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Abstract

This paper empirically compares logistic regression with machine learning techniques

in order to estimate the default risk measures and their bounds in large portfolios of

identically distributed obligors. The methods compute different predictions of the prob-

ability of individual default and default correlation, so they are compared in various

settings using increasing amounts of information: first the marginal probability, then

the marginal probability and correlation, and lastly a specific model, the beta-binomial

distribution. We make this evaluation using Value at Risk as well as Expected Shortfall

in two settings: one synthetic and one real. In the synthetic setting, we construct port-

folios of up to 10,000 obligors and test the performance of each method on 200 datasets.

In the real setting, we use a publicly available credit card dataset of 30,000 obligors.

Keywords: Model Risk; Risk analysis; Bernoulli mixture model; ML methods;

credit cards.
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Introduction

Pricing and hedging multi-name default products, such as Collateralized Debt Obliga-

tions (CDOs), heavily rely on assessing the joint default probability of several obligors.

The number of obligors underlying these products is usually a hundred or more. Over

the great recession, it became clear that a precise assessment of the joint default prob-

ability in credit portfolios was theoretically welcome, practically relevant for consumer

protection, and needed for market stability. Nevertheless, the vast majority of the ma-

chine learning (ML) methods focus on the estimation of single default probabilities (see

for instance Desai et al. (1996), Fitzpatrick and Mues (2016), Barbaglia et al. (2021)

regarding loans and mortgages, and Khandani et al. (2010) for credit cards). In con-

trast to this stream of literature, the goal of this paper is to evaluate how traditional

and ML-based methods behave in estimating the risk of portfolios of credits in terms of

Value at Risk (VaRα) and Expected Shortfall (ESα).

In principle, to compute VaRα and ESα, it is enough to know the joint distribution

of defaults, which is very difficult to estimate. Usually, the available information is the

marginal individual default probability p and some partial information on the depen-

dence structure, as the correlation among defaults ρ (see e.g. Embrechts et al. (2013),

Bernard et al. (2023), and Barrieu and Scandolo (2015)). Nevertheless, by exploiting the

estimation of p (or p and ρ), and by assuming exchangeable defaults (i.e., defaults with

a joint distribution invariant under permutation of the default indicators) it is possible

to analytically compute sharp risk bounds (i.e., there is a portfolio in the class reaching

the risk bounds, Fontana et al. (2021), Fontana and Semeraro (2024)). The default

exchangeability assumption is usually done when, as in this case, we consider homoge-

neous portfolios (i.e., defaults are identically distributed and exposures are equal). A

standard exchangeable model is the exchangeable Bernoulli mixture model, where the

joint distribution of defaults is inherited from the distribution of the one-dimensional

mixing variable, that represents the distribution of the individual default probability.

Exploiting these results, we compare VaRα and ESα by using p and p, ρ estimated

using Logistic Regression (LR), Multi-layer Perceptron (MLP), Random Forest (RF),

Ada Boost (AB), and K-Nearest Neighbors (KNN). First, we consider the minimum and

maximum VaRα in the class of all portfolios with the estimated p. Second, we do the

same in the class of all portfolios with the estimated p and ρ. The sensitivity of the

bounds computed in the two settings for the selected techniques is a measure of the

robustness of the estimations. Finally, we consider the VaRα of a specific parametrical

model to see if the results reflect the result obtained with partial information. We

perform these tests in two settings: one synthetic and one real. In the synthetic setting,

we construct homogeneous, exchangeable portfolios of 500 up to 10, 000 obligors, assume

five given linear relationships among the covariates, and extract repeatedly from the

covariates, to obtain 200 datasets. This analysis allows us to investigate the performance
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of the different methods when the true model is known. Instead, in the real setting, we

use a publicly available credit card dataset and compare the results obtained for each

method.

