovation performance. 

Building on Cohen and Levinthal’s work, Cockburn and Henderson (1998) argue that the 

combination of internal and external sources of knowledge is an important factor in 

innovation performance for pharmaceutical companies. Firms with more absorptive capacity 

are likely to be better at screening external drug projects and therefore may be able to better 

select promising drugs (Cohen and Levinthal, 1989, 1990; Arora and Gambardella, 1994; 

Arora et al., 2009; Fernald et al., 2017). We bring absorptive capacity into our analysis in 

three steps.  

First, we use firms’ R&D intensity as a proxy for their absorptive capacity and ability 

to select promising external projects (Arora and Gambardella, 1994). R&D intensity is 

measured as the ratio of annual pharmaceutical R&D spending divided by annual 

pharmaceutical sales. Evaluate Pharma provides estimates of annual R&D spending and sales 

specifically for pharmaceuticals, which makes R&D intensity ratios comparable between 

pure-play biopharma firms and conglomerates like Johnson & Johnson. In Table C1 in the 

Online Appendix, we report the results of regressions testing how the difference in success 

rate between internal and in-licensed drug projects is moderated by the firm’s absorptive 

capacity. The results in specifications (2) to (4) and (6) reflect a moderating role of R&D 

intensity, whose coefficient is negative and significant in several specifications. These results 
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point to the selection mechanism (via absorptive capacity) being relevant for understanding 

the differential success rate between internal and in-licensed drug projects.  

Second, we provide a more direct test of the selection mechanism by comparing the 

Likelihood of Approval (LOA) of similar in-licensed and internally developed projects. For 

this, we employ a different dataset that reports the LOA estimate of drug projects on the dates 

of certain events.   

As described in the Sample and Data section, the LOA measures the probability of 

reaching FDA approval from the current phase as determined by industry analysts with 

advanced degrees in life sciences or medicine. Our data include 938 in-licensing deal 

announcements. Table 8 reports summary statistics for the LOA of internal and in-licensed 

projects. For the former, LOA is measured at a phase initiation event, for the latter, LOA is 

measured at the licensing deal announcement date. The LOA of internal and in-licensed drug 

projects appear to be extremely close and exhibit a very similar variation, suggesting that 

there is no selection mechanism at play. However, we analyze the role of LOA further in a 

regression setting. Table 9 shows the regression results of a variation of Equation (2) where 

we add a control for clinical trial Phase, on top of the controls we use in all similar 

specifications in previous regressions: drug characteristics, and combinations of firm and year 

fixed effects. Since we do not have sub-therapeutic area information for LOA data, we do not 

include a specification interacting sub-therapeutic area with year fixed effects. We also do not 

include the triple interaction of molecule type with year and firm fixed effects. Since 

Biomedtracker analysts base their LOA estimate of a drug project on the LOA benchmark for 

a particular therapeutic area and phase and then adjust the estimate up or down based on new 

information, the triple interaction is unlikely to be relevant. 

The results in Table 9 show that LOA at the time of the licensing deal is significantly 

higher than similar internal drug projects across all specifications. This suggests that firms 
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possess private information and/or scouting and screening capabilities that allow them to 

select in-licensed projects with a higher expected likelihood of approval (Alcacer et al., 2010; 

Davies, 2013). This brings further support for a selection mechanism to be at work. 

Third, we test whether in-licensed projects are not only more likely to be approved, 

but also more likely to be commercially successful, and therefore potentially less likely to be 

terminated for commercial reasons. We match the Biomedtracker data with the Evaluate 

Pharma’s archive of consensus sales forecasts to collect sales forecasts for the drug projects 

in our sample for each phase. Excluding projects that do not match across the two datasets, 

we obtain a new dataset of peak sales forecasts for 1,032 drug projects across trial phases 

(544 internal and 488 in-licensed), for a total of 12,573 observations of mean peak sales 

forecasts by phase and year: 5,698 for internal drug projects and 6,875 for in-licensed drug 

projects.6 Table 10 reports the descriptive statistics. Peak sales are higher for in-licensed drug 

projects in Phase 1 and Phase 2, and higher for internal drug projects in Phase 3 and Review. 

We then employ the same variation of Equation (1) that we used in the LOA regressions, 

which includes a control for Phase, where we now use the log of Peak Sales as the dependent 

variable. Table 11 shows that the peak consensus sales forecasts for in-licensed projects, after 

controlling by phase, are 15 to 20 percent higher than for internally generated drug projects, 

depending on the specification. Thus, the higher success rate of in-licensed drugs is at least 

partly driven by a selection effect.  

As a last step, in Table 12, we verify whether the results from Panel B of Table 7, 

which suggest the presence of agency problems in Phase 2, can be explained by a difference 

in selection ability between firms with and without R&D-based managerial compensation. In 

particular, Table 12 tests whether the difference in LOA between licensed and internal 

 
6 The observation is mean peak sales forecast by phase and year, so there can be many observations for each 
drug project. Analysts forecast sales throughout the year but most forecasts are in months when quarterly 
earnings are reported: January, April, July, and October. 
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projects at the time of the licensing deal in Phase 2 is significantly different between firms 

with and without R&D-based managerial compensation. The results clearly indicate that the 

selection effect is not significantly different for firms with R&D-based managerial 

compensation. Overall, the agency problem we document is therefore a mechanism that is 

distinct from the selection effect. 

 

Contractual inflexibility. Robinson (2008) proposes another reason why in-licensed 

projects may have a higher success rate than internally developed projects: contractual 

inflexibility. Robinson argues that contractual arrangements create costs for the termination 

of in-licensed projects, which then become less likely to be discontinued due to non-technical 

reasons (i.e., pipeline prioritization) and thus have a higher success rate. He argues that 

licensing contracts contain clauses that limit the flexibility of a firm to reduce funding or 

terminate an in-licensed project. This is true in particular for “commercially reasonable 

effort” clauses. Most licensing deals are structured with milestone payments upon 

advancement of the project, which reduces risk to the licensee, but also incentivizes the 

originating company to push for the project to advance to the next phase. Originators may 

take legal action if they think the licensee did not spend enough effort to advance the project. 

Robinson (2008) theorizes that large in-licensing firms select alliances to overcome internal 

incentives to divert resources away from risky innovative projects, which he called 

‘longshots.’ Longshot projects have a low probability of success but high value if successful: 

high risk and high reward. Robinson (2008) argues that longshot projects are a natural choice 

to organize as alliances – since it is more likely that resources would be diverted away from 

risky longshot projects organized internally. To test this hypothesis, we collect data on the 

reasons for the discontinuation of projects in our sample from the Cortellis database. The 

resulting sample, which is naturally smaller than our main sample, contains 377 discontinued 
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drug projects with known discontinuation reasons: 165 internal and 212 in-licensed. Table 13 

reports descriptive statistics for the discontinuation reasons, by clinical trial Phase. Adverse 

Event and Lack of Activity or Efficacy (see Panel D of Table 1 for the definitions) are the two 

technical discontinuation reasons that would not be affected by contractual clauses; they are 

more common for in-licensed projects, and account for about 65% of all discontinuations. On 

the other hand, Pipeline Prioritization implies a business-based discretionary decision that 

may be more difficult to implement under an in-licensing agreement; they account for nearly 

19% of all discontinuations and are more common for internally developed drug projects. We 

then formally test Robinson’s (2008) hypothesis by regressing the Pipeline Prioritization 

reason for project discontinuation on the dummy for internally developed drug projects and 

the usual controls. Table 14 reports the results, which indicate that Pipeline Prioritization is 

more common for internally developed drug projects, 15% to 19% more than for in-licensed 

projects.7 

Overall, we find evidence of the contractual inflexibility mechanism in our data. 

Lastly, we verify whether this mechanism could explain our results from Table 7, Panel B, 

which highlights that the difference in success rate between internal and in-licensed projects 

in Phase 2 is largely driven by firms that adopted R&D-based managerial compensation (in 

line with our proposed ‘agency problem’ mechanism). Specifically, we run the same 

regressions of Table 7, Panel B, excluding from the sample all drug projects that are 

discontinued due to pipeline prioritization. Our results, reported in the Online Appendix 

(Table C2), do not change. Thus, the results of Table 7, Panel B, appear to be largely driven 

by drug projects that fail or progress due to technical reasons, which suggests that internal 

projects brought forward by R&D managers due to their monetary incentives are inherently 

 
7 In unreported robustness regressions, we excluded the “other” discontinuation category and obtained similar 
results. 
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of lower quality. We therefore conclude that contractual inflexibility, while being an active 

mechanism in drug project management, does not fully account for the difference in phase 

success between internally generated and in-licensed projects. 

 

5. CONCLUSIONS 

 We provide large-scale evidence that internally developed drug projects have a 

significantly lower success rate than in-licensed drug projects. The granularity of our data 

allows us to show that this result holds after controlling for several drug-level characteristics–

including the phase, the drug classification, the regulatory designations, the therapeutic or 

sub-therapeutic area, the molecule type, and the indication–as well as firm-level idiosyncratic 

effects in each year. Next, we examine different potential mechanisms that could explain this 

pattern. 

 First, we provide novel evidence that this difference in success rate is at least partly 

driven by agency problems internal to the biopharma firms. Biopharma companies 

increasingly adopted compensation schemes that reward managers based on the number of 

pipeline projects that are advanced to the next phase. In 2020, 69% of the firms in our sample 

had adopted these incentive schemes, compared with just 14% in 2000. These schemes give 

R&D managers monetary incentives to advance the development of even lower-quality 

projects to achieve volume-based pipeline progression goals. We show that this agency 

problem emerges in Phase 2, which is characterized by the lowest success rate and the 

presence of more private information held by R&D teams. While this mechanism is 

consistent with anecdotal evidence (e.g., Cook et al., 2014; Morgan et al., 2012; Tollman et 

al., 2016), to the best of our knowledge this study is the first to document it empirically. In 

line with our hypothesis that managers hold in the pipeline lower-quality internal projects to 

increase the pipeline volume to their benefit, we also find that the introduction of the R&D-



 

35 
 

based managerial compensation schemes increases the number of internal projects in the 

firm’s pipeline. 

Second, consistent with a selection effect, we find that in-licensed drug projects have 

a higher LOA at the time of the licensing deal and have higher sales potential than internally 

developed ones. This suggests that biopharma companies are selecting in-licensed drug 

projects that are more likely to be successful–both technically and commercially–than similar 

internally developed projects. Consistent with an absorptive capacity argument, we also find 

that companies that invest more in R&D select better in-licensing projects. Third, consistent 

with Robinson (2008), we find that contractual arrangements prevent licensees from 

terminating projects due to strategic reasons unrelated to the drug, and thus contribute to the 

higher success rate of in-licensed drugs. However, we find that these two additional 

mechanisms are distinct and coexist with our proposed mechanism on agency costs. 

