MaFiRM 2024/25 Collegio Carlo Alberto

Probability Theory and Stochastic Calculus

Marina Marena

University of Turin

COURSE OBJECTIVES

The module aims to offer a comprehensive yet accessible introduction to the tools of stochastic calculus used in mathematical finance for pricing and hedging derivative contracts.

COURSE CONTENTS

- Mathematical models for option pricing
 - from ODEs to SDEs
- Probability theory
 - from random variables to stochastic processes
- Information and conditioning
 - Conditional expectation
 - Martingales
- Brownian motion
 - Scaled symmetric random walk
 - Brownian motion and its properties
 - Quadratic variation
 - Markov property
- Stochastic calculus
 - Ito integral and its properties
 - Ito process
 - Ito formula
- Stochastic differential equations
 - Definition of SDEs
 - Markov property of solutions
 - Geometric Brownian motion

- Vasicek mean-reverting process
- Connection with PDEs
 - Feynman-Kac theorem
- Representation theorems
 - Martingale representation theorem
 - Stochastic integrals as time changed Brownian motions
- Change of measure
 - Radon-Nikodym theorem
 - Bayes rule
 - Girsanov theorem
- Option pricing models
 - Black-Scholes model

TEXTBOOKS

- Ballotta, Laura and Fusai, Gianluca, Tools from Stochastic Analysis for Mathematical Finance: A Gentle Introduction (2018). Available at SSRN: https://ssrn.com/abstract=3183712
- Shreve (2004). Stochastic calculus for finance II, Springer