The paper is structured as follows: Section 1 presents the model for the Bernoulli

variables which represent defaults; Section 2 contains the in-vitro and real analysis, Sec-

tion 3 reports the conclusion of the work. Some technical results are in the Appendices.

1 The model

This section sets up the portfolio model, discusses the exchangeability assumption, its

consequences, and presents the bounds of the risk measures.

1.1 From the marginal to the joint default probability

Let the random vector Y = (Y1, . . . , Yd)
0 be the vector of default indicators of a set of d

obligors or credit card owners over a fixed time horizon T . We assume that the vector

Y is exchangeable, i.e. its joint distribution of defaults is invariant under permutations.

This assumption implies that obligors have the same default probability and they are

equicorrelated. Formally, let P = (w1, . . . , wd) be the percentage weights that represent

a credit risk portfolio at time T associated with the d obligors, where wi ∈ (0, 1] and
Pd

i=1 wi = 1. To model the loss of the portfolio P , we consider the sum of the percentage

individual losses L, given by:

L =
d

X

i=1

wiYi, (1.1)

Since we assume exchangeability among defaults, the Yi are identically distributed

and we can consider the case of homogeneous exposures, meaning that the portfolio

weights are assumed to be equal: wi = 1
d
, i = 1, . . . , d. In this case, the relevant

quantity to asses the portfolio risk is the number of defaults,

S =
d

X

i=1

Yi. (1.2)

In the following, we model defaults using the exchangeable Bernoulli mixture models,

a class of exchangeable models widely used in credit risk (see McNeil et al. (2005)).

Definition 1.1. Given a random variable Q, the random vector Y = (Y1, . . . , Yd)
0 fol-

lows an exchangeable Bernoulli mixture model with mixing variable Q with support on

[0, 1], if conditional on Q the default indicator Y is a vector of independent Bernoulli

random variables with P(Yi = 1|Q) = Q.
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For a Y following an exchangeable Bernoulli mixture model, the unconditional -

common - marginal default probability is

P(Yi = 1) =

Z 1

0

qdG(q), (1.3)

where G(q) is the distribution of Q. Moreover, the unconditional probability mass

function (pmf) pY (y) of Y is:

pY (y) = P(Y = y) =

Z 1

0

q

dP

i=1

yi
(1− q)

d�
dP

i=1

yi
dG(q). (1.4)

We define the cross moments of Y as

πk
.
= E[Yi1 · · ·Yik ], {i1, . . . , ik} ⊂ {1, . . . , d} 1 ≤ k ≤ d. (1.5)

We focus on the marginal default probability π1, that we call p and on the equicorrelation,

that is

ρ =
π2 − p2

p(1− p)
. (1.6)

As a consequence of the exchangeability of the vector Y , the unconditional distribution

S of the number of defaults is entirely determined by the joint distributions of the

default indicators (McNeil et al., 2005). In fact, if Y is exchangeable there is a one-

to-one correspondence between the distribution of the number of defaults and the joint

distribution of defaults (Fontana et al., 2021). In particular, in the Bernoulli mixture

model the unconditional distribution pS(k) of the number of defaults S is

pS(k) =

✓

d

k

◆
Z 1

0

qk(1− q)d�kdG(q). (1.7)

It can be proved that the cross moments of Y are the moments of the mixing variable

Q (McNeil et al., 2005), i.e.,

πk = E[Qk]. (1.8)

Comparing Eq. (1.8) with Eq. (1.5) it follows that the moments of the mixing variable

Q completely determine all the moments and the joint distribution of defaults. Conse-

quently the mixing variable Q determine the default probability, the equicorrelation and

the distribution of the number of defaults. Different estimates of Q lead to different risk

valuations.

We assume Q is a function h of random observable covariates X = (X1, . . . , Xn),

representing the obligors’ characteristics. Formally,

Q = h(X). (1.9)
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In other words, the realizations of Q are functions of the realizations of X (i.e., q =

h(x)). Therefore, if obligor j is characterized by xj as covariates realizations, her default

probability is qj = h(xj). This makes the realized default probability of each single

obligor different.