Overall, we document that while the cost of licensing deals requires managers to hold 

strict screening standards for drug projects sourced externally, R&D-based managerial 

compensation gives them a private incentive to relax the screening standard for internal 

projects. Thus, R&D-based managerial compensation can impose large agency costs on 

biopharma firms and increase the relative efficacy of licensing as an innovation mode. 

 

REFERENCES 

Acemoglu, D., and Linn, J. (2004) Market size in innovation: theory and evidence from the 
pharmaceutical industry. Quarterly Journal of Economics, 119(3), 1049–1090. doi: 
10.1162/0033553041502144. 

Aghion, P., and Tirole, J. (1994). The Management of Innovation, The Quarterly Journal of 
Economics, 109(4), 1185–1209. doi: 10.2307/2118360 

Alcacer, J., Cantwell, J., and Gittelman, M. (2010). Licensing Markets Local? An Analysis of 
the Geography of Vertical Licensing Agreements in Bio-Pharmaceuticals. In Cockburn, I. 
and Slaughter, M. (eds.) Factors Affecting the Location of Biopharmaceutical Activities, 
NBER Conference Volume, University of Chicago Press, 2010.  

Arora, A., Fosfuri, A., and Gambardella, A. (2001). Markets for Technology: The Economics 
of Innovation and Corporate Strategy. Boston, MIT Press. doi: 
10.7551/mitpress/4451.001.0001 



 

36 
 

Arora, A. Fosfuri, A, and Rønde (2013). Managing Licensing in a Market for Technology. 
Management Science, 59(5), 1092-1116. 

Arora, A., and Gambardella, A. (1994). Evaluating technological information and utilizing it. 
Scientific knowledge, technological capability, and external linkages in biotechnology. 
Journal of Economic Behavior and Organization, 24(1), 91–114. doi: 10.1016/0167-
2681(94)90055-8 

Arora, A., Gambardella, A., Magazzini, L., and Pammolli, F. (2009). A Breath of Fresh Air? 
Firm Type, Scale, Scope, and Selection Effects in Drug Development. Management 
Science, 55(10), 1638–1753. doi-
org.tilburguniversity.idm.oclc.org/10.1287/mnsc.1090.1055. 

Bode-Greuel, K., and Nickisch, K. (2008). Value-driven project and portfolio management in 
the pharmaceutical industry: Drug discovery versus drug development – Commonalities 
and differences in portfolio management practice. Journal of Commercial Biotechnology, 
14, 307–325. doi: 10.1057/jcb.2008.6 

Brooks, G. R. (1995). Defining Market Boundaries. Strategic Management Journal, 16(7), 
535–549. doi-org.tilburguniversity.idm.oclc.org/10.1002/smj.4250160704 

Cohen, W.M., and Levinthal, D.A. (1989). Innovation and learning: The two faces of R&D. 
Economic Journal, 99(397), 569–96. doi: 10.2307/2233763 

Cohen, W.M., and Levinthal, D.A. (1990). Absorptive capacity: A new perspective on 
learning and innovation. Administrative Science Quarterly, 35(1), 128–52. doi: 
10.2307/2393553 

Christel, M. (2021). 2021 Pharm Exec Top 50 Companies. Pharmaceutical Executive, 41(6), 
26–32. doi: https://www.pharmexec.com/view/2021-pharma-50 

Cockburn, I., and Henderson, R. (1998). Absorptive Capacity, Coauthoring Behavior, and the 
Organization of Research in Drug Discovery. Journal of Industrial Economics, 46(2), 
157–182. doi: 10.1111/1467-6451.00067 

Cook, D., Brown, D., Alexander, R., March, R., Morgan, P., Satterthwaite, G., and Pangalos, 
M.N. (2014). Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-
dimensional framework. Nature Reviews Drug Discovery, 13, 419–31. 
doi:10.1038/nrd4309 

Correia, S. (2015). Singletons, Cluster-Robust Standard Errors and Fixed Effects: A Bad Mix. 
Technical Note, Duke University. doi: http://scorreia.com/research/singletons.pdf 

Danzon, P., Nicholson, S. and Sousa Pereira, N. (2005). Productivity in Pharmaceutical-
biotechnology R&D: The role of experience and alliances. Journal of Health Economics,  
24(2), 317–339.  

Davies, R. (2013). The relevance and importance of business development and licensing in 
the biopharmaceutical industry. Journal of Commercial Biotechnology 19(3); 49–56. 
doi:10.5912/jcb592 

Dessein, W. (2002). Authority and Communication in Organizations. The Review of 
Economic Studies, 69(4), 811–838. https://doi-
org.tilburguniversity.idm.oclc.org/10.1111/1467-937X.00227  

DiMasi, J.A., Feldman, L., Seckler, A., and Wilson, A. (2010). Trends in risks associated with 
new drug development: success rates for investigational drugs. Clinical Pharmacology & 
Therapeutics, 87(3), 272-7. doi: 10.1038/clpt.2009.295 

DiMasi, J.A., Grabowski, H.G., and Hansen, R.W. (2016). Innovation in the pharmaceutical 
industry: New estimates of R&D costs. Journal of Health Economics, 47, 20-33. doi: 
10.1016/j.jhealeco.2016.01.012 

Dowden, H., and Munro, J. (2019). Trends in clinical success rates and therapeutic focus. 
Nature Reviews Drug Discovery, 18, 495-496. doi: 10.1038/d41573-019-00074-z 

Drews, J. (2000). Drug discovery: a historical perspective. Science, 287(5460), 1960-4. 

https://doi-org.tilburguniversity.idm.oclc.org/10.1002/smj.4250160704
http://scorreia.com/research/singletons.pdf


 

37 
 

  doi: 10.1126/science.287.5460.1960 
Edwards, M. (2019). Milestone payments in biopharma: negotiating an equitable value 

allocation. Nature Biopharma Dealmakers, 13(1) 23-4. doi: 10.1038/d43747-020-00675-3 
Fernald, K.D.S., Pennings, H.P.G., van den Bosch, J.F., Commandeur, H.R., and Claassen, E. 

(2017). The moderating role of absorptive capacity and the differential effects of 
acquisitions and alliances on Big Pharma firms’ performance. PLOS ONE. doi: 
10.1371/journal.pone.0172488 

Fernando, K, Menon, S, Jansen, K., Naik, P., Nucci, G., Roberts, J.,  Wu, S.S., and Dolsten, 
M. (2022). Achieving end-to-end success in the clinic: Pfizer’s learnings on R&D 
productivity. Drug Discovery Today, 27(3), 607-704. doi: 10.1016/j.drudis.2021.12.010 

Food and Drug Administration (FDA) (2018). The Drug Development Process. retrieved 
from https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-
development-process  

Gertner, R., and Scharfstein, D. (2013). Internal Capital Markets, in Gibbons, R., and 
Roberts, J. (Eds), The Handbook of Organizational Economics, Princeton, Princeton 
University Press, 655—679. doi: 10.1515/9781400845354-021  

Hay, M., Thomas, D., Craighead, J., Economides, C., and Rosenthal, J. (2014). Clinical 
development success rates for investigational drugs. Nature Biotechnology, 32, 40–51. 
doi: 10.1038/nbt.2786 

Hermosilla, M. (2021). Rushed Innovation: Evidence from Drug Licensing. Management 
Science, 67(1), 257-278. doi: 10.1287/mnsc.2019.3530 

Hermosilla, M., and Wu, Y. (2018). Market size and innovation: The intermediary role of 
technology licensing. Research Policy. 47(5), 980-991. doi: 10.1016/j.respol.2018.03.003 

Holmström, B. (1984). “On the Theory of Delegation,” in M. Boyer and R. Kihlstrom (Eds.), 
Bayesian Models in Economic Theory. New York: North-Holland, 115–141. 

Hughes, J.P., Rees, S., Kalindjian, S.B., and Philpott, K.L. (2011). Principles of early drug 
discovery. British Journal of Pharmacology, 162, 1239-1249. doi: 10.1111/j.1476-
5381.2010.01127 

International Federation of Pharmaceutical Manufacturers & Associations. (2022). The 
Pharmaceutical Industry and Global Health Facts and Figures 2022. Retrieved from 
https://www.ifpma.org/publications/facts-and-figures-2022-the-pharmaceutical-industry-
and-global-health/ 

Jensen, M.C., and Meckling, W.H. (1976). Theory of the firm: Managerial behavior, agency 
costs and ownership structure. Journal of Financial Economics, 3(4), 305-60. doi: 
10.1016/0304-405X(76)90026-X  

Kim, C.K., Lee, Y.R., Ong, L., Gold, M., Kalali, A., and Sarkar, J. (2022). Alzheimer's 
Disease: Key Insights from Two Decades of Clinical Trial Failures. Journal of 
Alzheimer's Disease, 87(1), 83-100. doi: 10.3233/JAD-215699. 

Kola, I., and Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature 
Reviews Drug Discovery, 3, 711-6. doi: 10.1038/nrd1470. 

Krieger, J., Li, X., and Thakor, R. (2022). Find and Replace: R&D Investment Following the 
Erosion of Existing Products. Management Science, 68(9), 6552-6571. 
https://doi.org/10.1287/mnsc.2021.4243 

Loch, Christopher, H. (2008). Mobilizing An R&D Organization Through Strategy 
Cascading. Research-Technology Management, 51(5), 18–26. doi: 
10.1080/08956308.2008.11657522 

Markou, P., Kavadias, S., and Oraiopoulos, N. (2023). Rival Signals and Project Selection: 
Insights from the Drug Development Process. Management Science, 69(9), 5298-5315. 
doi: 10.1287/mnsc.2022.4642 



 

38 
 

Martin, L., Hutchens, M., and Hawkins, C. (2017). Clinical trial cycle times continue to 
increase despite industry efforts. Nature Reviews Drug Discovery, 16, 157. doi: 
10.1038/nrd.2017.21 

Masson, G. (2023). Pfizer CEO says R&D is the 'lifeblood that fuels us' as spending revs up 
post-COVID. Fierce Biotech, available at: https://www.fiercebiotech.com/biotech/rd-still-
lifeblood-pfizer-company-ups-rd-spend-plans-pursue-biotech-innovation  

Mookherjee, D. (2013). Incentives in Hierarchies, in Gibbons, R., and Roberts, J. (Eds), The 
Handbook of Organizational Economics, Princeton, Princeton University Press, 764-798. 
doi: 10.1515/9781400845354-021  