The goal of the different techniques used to predict the default probability is to

estimate as well as possible the function h. We call ĥ the estimation of h. Different

estimation techniques lead to different ĥ and then to different estimates of the sample

default probabilities and of its moments. Moreover, since it can be proved that both

VaRα and ESα (as well as their bounds) depend on p and ρ (Fontana et al., 2021; McNeil

et al., 2005), the choice of ĥ affect also both the risk measures and their bounds. With

this in mind, we can now state our main research question: what are the consequences

on the portfolio risk of estimating p and ρ using different techniques?

To answer this question we consider two classes of exchangeable Bernoulli variables:

The class E(p) of exchangeable Bernoulli distributions with p and the class E(p, ρ) of

exchangeable Bernoulli distributions with the estimated mean p, and the estimated

correlation ρ.

To find the risk corresponding to a specific model estimated with the different

methods, we assume that Q follows a beta distribution with parameters a and b, i.e.

Q ∼ β(a, b). In this setting, the number of defaults S in Eq. (1.7) is a beta-binomial

distribution of parameters d, a and b (McNeil et al., 2005). Using Eq.(1.9), we estimate

the beta parameters using the different techniques and measure their impact on the risk

measures.

1.2 Bernoulli variables with given p and with given p and ρ

This section summarizes the geometrical structure of the class of distributions of the

number of defaults S. We consider the family of distributions of the sums of the com-

ponents of Bernoulli exchangeable vectors with distribution in E(p), Sd(p) and with

distribution in E(p, ρ), named Sd(p, ρ). In Fontana et al. (2021) further details can be

found including the proof of the results we report below for our convenience.

We recall that a polytope (or more specifically a d-polytope) is the convex hull of a

finite set of points in R
d called the extremal points of the polytope.

The class Sd(p) [Sd(p, ρ)] is a d-polytope, i.e., for any S ∈ Sd(p) [Sd(p, ρ)] there exist

λ1, . . . ,λnp
≥ 0 summing up to 1 and rj ∈ Sd(p) [rj ∈ Sd(p, ρ)] such that

pY =

np
X

j=1

λjrj, (1.10)

where rj = (rj(0), . . . , rj(d)), j = 1, . . . , np are the extremal points or the extremal
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densities of Sd(p) [Sd(p, ρ)].

The extremal points of Sd(p) and Sd(p, ρ) in (1.10) have been analytically found in

Fontana et al. (2021), where the authors also provide the number of extremal points.

For large d there are roughly d2p(1− p) + 1 extremal points. For example for d = 1000

and p = 0.1 there are 90.000 extremal points.

1.3 Risk measure bounds

The importance of the geometrical representation is that several functionals reach their

bounds at the extremal pmfs. In particular, Fontana et al. (2021) proves that the VaRα

bounds on classes of distributions that are convex polytopes are at the extremal points.

Moreover, Fontana and Semeraro (2024) proves that for any functional Φ defined on a

class of distributions that is a convex polytope the bounds of Φ(f) = E[φd(Xf )] are

reached on the extremal points.

As measures of portfolio risk, we consider the Value-at-Risk (VaRα) and the Expected

Shortfall (ESα) that is a convex expectation measure of the number of defaults, S. We

recall their definition for a general random variable Y .

Definition 1.2. Let Y be a random variable representing a loss with a finite mean.

Then the VaRα at level α is defined by

VaRα(Y ) = inf{y ∈ R : P (Y ≤ y) ≥ α}

and the expected shortfall at level α is defined by

ESα(Y ) =
1

1− α
(E[Y ;Y ≥ VaRα(Y )] + VaRα(Y )(1− α− P (Y ≥ VaRα(Y )))).