Morgan, P., Van Der Graaf, P.H., Arrowsmith, J., Feltner, D.E., Drummond, K.S., Wegner, 
C.D., and Street S.D. (2012). Can the flow of medicines be improved? Fundamental 
pharmacokinetic and pharmacological principles toward improving Phase II survival. 
Drug Discovery Today, 17(9-10), 419-24. doi: 10.1016/j.drudis.2011.12.020 

Nerkar, A., and Roberts, P.W. (2004). Technological and product-market experience and the 
success of new product introductions in the pharmaceutical industry. Strategic 
Management Journal, 25, 779-99. doi: 10.1002/smj.417 

Palermo, V., Higgins M., Ceccagnoli M. (2019). How reliable is the market for technology? 
Review of Economics and Statistics, 101(1), 107-120. doi: 10.1162/rest_a_00717  

Pammolli, F., Magazzini, L., and Riccaboni, M. (2011). The productivity crisis in 
pharmaceutical R&D. Nature Reviews Drug Discovery, 10, 428–38. doi: 10.1038/nrd3405 

Paul, S.M., Mytelka, D.S., Dunwiddie, C.T., Persinger, C.C., Munos, B.H., Lindborg, S.R., 
and Schacht, A.L. (2010). How to improve R&D productivity: the pharmaceutical 
industry's grand challenge. Nature Reviews Drug Discovery, 9, 203–14. doi: 
10.1038/nrd3078 

Peck, R.W., Lendrem, D.W., Grant, I., Lendrem, B.C., and Issacs, J.D. (2015). Why is it hard 
to terminate failing projects in pharma R&D? Nature Reviews Drug Discovery, 14, 663-4. 
doi: 10.1038/nrd4725 

Research and Markets (2021). Pharmaceuticals Global Market Report 2021: COVID 19 
Impact and Recovery to 2030. Retrieved from 
https://www.researchandmarkets.com/categories/pharmaceuticals 

Robinson, D.T. (2008). Strategic Alliances and the Boundaries of the Firm. Review of 
Financial Studies, 21(2), 649–68. doi:10.1093/rfs/hhm084 

Sarantos, K. and Cleo, K. (2013). Analysis of the landscape of biologically-derived 
pharmaceuticals in Europe: Dominant production systems, molecule types on the rise and 
approval trends. European Journal of Pharmaceutical Sciences, 48(3), 428-41. doi:  
10.1016/j.ejps.2012.11.016  

Scharfstein, D.S., and Stein, J.C. (2000). The Dark Side of Internal Capital Markets: 
Divisional Rent-Seeking and Inefficient Investment. Journal of Finance, 55, 2537-
2564. doi: 10.1111/0022-1082.00299 

Schuhmacher, A., Hinder, M., Stegmann und Stein, A., Hartl, D., and Gassmann, 0. (2023). 
Analysis of pharma R&D productivity – a new perspective needed. Drug Discovery 
Today, 28(10), 1-8. doi: 10.1016/j.drudis.2023.103726 

Scott Morton, F., and Kyle, M. (2012). Markets for Pharmaceutical Products. In Pauly, M.V., 
Mcguire, T.G., and Barros, P.P. (Eds.) Handbook of Health Economics, Oxford and 
Waltham: Elsevier, Vol. 2, 763-823. doi: 10.1016/B978-0-444-53592-4.00012-8 

Seru, A. (2014) Firm Boundaries Matter: Evidence from Conglomerates and R&D Activity. 
Journal of Financial Economics, 111(2), 381-405. doi.org/10.1016/j.jfineco.2013.11.001 

Smietana, K., Siatkowski, M., and Møller, M. (2016). Trends in clinical success rates. Nature 
Reviews Drug Discovery, 15, 379-80. doi: 10.1038/nrd.2016.85 



 

39 
 

Stein, J. C. (1997). Internal Capital Markets and the Competition for Corporate 
Resources. Journal of Finance, 52(1), 111–133. doi: 10.2307/2329558 

Sun, L., (2021).  eventstudyinteract: interaction weighted estimator for event study.  
https://github.com/lsun20/eventstudyinteract. 

Sun, L., and Abraham, S. (2021). Estimating dynamic treatment effects in event studies with 
heterogeneous treatment effects. Journal of Econometrics, 225(2), 175-199. 

Szustek, A. (2015). Actavis CEO Brent Saunders Has a Vision for Growth, Institutional 
Investor, doi: 
https://www.institutionalinvestor.com/article/2bsv5rqmix7rhvbvkzaio/portfolio/actavis-
ceo-brent-saunders-has-a-vision-for-growth 

Terry, M. (2018). Getting “Good Kills”: How Big Pharma Decides to End R&D Programs. 
BioSpace, December 13, 2018. doi: https://www.biospace.com/getting-good-kills-how-
big-pharma-decides-to-end-r-and-d-programs 

Thomas, D. W., Burns, J., Audette, J., Carrol, A., Dow-Hygelund, C., and Hay, M. (2016). 
Clinical Development Success Rates, 2006–2015. Washington: Biotechnology Innovation 
Organization. doi: http://bit.ly/22o5TGf?_ga=2.245549895.2141506860.1577211884-
2140871366.1577211884 

Thomas, D., Chancellor, D., Micklus, A., Lafever, S., Hay, M., Chaudhuri, S., Bowden, R., 
and Lo, A.W. (2021). Clinical Development Success Rates and Contributing Factors, 
2011–2020. Washington: Biotechnology Innovation Organization. doi: 
https://www.bio.org/clinical-development-success-rates-and-contributing-factors-2011-
2020 

Thomas, M., de la Salle, M.B., and Rose, J. (2024). Introduction: Taking stock of the wave of 
mergers and acquisitions (M&As) in the life sciences industry. What has the past decade 
taught us? in Thomas, M. and Rose, J. (Eds.) Mergers and Acquisitions: The 
Pharmaceutical and Biotechnology industries, New York, Routledge. doi: 
https://10.4324/9781003245438 

Tollman, P., Panier, V., Dosik, D., Biondi, P., and Cuss, F. (2016). Organizational 
effectiveness: a key to R&D productivity. Nature Reviews Drug Discovery, 15, 441-2. 
doi: 10.1038/nrd.2016.91 

Waring, M., Arrowsmith, J., Leach, A., Leeson, P.D., Mandrell, S., Owen, R.M., Pairaudeau, 
G., Pennie, W.D., Pickett, S.D., Wang, J., Wallace, O., and Weir, A. (2015). An analysis of 
the attrition of drug candidates from four major pharmaceutical companies. Nature 
Reviews Drug Discovery,14, 475-486. doi: 10.1038/nrd4609 

Wong, C.H., Siah, K.W., and Lo, A.W. (2019). Estimation of clinical trial success rates and 
related parameters. Biostatistics, 20(2), 273-286. doi: 10.1093/biostatistics/kxx069 



 

40 
  

Figure 1. R&D Goals as Component of Executive Variable Compensation 
This Figure plots the proportion of biopharma companies that reported to include R&D goals in the calculation of 
executive variable compensation, between 2000 and 2020. Data are obtained from company annual reports and proxy 
statements. 
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Figure 2. Introduction of R&D-based Managerial Compensation and Phase 2 Success Rate Difference 
between Internal and In-licensed Drug Projects 
The graphs in this Figure show the estimates of the dynamic treatment effects of the introduction of R&D-based 

managerial compensation on the Phase 2 success rate difference between internal and in-licensed drug projects. The 

vertical axis reports the IW estimates of 𝛽2𝑒𝑙 from equation (3) described in Section 3 (Sun, 2021; Sun and Abraham, 

2021) with 95% confidence intervals. The horizontal axis measures the leads and lags (in years) since the introduction 

of the R&D-based compensation; period –1 is the excluded category. The bins for years +/–7 also include more distant 

leads and lags, respectively. Each graph reports models with the same sets of fixed effects as models (1)-(6) in Tables 

6 and 7. Standard errors are clustered by firm. 
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Figure 3. Introduction of R&D-based Managerial Compensation and Number of Internal Drug 
Projects 
The graph shows the estimates of the dynamic treatment effects of the introduction of R&D-based managerial 

compensation on the number of internal drug projects in a firm’s pipeline. The estimates are obtained from a panel of 

firm-year observations measuring the number of internal projects in the firm’s pipeline, aggregate across all phases, for 

each year between 2001 and 2020. The data source is Evaluate Pharma. Treated cohorts are firms that introduced 

R&D-based compensation. The control cohort consists of firms that never introduced these compensation schemes 

(“never treated”). Firms that introduced these compensation schemes before the sample period (“always treated”) are 
excluded from the estimation. The vertical axis reports IW coefficient estimates described in Section 3 (Sun, 2021; Sun 

and Abraham, 2021) with 95% confidence intervals. The horizontal axis measures the leads and lags (in years) since 

the introduction of the R&D-based compensation, where period –1 is the excluded category. The bins for years +/–10 

also include more distant leads and lags, respectively. The regression specification includes firm and year fixed effects 

and standard errors are clustered by firm. 
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Table 1. Variable Definitions  
 
Panel A. Phase success dataset 

 
VARIABLE DEFINITION SOURCE 

Drug-Project-Level Variables 

Phase Success A dummy for each phase that equals 1 if the drug project 
advanced to the next phase and 0 if the project was 
suspended or did not advance to the next phase within 1.5 
times the mean phase duration. Skipped phases are 
considered successes.       

Biomedtracker 

Internal A dummy that equals 1 if the drug project was internally 
developed and 0 if it was in-licensed.  

Biomedtracker, 
Cortellis, AdisInsight 

Phase Phase of the drug project for the observation. Phases include 
Phase 1, Phase 2, Phase 3, and the Review by the FDA. 

Biomedtracker 

Drug Classification Drugs classification for purposes of FDA review: new 
molecular entity (NME), biologic, or non-NME. A novel 
drug that has not been previously approved by the FDA is an 
NME or biologic. An NME is generally a traditional small 
molecule drug that is chemically synthesized. A biologic is 
a drug derived from living organisms. A Non-NME is a drug 
that has been previously approved by the FDA and has been 
reformulated or tested in a new indication (‘line extension’). 

Biomedtracker 

Molecule Type The molecule type of the drug. There are 19 types: 
antisense, carbohydrate/glycoprotein/glycopeptide, cellular, 
monoclonal antibody, natural protein, non-viral gene 
therapy, not specified, other nucleic acid, peptide, 
polyclonal antibody, protein, small molecule, small 
molecule with liposomal delivery, steroid, viral, viral gene 
therapy, messenger RNA, microRNA, and siRNA/RNAi. 

Biomedtracker 

Therapeutic Area A grouping of diseases with common characteristics, usually 
aligned with a medical specialty. There are 18 categories: 
allergy, autoimmune/immunology, cardiovascular, 
dermatology, endocrine, gastroenterology, hematology, 
infectious disease, metabolic, neurology, 
obstetrics/gynecology, oncology, ophthalmology, 
psychiatry, renal, respiratory, rheumatology, and urology.        

Biomedtracker 

Sub-therapeutic Area Sub-category of Therapeutic Area. There are 67 types. For 
example, solid tumor is a sub-therapeutic area of oncology, 
and pain is a sub-therapeutic area of neurology. 

Biomedtracker  

Indication The disease that the drug is intended to treat. There are 456 
indication categories in the dataset. 

Biomedtracker 

Lead Indication A dummy that equals 1 if the drug project is the first 
therapeutic indication tested for the drug and 0 otherwise. A 
drug can be tested for many indications, the lead indication 
is the one the firm believes has the highest likelihood of 
success. 

Biomedtracker 
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FDA Regulatory Designation Variables  
Rare A dummy that equals 1 if the drug project is a rare disease 

and 0 otherwise. A rare disease affects fewer than 200,000 
people in the US. 

Biomedtracker 

Orphan A dummy that equals 1 after the drug project receives 
Orphan drug FDA designation and 0 otherwise. This 
designation qualifies a firm for tax credits for clinical trials, 
fee exemptions, and potentially seven years of market 
exclusivity after approval for a drug intended to treat a rare 
disease (Orphan Drug Act,1983).  

Biomedtracker 

Fast Track A dummy that equals 1 after the drug project receives Fast 
Track FDA designation and 0 otherwise. This designation 
aims to expedite the development and review of drugs to 
treat serious conditions and fill an unmet medical need. Fast 
track designation enables more frequent meetings and 
written communications with the FDA and eligibility for 
shorter reviews for approval.  

Biomedtracker 

Breakthrough A dummy that equals 1 after the drug project receives 
Breakthrough Therapy FDA designation and 0 otherwise. 
This designation is granted by the FDA for expedited 
development and review of a drug intended to treat a serious 
condition with preliminary clinical evidence that the drug 
may be a substantial improvement over current therapy.  

Biomedtracker 

Priority Review A dummy that equals 1 after the drug project receives 
Priority Review FDA and 0 otherwise. This designation 
reduces FDA review time to 6 months for drugs that would 
be significant improvements compared to standard therapy.  

Biomedtracker 

Special Protocol 

Assessment 

A dummy that equals 1 after the drug project receives 
Special Protocol Assessment FDA designation and 0 
otherwise. This designation indicates that the FDA agrees 
that the development plan is adequate to support approval. 

Biomedtracker 

Managerial Compensation Variables 

R&D-based Managerial 

Compensation (R&D 

MC) 

A dummy that equals 1 if the firm reported that R&D 
metrics were used to determine the variable part of 
executive compensation and 0 otherwise. 

Company Financial 
Statements 

R&D-based Short-term 

Managerial 

Compensation (R&D 

STMC) 

A dummy that equals 1 if the firm reported that R&D 
metrics were used to determine short-term executive 
compensation and 0 otherwise. Short-term incentive 
compensation is generally an annual cash bonus.  

Company Financial 
Statements 

R&D-based Long-term 

Managerial 

Compensation (R&D 

LTMC)  

A dummy that equals 1 if the firm reported that R&D 
metrics were used to determine long-term executive 
compensation and 0 otherwise. Long-term incentive 
compensation is generally achieved by granting stock 
options that vest over several years.  

Company Financial 
Statements 

R&D-based Managerial 

Compensation Intensity 

(R&D MCI) 

The fraction of variable executive compensation determined 
by R&D-based performance metrics. If a firm reported 
weights for both short-term and long-term compensation, 
the higher value was used. If a firm reported using R&D 
metrics for executive compensation but did not report any 
weight, the observation is marked as missing. The variable 
is equal to 0 if a firm does not use R&D metrics to 
determine the variable part of executive compensation. 

Company Financial 
Statements 
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Other Firm-Year-Level Attributes 

R&D Intensity Ratio of annual pharmaceutical R&D spending over annual 
pharmaceutical sales. 

Evaluate Pharma 

 
Panel B. Likelihood of Approval (LOA) dataset 

 
VARIABLE DEFINITION SOURCE 

LOA LOA is Biomedtracker’s expectation of a drug project’s 
chance of eventual FDA approval at a point in time. LOA 
estimates are a combination of phase success benchmarks by 
therapeutic area and analyst opinion based on specific 
information in the public domain.   

Biomedtracker 

In-Licensing Deal A dummy that equals 1 for a licensing deal announcement 
event and 0 for internally developed projects. Previously 
licensed drugs are treated as blank. 

Biomedtracker 

Other variables: same definitions as in Panel A. 

 

Panel C. Peak sales dataset 
 

VARIABLE DEFINITION SOURCE 

Peak Sales Mean peak annual sales by phase from consensus sales 
forecast for the drug project. The observation is mean peak 
sales forecast by phase and year, so there can be many 
observations for each drug project. Analysts forecast sales 
throughout the year, but most forecasts are in months when 
quarterly earnings are reported: January, April, July, and 
October. The regressions consider the natural log of Peak 

Sales. 

Evaluate Pharma 

Other variables: same definitions as in the previous Panels. 

 

Panel D. Drug project discontinuation reason dataset 

 
VARIABLE DEFINITION SOURCE 
Adverse Event A dummy that equals 1 if the discontinuation reason for a 

drug project was an adverse event: an undesired occurrence 
that results from a medication and 0 otherwise. 

Cortellis 

Lack of Activity or 

Efficacy 

A dummy that equals 1 if the discontinuation reason for a 
drug project was lack of activity or efficacy–when the drug 
project had no statistically significant effect, was inferior to 
a comparator, or when clinical endpoints were not met–and 
0 otherwise. 

Cortellis 

Pipeline Prioritization  A dummy that equals 1 if the discontinuation reason was 
pipeline prioritization–when a firm discloses reasons such as 
funding constraints or competition–and 0 otherwise. 

Cortellis 

Other  A dummy that equals 1 if the discontinuation reason for a 
drug project does not fall in the other categories and 0 
otherwise. Other reasons for termination include problems 
with clinical trial enrollment, drug formulation, 
manufacturing, or drug stability. 

Cortellis 
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Phase Phase of the drug project when discontinuation occurred. 
Phases include Phase 1, Phase 2, Phase 3, and the Review 
by the FDA. 

Cortellis 

Other variables: same definitions as in the previous Panels. 
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Table 2. Phase Success Descriptive Statistics 
This Table reports the success rates by phase for both internal and in-licensed drug projects between 2006 and 2020. 
Success means that the project advanced to the next development phase in clinical trials. Success rate for a phase is 
determined by dividing the number of successful drug project transitions to the next phase by the total number of 
advanced and suspended drug projects in the pivotal phase. The success rate from Phase 1 to Approval is calculated by 
compounding the success rates across all phases.  

 
Phase Obs.  Success rate (%) 

Phase 1    

Internal projects  1,162 42.2 

In-licensed projects  751 61.4 

All projects 1,913 49.7 

Phase 2    

Internal projects  960 24.8 

In-licensed projects     1,000 34.7 

All projects 1,960 29.8 

Phase 3    

Internal projects 360 55.0 

In-licensed projects 565 67.1 

All projects 925 62.4 

Review    

Internal projects 220 92.7 

In-licensed projects  393 95.4 

All projects 613 94.5 

Phase 1 to Approval   

Internal projects   5.3 

In-licensed projects   13.6 

All projects   8.7 

 

 
Table 3. Licensing Deals by Phase 
This Table reports the phase in which the drug projects were in-licensed. 
 

Phase Obs. % Cum. % 

Preclinical 920 51.2 51.2 

Phase 1 456 25.4 76.6 

Phase 2 289 16.1 92.7 

Phase 3 119 6.6 99.3 

Review 13 0.7 100 

Total 1,797 100  
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Table 4. Drug Projects’ Characteristics, by Phase 
This Table reports the distribution of the characteristics of the drug projects in the sample, by phase. See Table 1, 
Panel A for the definitions. We exclude Sub-therapeutic Area and Indication for brevity due to the large number of 
categories for these variables (67 and 456, respectively).   

 

 Phase 1 Phase 2 Phase 3 Review 

 Obs. % Obs. % Obs. % Obs. % 

Total 1,913 100.0 1,960 100.0 925 100.0 613 100.0 

Drug Classification: 

NME 1,211 63.3 1,259 64.2 468 50.6 262 42.7 

Biologic 630 32.9 609 31.1 288 31.1 199 32.5 

Non-NME 72 3.8 92 4.7 169 18.3 152 24.8 

Therapeutic Area: 

Allergy 25 1.3 30 1.5 15 1.6 8 1.3 

Autoimmune/Immunology 171 8.9 219 11.2 133 14.4 80 13.1 

Cardiovascular 98 5.1 94 4.8 69 7.5 41 6.7 

Dermatology 4 0.2 13 0.7 7 0.8 7 1.1 

Endocrine 173 9.0 123 6.3 91 9.8 63 10.3 

Gastroenterology 16 0.8 21 1.1 10 1.1 11 1.8 

Hematology 48 2.5 55 2.8 39 4.2 29 4.7 

Infectious Disease 130 6.8 111 5.7 88 9.5 73 11.9 

Metabolic 44 2.3 32 1.6 12 1.3 6 1.0 

Neurology 183 9.6 206 10.5 102 11.0 60 9.8 

Obstetrics/Gynecology 11 0.6 16 0.8 6 0.6 3 0.5 

Oncology 749 39.2 721 36.8 225 24.3 154 25.1 

Ophthalmology 26 1.4 56 2.9 35 3.8 20 3.3 

Psychiatry 84 4.4 80 4.1 42 4.5 23 3.8 

Renal 15 0.8 11 0.6 4 0.4 1 0.2 

Respiratory 108 5.6 136 6.9 38 4.1 27 4.4 

Rheumatology 18 0.9 18 0.9 0 0.0 0 0.0 

Urology 10 0.5 18 0.9 9 1.0 7 1.1 

Lead Indication: 1,154 60.3 784 40.0 469 50.7 367 59.9 

Molecule Type: 