Although both these measures reach their sharp bounds at the extremal points of

Sd(p) and Sd(p, ρ), finding them by enumerating the values at each extremal point

becomes infeasible for high dimension due to the huge number of extremal points. It

is possible to to overcome this issue for the class Sd(p) due to the following Theorem

(Proposition (5.4) in Fontana et al. (2021)) which provides an analytical expression for

the bounds.

Theorem 1.1. Let jM1 be the largest integer smaller than pd, jm2 be the smallest integer

greater than pd and j
p
1 = (p�(1�α))d

α
. Let MV aR = maxY 2Sd(p) VaRα(Y ) and mV aR :=

minY 2Sd(p) VaRα(Y ) It holds that:

1. if p < 1 − α, mV aR = 0 and MV aR = [ pd

1�α
] if pd

1�α
is not integer and MV aR =

pd

1�α
− 1 if it is integer;

5



2. if 1− α ≤ p ≤ 1− α + α
d
jM1 , mV aR = j⇤1 , where j⇤1 is the smallest integer greater

or equal to j
p
1 and MV aR = d;

3. if p > 1− α+ α
d
jM1 , mV aR = jm2 = jM1 + 1 and MV aR = d. In this case, if pd is

integer jM1 + 1 = pd.

Moreover, Proposition (5.2) in Fontana and Semeraro (2024) proves that the lower

bounds for convex risk measures are reached at the specific extremal distribution in Sd(p)

with support on the biggest integer lower than pd and the lowest integer higher than pd.

This distribution corresponds to the safest dependence structure among the indicators

of default, see e.g. Dhaene and Denuit (1999). Finally, it is possible to prove that the

upper bound is reached on the extremal distribution with support on the two points 0

and d, that corresponds to the maximal dependence among the Bernoulli variables, i.e.

among defaults (see e.g. Bernard et al. (2017) and Kaas et al. (2000)).

For the class Sd(p, ρ) there are not similar results and the only way to find the bounds

is to proceed by enumeration. Actually, for the ESα we can use a wiser method than

complete enumeration by exploiting the convexity of ESα. In particular, let us consider

a random variable having a probability mass function as:

X =

(

s with probability πs

0 otherwise,
s ∈ S

where S = {1, . . . , S} are the possible realizations. In Rockafellar and Uryasev (2000)

the authors prove that the ESα of X can be computed by solving:

min φ+
1

1− α

X

s

πszs (1.11)

s.t. zs ≥ s− φ ∀s ∈ S (1.12)

φ ∈ R, zs ∈ R
+ (1.13)

In our application, S represents the number of defaults (i.e., the support of the distribu-

tion). Since we aim to find a pmf with a given first and second moment, we can rewrite
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model (1.11)-(1.13), with πs as a variable, obtaining:

min φ+
1

1− α

X

s

πszs (1.14)

s.t. zs ≥ s− φ ∀s ∈ S (1.15)
X

s

πs = 1 (1.16)

X

s

sπs = pd (1.17)

X

s

s2πs = pd+ d(d− 1)µ2 (1.18)

φ ∈ R, zs ∈ R
+, πs ∈ [0, 1] ∀s ∈ S, (1.19)

where µ2 is the estimation of E[X2]. The objective function (1.14), together with the

constraints (1.15) model the ESα, while the constraints (1.16), (1.17), and (1.18) describe

the characteristics of the probability distribution. Finally, Eq. (1.19) specifies the type

of variables considered. Model (1.14)-(1.19) is not convex due to the product πszs in the

objective function. Nevertheless, it can be solved to optimality (at least for small-size

instances) by the commercial solver such as Gurobi (Gurobi Optimization, LLC, 2023).

Within this framework, we evaluate how different ML techniques impact these bounds.

In particular, selecting different ML techniques leads to different models ĥ which com-

pute different realizations of Q = ĥ(x). Then, we use the realizations of Q to estimate its

moments p̂, ρ̂ (estimation of p and ρ) and â and b̂ (estimation of the beta-parameters),

and we can compute the bounds on the risk measure either by using the formula in

Theorem 1.1 or the mathematical model.