Antisene 15 0.8 12 0.6 2 0.2 1 0.2 

Carbohydrate/Glycoprotein/Glycopeptide 1 0.1 1 0.1 3 0.3 1 0.2 

Cellular 17 0.9 13 0.7 2 0.2 3 0.5 

Monoclonal Antibody 480 25.1 485 24.7 196 21.2 133 21.7 

Natural Protein  2 0.1 1 0.1 2 0.2 2 0.3 

Non-Viral Gene Therapy 0 0.0 1 0.1 1 0.1 0 0.0 

Not Specified 173 9.0 42 2.1 1 0.1 1 0.2 

Other Nucleic Acid 8 0.4 4 0.2 2 0.2 0 0.0 

Peptide 77 4.0 50 2.6 45 4.9 32 5.2 

Polyclonal Antibody 0 0.0 1 0.1 0 0.0 0 0.0 

Protein 85 4.4 84 4.3 72 7.8 48 7.8 

Small Molecule 1,037 54.2 1,234 63.0 569 61.5 366 59.7 

Small Molecule with Lip. Delivery 3 0.2 5 0.3 1 0.1 1 0.2 

Steroid 6 0.3 13 0.7 27 2.9 24 3.9 
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Viral 1 0.1 1 0.1 0 0.0 0 0.0 

Viral Gene Therapy 3 0.2 8 0.4 1 0.1 1 0.2 

Messinger RNA 1 0.1 1 0.1 0 0.0 0 0.0 

microRNA 2 0.1 1 0.1 0 0.0 0 0.0 

siRNA/RNAi 2 0.1 3 0.2 1 0.1 0 0.0 

Regulatory Designations (not mutually exclusive): 

Rare 327 17.1 479 24.4 194 21.0 135 22.0 

Orphan 63 3.3 138 7.0 182 19.7 161 26.3 

Fast Track 27 1.4 59 3.0 106 11.5 89 14.5 

Breakthrough 12 0.6 39 2.0 97 10.5 95 15.5 

Priority Review 13 0.7 15 0.8 49 5.3 214 34.9 

Special Protocol Assessment 4 0.2 6 0.3 20 2.2 14 2.3 
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Table 5. Managerial Compensation Variables, by Year 
This Table reports the number and frequency of firms adopting R&D-based performance metrics as a basis for variable 
compensation for managers. In the first three columns we report, for each year in our sample, the number of 
observations and the frequency of a dummy variable measuring the use of R&D-based managerial compensation for 
company managers. In the fourth column, we report the average weight of incentive pay for the firms that disclosed it. 
Variables are defined in Panel A of Table 1. Statistics for R&D-based Managerial Compensation Intensity are 
computed using observations greater than 0 and exclude firms with R&D compensation that do not report the weight. 

 

 

R&D-based 
Managerial 

Compensation 

R&D-based 
Short-term 
Managerial 

Compensation 

R&D-based 
Long-term 
Managerial 

Compensation 
R&D-based Managerial 
Compensation Intensity 

Year Obs. Freq. Obs. Prop. Obs. Freq. Obs. Weight St. Dev. 

2000 6 0.143 5 0.119 2 0.048    

2001 6 0.143 5 0.119 2 0.048    

2002 5 0.119 4 0.095 2 0.048    

2003 6 0.143 4 0.095 3 0.071 1 1.000  

2004 9 0.214 8 0.190 2 0.048 2 0.545 0.643 

2005 10 0.238 9 0.214 2 0.048 3 0.414 0.509 

2006 16 0.381 15 0.357 2 0.048 9 0.342 0.288 

2007 16 0.381 15 0.357 2 0.048 8 0.281 0.142 

2008 17 0.405 16 0.381 3 0.071 9 0.272 0.145 

2009 17 0.405 16 0.381 3 0.071 9 0.226 0.084 

2010 18 0.429 16 0.381 5 0.119 10 0.238 0.112 

2011 21 0.500 19 0.452 5 0.119 12 0.246 0.132 

2012 21 0.500 19 0.452 5 0.119 11 0.249 0.119 

2013 23 0.548 22 0.524 5 0.119 15 0.243 0.114 

2014 23 0.548 21 0.500 6 0.143 17 0.218 0.074 

2015 24 0.571 21 0.500 7 0.167 17 0.231 0.099 

2016 25 0.595 22 0.524 8 0.190 17 0.237 0.084 

2017 26 0.619 22 0.524 10 0.238 18 0.247 0.094 

2018 26 0.619 23 0.548 13 0.310 18 0.272 0.130 

2019 27 0.643 25 0.595 12 0.286 19 0.277 0.126 

2020 29 0.690 27 0.643 14 0.333 22 0.280 0.133 

Total 371 0.421 334 0.379 113 0.128 217 0.264 0.152 
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Table 6. Phase Success baseline regressions 
This Table reports results from linear probability regressions for Phase 1, Phase 2, Phase 3, and Review success of 
internal and in-licensed drug projects between 2006 and 2020. The regression model is that of Equation (1), described 
in Section 3. The dependent variable is Phase Success, a dummy that equals 1 if the drug project advanced to the next 
phase, and 0 if it was suspended or did not advance within 1.5 times the mean phase duration. The main independent 
variable is Internal, a dummy that equals 1 if the drug project was internally developed and 0 if it was in-licensed. 
Variables are defined in Table 1. Standard errors are clustered by firm and reported in parentheses. *, **, and *** 
indicate statistical significance at the 10%, 5%, and 1% confidence levels, respectively. The number of observations 
excludes singletons (Correia, 2015). 
 

 (1) (2) (3) (4) (5) (6) 
Regressions on Phase 1 Success 

Internal -0.173*** 
(0.026) 

-0.137*** 
(0.028) 

-0.132*** 
(0.036) 

-0.120*** 
(0.039) 

-0.128*** 
(0.032) 

-0.150*** 
(0.037) 

Observations 1,911 1,905 1,779 1,665 1,724 1,522 
R-Squared 0.125 0.219 0.357 0.454 0.329 0.467 

Regressions on Phase 2 Success 

Internal -0.060* -0.055* -0.076** -0.059* -0.071** -0.080** 
 (0.033) (0.030) (0.032) (0.034) (0.028) (0.037) 

Observations 1,959 1,957 1,808 1,709 1,754 1,608 

R-Squared 0.161 0.282 0.416 0.495 0.394 0.460 

Regressions on Phase 3 Success 

Internal -0.118*** -0.110*** -0.151*** -0.180*** -0.159*** -0.184*** 
 (0.036) (0.036) (0.039) (0.039) (0.049) (0.045) 

Observations 923 919 733 620 701 620 

R-Squared 0.233 0.362 0.575 0.723 0.528 0.625 

Regressions on Review Success 

Internal -0.055 -0.055 -0.066 -0.178*** 0.006 -0.031 

 (0.041) (0.041) (0.058) (0.046) (0.042) (0.053) 

Observations 612 606 445 345 465 355 
R-Squared 0.135 0.246 0.488 0.777 0.466 0.637 

Fixed Effects       
Drug Classification Yes Yes Yes Yes Yes Yes 

Lead Indication Yes Yes Yes Yes Yes Yes 

Regulatory Designations Yes Yes Yes Yes Yes Yes 
Therapeutic Area Yes - - - - - 

Sub-Therapeutic Area - Yes Yes - - Yes 

Molecule Type - - Yes Yes Yes - 

Indication - - - Yes - - 
Firm Yes Yes - - Yes - 

Year - Yes - - - - 

Firm x Year - - Yes Yes - - 

SubTA x Year - - - - Yes - 

Mol. x Year x Firm - - - - - Yes 

  



 

52 
  

Table 7. Phase Success and R&D Managers’ Compensation  

This table reports results from linear probability regressions for Phase 1, Phase 2, Phase 3, and Review success of 
internal and in-licensed drug projects between 2006 and 2020. The regression model is that of Equation (2), 
described in Section 3, where we interact the main independent variable, Internal, with four different measures of 
R&D managers’ compensation. The dependent variable is Phase Success, a dummy that equals 1 if the drug project 
advanced to the next phase, and 0 if it was suspended or did not advance within 1.5 times the mean phase duration. 
Variables are defined in Table 1. Each panel reports estimates for a different clinical trial phase. Within panels, we 
report results from four regressions; the regression heading refers to the compensation variable of interest. 
Standard errors are clustered by firm and reported in parentheses. *, **, and *** indicate statistical significance at 
the 10%, 5%, and 1% confidence levels, respectively. The number of observations excludes singletons (Correia, 
2015). 
 
Panel A. Regressions on Phase 1 Success  

 

  (1) (2) (3) (4) (5) (6) 

R&D-based Managerial Compensation (R&D MC) 

Internal -0.245*** -0.208*** -0.225*** -0.186*** -0.179*** -0.195*** 
 (0.038) (0.036) (0.029) (0.056) (0.039) (0.051) 
Internal x R&D MC 0.112* 0.099* 0.123*** 0.087 0.072 0.060 
 (0.059) (0.058) (0.059) (0.064) (0.053) (0.060) 
R&D MC -0.147*** -0.070   -0.056  
 (0.045) (0.045)   (0.050)  

Observations 1,911 1,905 1,779 1,665 1,724 1,522 
R-Squared 0.129 0.221 0.359 0.455 0.330 0.467 

R&D-based Short-Term Managerial Compensation (R&D STMC)  

Internal -0.208*** -0.178*** -0.190*** -0.151** -0.158*** -0.174*** 
 (0.047) (0.042) (0.044) (0.057) (0.046) (0.053) 
Internal x R&D STMC 0.064 0.063 0.083 0.044 0.048 0.034 
 (0.064) (0.059) (0.062) (0.067) (0.053) (0.062) 
R&D STMC -0.112** -0.055   -0.046  
 (0.055) (0.052)   (0.062)  

Observations 1,911 1,905 1,779 1,665 1,724 1,522 
R-Squared 0.127 0.220 0.358 0.455 0.329 0.467 

R&D-based Long-Term Managerial Compensation (R&D LTMC)  

Internal -0.185*** -0.134*** -0.124*** -0.098** -0.117*** -0.133*** 
 (0.024) (0.028) (0.041) (0.046) (0.033) (0.040) 
Internal x R&D LTMC 0.063 -0.012 -0.035 -0.090 -0.050 -0.079 
 (0.074) (0.079) (0.076) (0.079) (0.091) (0.073) 
R&D LTMC -0.081 -0.002   0.032  
 (0.053) (0.059)   (0.060)  

Observations 1,911 1,905 1,779 1,665 1,724 1,522 
R-Squared 0.126 0.219 0.358 0.455 0.329 0.467 

R&D-based Managerial Compensation Intensity (R&D MCI) 

Internal -0.237*** -0.196*** -0.204*** -0.178*** -0.133*** -0.173*** 
 (0.049) (0.044) (0.053) (0.060) (0.040) (0.061) 
Internal x R&D MCI 0.390 0.362 0.390 0.262 -0.079 0.087 
 (0.273) (0.246) (0.267) (0.266) (0.073) (0.292) 
R&D MCI -0.445* -0.313     
 (0.262) (0.204)     

Observations 1,328 1,319 1,207 1,095 1,522 1,018 
R-Squared 0.149 0.249 0.396 0.496 0.467 0.493 

Fixed Effects        
Drug Classification Yes Yes Yes Yes Yes Yes 

Lead Indication Yes Yes Yes Yes Yes Yes 
Regulatory Designations Yes Yes Yes Yes Yes Yes 

Therapeutic Area Yes - - - - - 
Sub-Therapeutic Area - Yes Yes - - Yes 

Molecule Type - - Yes Yes Yes - 
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Indication - - - Yes - - 
Firm Yes Yes - - Yes - 
Year - Yes - - - - 

Firm x Year - - Yes Yes - - 
SubTA x Year - - - - Yes - 

Mol. Type x Year x Firm - - - - - Yes 
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Panel B. Regressions on Phase 2 Success    

 (1) (2) (3) (4) (5) (6) 

R&D-based Managerial Compensation (R&D MC) 

Internal 0.033 0.067* 0.059* 0.067** 0.036 0.114*** 
 (0.041) (0.038) (0.031) (0.029) (0.049) (0.035) 
Internal x R&D MC -0.120** -0.166*** -0.172*** -0.163*** -0.145** -0.246*** 
 (0.050) (0.044) (0.043) (0.044) (0.054) (0.055) 
R&D MC -0.039 -0.102*   0.076  
 (0.064) (0.042)   (0.068)  

Observations 1,959 1,957 1,808 1,709 1,754 1,608 
R-Squared 0.167 0.287 0.420 0.498 0.397 0.467 

R&D-based Short-Term Managerial Compensation (R&D STMC) 

Internal 0.038 0.063 0.033 0.047 0.045 0.075 
 (0.058) (0.051) (0.049) (0.036) (0.051) (0.063) 
Internal x R&D STMC -0.139** -0.173*** -0.148** -0.144*** -0.166*** -0.208** 
 (0.065) (0.058) (0.062) (0.050) (0.059) (0.083) 
R&D STMC -0.046 0.078*   0.035  
 (0.055) (0.031)   (0.047)  

Observations 1,959 1,957 1,808 1,709 1,754 1,608 
R-Squared 0.170 0.288 0.419 0.498 0.399 0.466 

R&D-based Long-Term Managerial Compensation (R&D LTMC) 

Internal -0.044* -0.037 -0.055** -0.043 -0.065** -0.044* 
 (0.025) (0.023) (0.025) (0.029) (0.028) (0.025) 
Internal x R&D LTMC -0.083 -0.093 -0.105 -0.083 -0.044 -0.173** 
 (0.080) (0075) (0.067) (0.063) (0.057) (0.077) 
R&D LTMC 0.058 0.078   0.086  
 (0.076) (0.077)   (0.077)  

Observations 1,959 1,957 1,808 1,709 1,754 1,608 
R-Squared 0.162 0.283 0.417 0.496 0.395 0.464 

R&D-based Managerial Compensation Intensity (R&D MCI) 

Internal 0.051 0.077** 0.075** 0.089*** 0.043 0.129*** 
 (0.039) (0.034) (0.031) (0.027) (0.044) (0.034) 
Internal x R&D MCI -0.632*** -0.758*** -0.744*** -0.534** -0.553** -1.047*** 
 (0.160) (0.159) (0.167) (0.205) (0.214) (0.262) 
R&D MCI 0.012 0.479**   0.393  
 (0.298) (0.202)   (0.276)  

Observations 1,291 1,288 1,164 1,055 1,092 1,003 
R-Squared 0.183 0.323 0.469 0.571 0.444 0.518 

Fixed Effects        
Drug Classification Yes Yes Yes Yes Yes Yes 

Lead Indication Yes Yes Yes Yes Yes Yes 
Regulatory 

Designations 
Yes Yes Yes Yes - - 

Therapeutic Area Yes - - - - - 
Sub-Therapeutic Area - Yes Yes - - Yes 

Molecule Type - - Yes Yes Yes - 
Indication - - - Yes - Yes 

Firm Yes Yes - - Yes - 
Year - Yes - - - - 

Firm x Year - - Yes Yes - - 
SubTA x Year - - - - Yes - 

Mol. x Year x Firm - - - - - Yes 
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Panel C. Regressions on Phase 3 Success  

  

 (1) (2) (3) (4) (5) (6) 

R&D-based Managerial Compensation (R&D MC) 

Internal -0.129* -0.136* -0.296*** -0.314*** -0.175** -0.305*** 
 (0.072) (0.072) (0.069) (0.052) (0.085) (0.091) 
Internal x R&D MC 0.021 0.042 0.202** 0.187*** 0.044 0.172 
 (0.077) (0.079) (0.082) (0.061) (0.092) (0.104) 
R&D MC -0.113* -0.063   -0.196***  
 (0.059) (0.059)   (0.063)  

Observations 923 919 733 620 701 620 
R-Squared 0.236 0.363 0.579 0.726 0.533 0.627 

R&D-based Short-Term Managerial Compensation (R&D STMC) 

Internal -0.130** -0.145** -0.283*** -0.291*** -0.177** -0.298*** 
 (0.064) (0.062) (0.066) (0.048) (0.080) (0.087) 
Internal x R&D STMC 0.025 0.059 0.190** 0.160** 0.054 0.167 
 (0.071) (0.071) (0.083) (0.062) (0.086) (0.102) 
R&D STMC -0.125* -0.071   -0.235***  
 (0.069) (0.046)   (0.047)  

Observations 923 919 733 620 701 620 
R-Squared 0.238 0.363 0.579 0.725 0.537 0.627 

R&D-based Long-Term Managerial Compensation (R&D LTMC) 

Internal -0.120*** -0.107** -0.158*** -0.188*** -0.164*** -0.298*** 
 (0.041) (0.039) (0.043) (0.047) (0.051) (0.087) 
Internal x R&D LTMC 0.018 -0.028 0.051 0.046 0.073 0.167 
 (0.046) (0.061) (0.049) (0.080) (0.082) (0.102) 
R&D LTMC 0.003 -0.007   0.026  
 (0.076) (0.085)   (0.096)  

Observations 923 919 733 620 701 620 
R-Squared 0.233 0.362 0.575 0.723 0.528 0.627 

R&D-based Managerial Compensation Intensity (R&D MCI) 

Internal -0.150** -0.125 -0.219** -0.286*** -0.247*** -0.269** 
 (0.060) (0.074) (0.085) (0.056) (0.082) (0.111) 
Internal x R&D MCI 0.244 0.107 0.314 0.515 0.483 0.112 
 (0.258) (0.349) (0.519) (0.439) (0.483) (0.613) 
R&D MCI -0.370 0.145   -0.247  
 (0.245) (0.261)   (0.462)  

Observations 651 645 484 385 462 406 
R-Squared 0.228 0.389 0.588 0.769 0.568 0.638 

Fixed Effects        
Drug Classification Yes Yes Yes Yes Yes Yes 

Lead Indication Yes Yes Yes Yes Yes Yes 
Regulatory 

Designations 
Yes Yes Yes Yes Yes Yes 

Therapeutic Area Yes - - - - - 
Sub-Therapeutic Area - Yes Yes - - Yes 

Molecule Type - - Yes Yes Yes - 
Indication - - - Yes - - 

Firm Yes Yes - - Yes - 
Year - Yes - - - - 

Firm x Year - - Yes Yes - - 
SubTA x Year - - - - Yes - 

Mol. x Year x Firm - - - - - Yes 
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Panel D. Regressions on Review Phase Success  
  

 (1) (2) (3) (4) (5) (6) 

R&D-based Managerial Compensation (R&D MC) 

Internal -0.035 -0.027 -0.021 -0.120 0.036 0.091 
 (0.049) (0.045) (0.084) (0.076) (0.049) (0.060) 
Internal x R&D MC -0.029 -0.039 -0.056 -0.072 -0.041 -0.234** 
 (0.064) (0.060) (0.104) (0.101) (0.070) (0.097) 
R&D MC 0.069 0.050   0.011  
 (0.049) (0.052)   (0.062)  

Observations 612 606 445 345 465 373 
R-Squared 0.140 0.248 0.489 0.778 0.467 0.539 

R&D-based Short-Term Managerial Compensation (R&D STMC) 

Internal -0.066 -0.058 -0.041 -0.134** 0.003 -0.016 
 (0.058) (0.049) (0.081) (0.058) (0.049) (0.129) 
Internal x R&D STMC 0.014 0.003 -0.033 -0.058 0.004 -0.097 
 (0.061) (0.056) (0.103) (0.093) (0.070) (0.118) 
R&D STMC 0.049 0.031   0.003  
 (0.040) (0.040)   (0.053)  

Observations 612 606 445 345 465 373 
R-Squared 0.140 0.247 0.489 0.778 0.466 0.529 

R&D-based Long-Term Managerial Compensation (R&D LTMC) 

Internal -0.052 -0.047 -0.060 -0.151** 0.008 -0.056 
 (0.039) (0.039) (0.065) (0.062) (0.043) (0.070) 
Internal x R&D LTMC -0.002 -0.035 -0.024 -0.109 -0.017 -0.139 
 (0.045) (0.046) (0.075) (0.112) (0.066) (0.119) 
R&D LTMC 0.063* 0.040   -0.023  
 (0.037) (0.044)   (0.061)  

Observations 612 606 445 345 465 373 
R-Squared 0.139 0.248 0.488 0.779 0.466 0.530 

R&D-based Managerial Compensation Intensity (R&D MCI) 

Internal -0.051 -0.046 -0.074 -0.168 0.011 0.079 
 (0.035) (0.039) (0.071) (0.108) (0.032) (0.067) 
Internal x R&D MCI -0.113 -0.110 -0.028 -0.041 -0.139 -0.696* 
 (0.174) (0.157) (0.378) (0.503) (0.234) (0.394) 
R&D MCI 0.303** 0.325**   0.557**  
 (0.126) (0.136)   (0.222)  

Observations 461 453 317 230 333 278 
R-Squared 0.167 0.264 0.552 0.767 0.574 0.595 

Fixed Effects        
Drug Classification Yes Yes Yes Yes Yes Yes 

Lead Indication Yes Yes Yes Yes Yes Yes 
Regulatory 

Designations 
Yes Yes Yes Yes Yes Yes 

Therapeutic Area Yes - - - - - 
Sub-Therapeutic Area - Yes Yes - - Yes 

Molecule Type - - Yes Yes Yes - 
Indication - - - Yes - - 

Firm Yes Yes - - Yes - 
Year - Yes - - - - 

Firm x Year - - Yes Yes - - 
SubTA x Year - - - - Yes - 

Mol. x Year x Firm - - - - - Yes 
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Table 8. Likelihood of Approval (LOA): Descriptive Statistics 
This Table shows summary statistics for LOA by clinical trial phase for internal and in-licensed projects between 2006 
and 2020. LOA is defined in Panel B of Table 1, and measured at the date of the deal announcement for in-licensed 
drug projects, and at a phase initiation event for internally developed drug projects.  