2 Numerical experiments

In this section, we explore how different machine learning methods behave in different

settings. Since an exhaustive list of experiments would require too much space, we pro-

vide the open-source code at https://github.com/EdoF90/XXXX, to properly guarantee

reproducibility and enable the interested reader to carry out further experiments. The

code has been developed in Python 3.10 and all the ML methods use the implementation

of the scikit-learn python library (Pedregosa et al., 2011).

We split the section into two subsections: Section 2.1 considers the in-vitro analysis

and Section 2.2 considers the Kaggle real dataset on credit card defaulters (https:

//www.kaggle.com/uciml/default-of-credit-card-clients-dataset).

In both examples, each obligor is characterized by a set of covariates and is associated

with a label equal to 1 if she defaults, and 0 otherwise. In the in-vitro dataset, defaults
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are simulated according to a Bernoulli with probability computed by the true model.

Instead, in the real dataset defaults are observed. This splits each dataset into two

classes of obligors: the defaulted and the non-defaulted ones.

We consider the following five ML methods (Brownlee, 2016):

• Logistic Regression (LR): it estimates P[Y = 1|X = x] The default threshold is

0.5, but we update it using the best threshold according to Youden’s J statistic

(Youden, 1950).

• Random Forest Classifier (RF): it is an ensemble method based on the bagging

algorithm considering several Decision Trees. Each decision tree recursively parti-

tions a data set to divide the two labels (Y = 1, and Y = 0) through a sequence

of tests (e.g., if the j-entry in xi, j = 1, .., n, i = 1, .., d is greater or smaller than a

threshold).

• Multi-Layer Perceptron Classifier (MLP): it is one of the simplest architectures of

neural networks. If it has no hidden layer, a sigmoid activation function, and is

trained with a cross-entropy loss function, it is equivalent to an LR.

• K-Neighbors Classifier (KNN): it is a clustering technique aiming at splitting the

feature spaces into two regions corresponding to the two labels.

• Ada Boost Classifier (AB): it is an ensemble method based on the boosting algo-

rithm.

To find the best hyperparameters for each method we use a grid search with cross-

validation. We refer to the online repository for the details. We point out that MLP is

trained with a cross-entropy loss function because we aim to estimate probabilities.

It is important to note that different techniques lead to different results as they may

have different goals. For example, LR is trained to minimize the probability error, while

RF is trained to minimize the classification error. Therefore, to estimate probabilities

it is better to rely on methods that focus on that or to use proper techniques (e.g.,

calibration). In the following, we will validate this assertion.

2.1 In-vitro analysis

The purpose of the in-vitro analysis is to provide a setting where the real model is known.

This allows us to compare the performance of the different ML techniques in estimating

p, ρ, and the beta-binomial parameters. The results themselves are relevant only as an

instrument to understand the ML techniques in a controlled setting. For this reason, we

estimate p, ρ, the beta parameter and compare the performance of each model and then
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we only consider the VaRα as a measure of risk to have a preliminary idea of the effect

of these estimates on the portfolio risk.

In the in-vitro analysis, we generate several datasets by assuming a given function h

and different relationships between the covariates X1, . . . Xn. This enables us to easily

compute the default probability p = E[Q] = E[h(X)] and thus compute the modeling

error of the various ML techniques.

The datasets are simulated by setting h as a logistic function of parameters θ. We

set θ in such a way that 20% of the observations are defaults. We chose this percentage

intending to mimic realistic datasets as the one considered in Section 2.2. Moreover,

similar default percentages are present in credit datasets (see Liu et al. (2022)).

We assume five different relationships between the covariates, together with different

values and dimensions of θ. In the first relation, we assume two independent covariates.