 
Phase Obs. Mean % St. Dev. % 

Phase 1    
Internal projects 1,804 78.3 4.5 
In-licensed projects  288 78.9 4.5 
All projects 2,092 78.4 4.5 

Phase 2    
Internal projects 2,157 15.9 5.9 
In-licensed projects  391 15.0 6.3 
All projects 2,548 15.7 6.0 

Phase 3    
Internal projects 1,325 55.3 8.7 
In-licensed projects  202 53.5 11.3 
All projects 1,527 55.1 9.1 

Review    
Internal projects 423 92.5 6.6 
In-licensed projects  57 93.3 6.8 
All projects 480 92.6 6.6 
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Table 9. Likelihood of Approval (LOA) at In-Licensing Deal Announcement 
This Table reports results from linear regressions. The regression model is that of Equation (1), described in Section 3, 
where the dependent variable is the LOA for each drug development project. For in-licensed projects, the LOA is 
measured at the time of the in-licensing deal. For internally developed projects, LOA is measured at the phase 
initiation event. The main independent variable is In-Licensing Deal, a dummy that equals 1 if an in-licensing deal 
announcement event occurred, and 0 otherwise. Variables are defined in Table 1. Standard errors are clustered by firm 
and reported in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% confidence levels, 
respectively. The number of observations excludes singletons (Correia, 2015). 
 

 
 (1) (2) (3) (4) 

In-licensing Deal 0.006** 0.008*** 0.008*** 0.006** 
 (0.002) (0.002) (0.002) (0.002) 

Fixed Effects 
Phase 

Drug Classification 
Lead Indication 

Reg. Designations 
Therapeutic Area 

Molecule Type 
Firm 
Year 

Firm x Year 

 
Yes 
Yes 
Yes 
Yes 
Yes 

- 
Yes 

- 
- 

 
Yes 
Yes 
Yes 
Yes 
Yes 

- 
Yes 
Yes 

- 

 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

- 

 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

- 
- 

Yes 
Observations 6,645 6,645 6,645 6,582 

R-Squared 0.979 0.979 0.979 0.982 
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Table 10. Peak Sales Forecast: Descriptive Statistics 
This Table shows descriptive statistics for peak sales forecasts, by phase, for large biopharma firms’ internal and in-
licensed projects for each phase between 2006 and 2020, in dollar millions. There are 12,573 sales forecast 
observations of 1,032 drug projects: 544 Internal and 488 In-licensed. 
 

Phase Obs. Mean St. Dev. 
  Phase 1    
  Internal projects 396 28.9 68.0 
  In-licensed projects 160 41.2 95.9 
  All projects 556 32.4 77.2 

  Phase 2    
  Internal projects 2,040 69.6 264.0 
  In-licensed projects 1,912 77.7 139.0 
  All projects 3,952 73.5 212.9 

  Phase 3    
  Internal projects 2,585 395.4 609.1 
  In-licensed projects 3,608 365.0 462.5 
  All projects 6,193 377.7 528.8 

  Review    
  Internal projects 677 804.5 1,043.3 
  In-licensed projects 1,195 693.9 801.0 
  All projects 1,872 733.9 887.5 
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Table 11. Peak Sales Forecasts  
This Table reports results from linear regressions. The regression model is that of Equation (1), described in Section 3, 
where the dependent variable is now the log of Peak Sales Forecast for internal and in-licensed drug development 
projects developed by large biopharma firms between 2006 and 2020. The main independent variable is Internal, a 
dummy that equals 1 if the drug project was internally developed, and 0 if it was in-licensed. Variables are defined in 
Table 1. Standard errors are clustered by firm and reported in parentheses. *, **, and *** indicate statistical 
significance at the 10%, 5%, and 1% confidence levels, respectively. The number of observations excludes singletons 
(Correia, 2015). 
 

 (1) (2) (3) (4) (5) (6) 
Internal -0.177** -0.150* -0.200** -0.163* -0.151* -0.164* 

 (0.081) (0.082) (0.080) (0.084) (0.086) (0.088) 
Fixed Effects 

Phase 
Drug Classification 

Therapeutic Area 
Sub-Therapeutic Area 

Indication 
Molecule Type 

Firm 
Year 

Firm x Year 
SubTA x Year 

Mol. x Year x Firm 

 
Yes 
Yes 
Yes 
Yes 
Yes 

- 
Yes 

- 
- 
- 
- 

 
Yes 
Yes 

- 
Yes 

- 
Yes 
Yes 
Yes 

- 
- 
- 

 
Yes 
Yes 

- 
- 

Yes 
Yes 
Yes 
Yes 

- 
- 
- 

 
Yes 
Yes 

- 
- 

Yes 
Yes 

- 
- 

Yes 
- 
- 

 
Yes 
Yes 

- 
- 
- 

Yes 
Yes 

- 
- 

Yes 
- 

 
Yes 
Yes 

- 
Yes 

- 
- 
- 
- 
- 
- 

Yes 
Observations 12,572 12,571 12,568 12,543 12,484 12,452 

R-Squared 0.487 0.539 0.577 0.651 0.606 0.675 
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Table 12. Phase 2 Likelihood of Approval (LOA) and R&D-based Managerial Compensation 
Interactions 
This Table reports results from linear regressions. The regression model is a variation of Equation (2), described in 
Section 3, where the dependent variable is the Likelihood of Approval (LOA) for internal and in-licensed drug 
development projects developed by large biopharma firms between 2006 and 2020. For in-licensed projects, the LOA 
is measured at the time of the in-licensing deal. For internally developed projects, the LOA is measured at the phase 
initiation event. The main independent variable is In-Licensing Deal, a dummy that equals 1 if an in-licensing deal 
announcement event occurred, and 0 if not. The sample focuses on projects in Phase 2. All variables are defined in 
Table 1. Standard errors are clustered by firm and reported in parentheses. *, **, and *** indicate statistical 
significance at the 10%, 5%, and 1% confidence levels, respectively. The number of observations excludes singletons 
(Correia, 2015). 
 
 

 
 (1) (2) (3) (4) 

In-Licensing Deal  0.006 0.007 0.007 0.009 
 (0.005) (0.005) (0.004) (0.006) 

 
R&D MC 

 
 

In-Licensing Deal x R&D MC 
 

Fixed Effects 
Drug Classification 

Lead Indication 
Regulatory Designations 

Therapeutic Area 
Molecule Type 

Firm 
Year 

Firm x Year 

 
0.002 

(0.001) 
 

-0.001 
(0.005) 

 
Yes 
Yes 
Yes 
Yes 

- 
Yes 

- 
- 

 
0.001 

(0.001) 
 

-0.002 
(0.005) 

 
Yes 
Yes 
Yes 
Yes 

- 
Yes 
Yes 

- 

 
0.000 

(0.001) 
 

-0.001 
(0.005) 

 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

- 

 
-0.005 
(0.009) 

 
-0.009 
(0.006) 

 
Yes 
Yes 
Yes 
Yes 
Yes 

- 
- 

Yes 
Observations 2,547 2,547 2546 2,429 

R-Squared 0.903 0.904 0.905 0.940 
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Table 13. Drug Project Discontinuation Reasons: Descriptive Statistics 
This Table shows the reason for drug project discontinuation observations, by phase, for both internal and in-licensed 

projects between 2006 and 2020. Adverse Events, Lack of Activity or Efficacy, and Other are considered drug project-

related discontinuation reasons. Pipeline Prioritization is a discontinuation reason that is not related to the drug project, 

such as a strategic or budgeting decision. Variables are defined in Table 1. 

 

 Project Related  Not Project Related  

 Adverse 
Event 

Lack of Activity or 
Efficacy 

Other 
 

Pipeline Prioritization Total 

Phase 1       

Internal projects 2 6 4  3 15 

In-licensed projects 0 4 2  3 9 

All Projects 2 10 6  6 24 

Phase 2       

Internal projects 5 36 11  28 80 

In-licensed projects 5 73 21  10 109 

All Projects 10 109 32  38 189 

Phase 3       

Internal projects 4 45 8  7 64 

In-licensed projects 4 56 10  6 76 

All Projects 8 101 18  13 140 

Review       

Internal projects 0 2 2  2 6 

In-licensed projects 0 4 13  1 18 

All Projects 0 6 15  3 24 

All Phases       

Internal projects 11 89 25  40 165 

In-licensed projects 9 137 46  20 212 

All Projects 20 226 71  60 377 
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Table 14. Pipeline Prioritization Discontinuation Reason  
This table reports results from linear probability regressions. The regression model is that of Equation (1), described in 
Section 3, where the dependent variable is the Pipeline Prioritization discontinuation reason dummy. The sample 
includes internal and in-licensed projects terminated between 2006 and 2020. The main independent variable, Internal, 
is a dummy that equals 1 if the drug project was internally developed and 0 if it was in-licensed. Variables are defined 
in Table 1. Standard errors are clustered by firm and reported in parentheses. *, **, and *** indicate statistical 
significance at the 10%, 5%, and 1% confidence levels, respectively. The number of observations excludes singletons 
(Correia, 2015). 
 

 
 (1) (2) (3) (4) 

Internal 0.148** 0.151** 0.162** 0.186*** 
 (0.069) (0.064) (0.067) (0.061) 

Fixed Effects 
Phase 

Drug Classification 
Therapeutic Area 

Year 

 
Yes 

- 
- 
- 

 
Yes 
Yes 

- 
- 

 
Yes 
Yes 
Yes 

- 

 
Yes 
Yes 
Yes 
Yes 

Observations 377 376 372 372 
R-Squared 0.063 0.081 0.160 0.210 
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Online Appendix 
 
A. SAMPLE COMPOSITION 
 

Table A1. Large Public Biopharma Firm Cohort. 

Firm 
Pharma Exec 
Top 50 Rank 

2020 Pharma  
Sales ($B) 

2020 R&D 
Expenditure ($B) 

1. AbbVie Inc. 3 44.34    5.83 

2. Alexion Pharmaceuticals Inc. 27    6.07    1.00 

3. Allergan plc 33    4.77    0.61 

4. Amgen Inc. 12  24.10    4.09 

5. Astellas Pharma Inc. 18  11.52    2.12 

6. AstraZeneca plc 11  25.52    5.87 

7. Aurobindo Pharma Limited 46    3.00    0.11 

8. Bausch Health Companies Inc. 32    4.88    0.45 

9. Bayer AG 16  19.00    3.13 

10. Biogen Inc. 21  10.69    3.99 

11. Boehringer Ingelheim GmbH 17  16.46    3.75 

12. Bristol Myers Squibb Company 5  41.90    9.24 

13. Chugai Pharmaceutical Co. Ltd. 41    3.88    1.06 

14. CSL Limited 22    9.66    0.96 

15. CSPC Pharmaceutical Group Limited 44    3.24    0.39 

16. Daiichi Sankyo Co. Ltd. 23    8.03    2.15 

17. Eisai Co. Ltd. 31    5.11    1.45 

18. Eli Lilly and Company 14  22.65    6.09 

19. Endo International plc 49    2.90    0.16 

20. Fresenius SE & Co. KGaA 37    4.22    0.63 

21. Gilead Sciences Inc. 13  23.81    4.86 

22. GlaxoSmithKline plc 9  30.59    5.91 

23. Ipsen SA 47    2.96    0.46 

24. Jiangsu Hengrui Medicine Co. Ltd. 38    4.20    0.71 

25. Johnson & Johnson 4  43.15    9.56 

26. Merck & Co. Inc. 6  41.44    9.23 

27. Merck KGaA 24    7.58    1.87 

28. Novartis AG 2  47.20    8.48 

29. Novo Nordisk A/S 15  19.44    2.37 

30. Ono Pharmaceutical Company Ltd. 48    2.91    0.62 

31. Otsuka Holdings Co. Ltd. 25    7.22    1.93 

32. Pfizer Inc. 8  35.61    8.88 

33. Regeneron Pharmaceuticals Inc. 28    5.57    2.65 

34. Roche Holding AG 1  47.49  11.30 

35. Sanofi 7  35.80    5.89 

36. Sumitomo Dainippon Pharma Co. Ltd. 39    4.03    0.99 

37. Sun Pharmaceutical Industries Ltd. 35    4.63    0.27 

38. Takeda Pharmaceutical Co. Ltd. 10  27.90    4.39 

39. Teva Pharmaceutical Industries Ltd. 20  11.01    1.00 
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40. UCB S.A. 29    5.46    1.79 

41. Vertex Pharmaceuticals Incorporated 26    6.20    1.64 

42. Viatris Inc. 19  11.50    0.51 

Total  697.60 138.37 

 
Estimated 2020 Total Pharmaceutical Sales: $1,228.5B 
Of which: 
42 Firm Pharmaceutical Sales: $697.6B 
42 Firm % of Pharmaceutical Sales: 57% 
 
Estimated 2020 Total Pharmaceutical R&D Spend: $198B 
Of which: 
42 Firm Pharmaceutical R&D Spend: $138.4B 
42 Firm % of Pharmaceutical R&D Spend: 70% 
 
Sources: 
 
1) 2020 Firm-level Pharmaceutical Sales and R&D Spending: Christel, M. (2021) 
2) 2020 Pharmaceutical Sales: Research and Markets (2021) 
3) 2020 Pharmaceutical R&D Spending: International Federation of Pharmaceutical Manufacturers & 
Associations (2022) 
 
 
  



 

66 
  

B. DETAILS ON PHASE DURATION 
 
Table B1. Clinical Phase Durations for Phase Success Calculations 
This table shows the phase durations used to calculate phase success based on 1.5 times the median phase durations 
reported in Martin et al. (2017).    

 
Clinical Trial 
Phase 

Duration Benchmark 
(months) 

Phase Failure Duration 
(months) 

Phase 1 30 45 

Phase 2 35 53 

Phase 3 41 62 
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C. SUPPLEMENTARY ANALYSES 
 
Figure C1. Introduction of R&D-based Managerial Compensation and Phase 2 Success Rate of In-
licensed Drug Projects 
The graph shows the estimates of the dynamic treatment effect of the introduction of R&D-based managerial 
compensation on the success rate in Phase 2 of in-licensed drug projects. The vertical axis reports the IW estimates 
described in Section 3 (Sun, 2021; Sun and Abraham, 2021) with 95% confidence intervals. The horizontal axis 
measures the leads and lags (in years) since the introduction of the R&D-based compensation, where period –1 is the 
excluded category. The bins for years +/–7 also include more distant leads and lags, respectively. The estimates are 
obtained from the subsample of in-licensed drug projects. Treated cohorts are in-licensed drug projects of firms that 
introduced R&D-based compensation. The control cohort consists of in-licensed drug projects of firms that never 
introduced these compensation schemes (“never treated”). In-licensed drug projects of firms that introduced these 
compensation schemes before the sample period (“always treated”) are excluded from the estimation. The estimates 
are obtained using the same set of fixed effects as model (2) in Tables 6 and 7. More restrictive specifications with 
firm × year fixed effects cannot be used here because they would absorb the relative time periods (since the sample 
includes in-licensed drug projects only). Standard errors are clustered by firm. 
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Table C1. Phase Success and Absorptive Capacity  
This Table reports results from linear probability regressions for Phase success of internal and in-licensed projects 
between 2006 and 2020. The regression model is that of Equation (2), described in Section 3, where we interact the 
main independent variable, Internal, with R&D intensity. The dependent variable is Phase Success, a dummy that 
equals 1 if the drug project advanced to the next phase, and 0 if it was suspended, or did not advance within 1.5 times 
the mean phase duration. The sample includes projects in all phases and the regressions include phase fixed effects. 
Variables are defined in Table 1. Standard errors are clustered by firm and reported in parentheses. *, **, and *** 
indicate statistical significance at the 10%, 5%, and 1% confidence levels, respectively. The number of observations 
excludes singletons (Correia, 2015). 

 

  
 (1) (2) (3) (4) (5) (6) 

Internal -0.118*** -0.105*** -0.095*** -0.088*** -0.103*** -0.103** 

 (0.025) (0.025) (0.026) (0.028) (0.029) (0.028) 

Internal x R&D Intensity -0.010 -0.025* -0.092*** -0.097*** -0.015 -0.103*** 

 (0.015) (0.014) (0.025) (0.023) (0.020) (0.030) 

R&D Intensity 0.010 0.023*   0.017  

 (0.014) (0.013)   (0.024)  

Observations 5,410 5,408 5,277 5,212 5,185 4,884 

R-Squared 0.234 0.297 0.378 0.438 0.369 0.436 

Fixed Effects       

Phase Yes Yes Yes Yes Yes Yes 

Drug Classification Yes Yes Yes Yes Yes Yes 

Lead Indication Yes Yes Yes Yes Yes Yes 
Regulatory Designations Yes Yes Yes Yes Yes Yes 

Therapeutic Area Yes - - - - - 
Sub-Therapeutic Area - Yes Yes - - Yes 

Molecule Type - - Yes Yes Yes - 
Indication - - - Yes - - 

Firm Yes Yes - - Yes - 

Year - Yes - - - - 
Firm x Year - - Yes Yes - - 

SubTA x Year - - - - Yes - 
Mol. x Year x Firm - - - - - Yes 
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Table C2. Phase 2 R&D Compensation Variables Interactions Robustness.   
This Table reports linear probability regressions of Phase 2 success of internal and in-licensed projects between 2006 
and 2020, including the interactions between the Internal and R&D-compensation variables. The table replicates the 
regressions reported in Table 7 in the main text but excludes projects discontinued due to pipeline prioritization 
reasons (14 observations). Variables are defined in Table 1. Standard errors are clustered by firm and reported in 
parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. The number of 
observations excludes singletons (Correia, 2015). 

 
     

 

 (1) (2) (3) (4) (5) (6) 

R&D-based Managerial Compensation (R&D MC) 

Internal 0.034 0.070* 0.048 0.052 0.038 0.105*** 
 (0.044) (0.040) (0.034) (0.031) (0.053) (0.035) 
Internal x R&D MC -0.122** -0.171*** -0.164*** -0.150*** -0.147** -0.240*** 
 (0.052) (0.046) (0.046) (0.048) (0.058) (0.056) 
R&D MC -0.037 -0.106**   0.082  
 (0.064) (0.043)   (0.068)  

Observations 1,945 1,943 1,794 1,693 1,737 1,592 
R-Squared 0.168 0.288 0.423 0.503 0.398 0.470 

 R&D-based Short-Term Managerial Compensation (R&D STMC) 

Internal 0.038 0.066 0.024 0.034 0.046 0.067 
 (0.059) (0.053) (0.051) (0.036) (0.055) (0.064) 
Internal x R&D STMC -0.141** -0.177*** -0.141** -0.133** -0.168** -0.203** 
 (0.067) (0.060) (0.064) (0.052) (0.062) (0.084) 
R&D STMC -0.043 0.081**   0.038  
 (0.054) (0.032)   (0.048)  

Observations 1,945 1,943 1,794 1,693 1,737 1,592 
R-Squared 0.171 0.289 0.423 0.503 0.400 0.469 

 R&D-based Long-Term Managerial Compensation (R&D LTMC) 

Internal -0.045* -0.038 -0.061** -0.048 -0.065** -0.049* 
 (0.025) (0.023) (0.025) (0.030) (0.029) (0.025) 
Internal x R&D LTMC -0.085 -0.095 -0.104 -0.088 -0.044 -0.174** 
 (0.081) (0.075) (0.069) (0.066) (0.057) (0.081) 
R&D LTMC 0.058 0.080   0.090  
 (0.077) (0.077)   (0.076)  

Observations 1,945 1,943 1,794 1,693 1,737 1,592 
R-Squared 0.163 0.285 0.421 0.501 0.395 0.468 

 R&D-based Managerial Compensation Intensity (R&D MCI) 
Internal 0.053 0.081** 0.068** 0.073** 0.047 0.121*** 
 (0.041) (0.035) (0.032) (0.027) (0.047) (0.034) 
Internal x R&D MCI -0.634*** -0.765*** -0.720*** -0.485** -0.554** -1.019*** 
 (0.165) (0.161) (0.170) (0.207) (0.220) (0.264) 
R&D MCI 0.015 0.484**   0.408  
 (0.299) (0.202)   (0.276)  

Observations 1,281 1,278 1,154 1,047 1,081 990 
R-Squared 0.183 0.323 0.471 0.572 0.444 0.519 

Fixed Effects        
Drug Classification Yes Yes Yes Yes Yes Yes 

Lead Indication Yes Yes Yes Yes Yes Yes 
Regulatory Designations Yes Yes Yes Yes Yes Yes 

Therapeutic Area Yes - - - - - 
Sub-Therapeutic Area - Yes Yes - - Yes 
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Molecule Type - - Yes Yes Yes - 
Indication - - - Yes - - 

Firm Yes Yes - - Yes - 
Year - Yes - - - - 

Firm x Year - - Yes Yes - - 
SubTA x Year - - - - Yes - 

Mol. x Year x Firm - - - - - Yes 

 