The second one introduces non-linear dependence between the two covariates. The third

and fourth are constructed using copulas to introduce dependence and the last increases

the number of covariates. We select these types of relations to span through polyno-

mial functions a reasonable subset of possible dependence structures among covariates.

We sample the covariates according to a uniform distribution between 0 and 1. This

choice reflects the values of the covariates after the application of covariate scaling which

removes effects such as the different magnitudes of the covariates.

• Relationship uniform independent (UI) is generated through a logit model having

two covariates, X1, X2 i.i.d. U [0, 1] and θ = [−0.2, 1.5,−5.0].

• Relationship 2 squared (2S) is generated through a logit model with two co-

variates X1, X2, where X1 ∼ U [0, 1] and X2 = X2
1 + U [−0.05, 0.05] and θ =

[−0.2, 0.7,−5.5].

• Relationship normal copula (NC) is generated through a logit model having two

covariates whose marginal distributions are U [0, 1] and who are linked through a

Normal copula; the covariance matrix of the latter is



0.5 −0.2

−0.2 0.5

�

. (2.1)

Moreover, we set θ = [−0.2, 0.5,−3.2]. We illustrate the values of the h function

as a function of the covariates and a resulting simulation of defaults/non-defaults

in Figure 1.

• Relationship t copula (TC) is generated through a logit model as above but with

the two marginal distributions linked through a Student t copula with 2 degrees

of freedom and θ = [−0.2, 0.5,−3.2].
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Figure 1: For the 2 squared Relationship we show the default probability Q for each
creditor (on the left) and a simulation of realizations of the individual defaults (on the
right). On the right, the red dots are defaults. Both the probability and the default
realizations are shown as a function of the covariates X1 and X2, which are reported on
the axes.

• Relationship 5 non linear (5NL) is generated through a logit model where the co-

variates are: X1, X2, X3 i.i.d. U [0, 1]X1·X2+U [−0.05, 0.05], X1·X3+U [−0.05, 0.1],

and θ = [−0.1,−1,−0.5,−0.5,−1,−1].

For each relationship, we simulate 4 different portfolios with 500, 1000, 5000, and

10000 records, and we repeat the simulation 10 different times for each possible choice,

resulting in a total of 5 (number of relationships) ×4 (number of portfolio sizes) ×10

(number of repetitions), namely 200 datasets.

We denote with ĥ ∈ {AB,LR,MLP,KNN,RF} the ML method used to estimate

the parameters on the synthetic datasets. We first use standard statistical methods

to decide whether the datasets need to be balanced or calibration must be performed.

Only once the corresponding choices are justified we report the moments of Q with the

different ML techniques and comment on the corresponding VaRs.

According to Lessmann et al. (2015), the measure of the quality of an ML method

depends on one of three possible goals: assessing the ability to discriminate between

default and non-default, assessing the accuracy of the probability predictions, and as-

sessing the correctness of the default predictions. We consider the AUC for the first,

Brier Score for the second, and both precision and recall of the default class for the first,

second, and third goals (see Geron (2022) for details on these measures). Note that we

are interested in the default class, i.e., the set of obligors characterized by default, since

they are more difficult to forecast (they are the 20% of the total observations). Since we

know the true h(X), instead of reporting the value of the indicators, we report the gap

with respect to the true value achieved by each method. For example, calling AUC(ĥ)
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and AUC(h) the AUC of the ML method and the real model, we compute GAPAUC[%]

as
AUC(h)− AUC(ĥ)

AUC(ĥ)
. (2.2)

This quantity can be interpreted as the loss in the AUC caused by the modeling error.

An analogous formula can be adopted to compute the gap for the other indicators.

Since the datasets are not balanced (they have 20% of the observations with the

default labels and the remaining 80% with the non-default ones), we need to use the

gaps to evaluate the impact of imbalance techniques. We focus on SMOTE, which is one

of the most used imbalance techniques (similar results hold for other techniques such

as SMOTETomek, TomekLinks, RandomUnderSampler, RandomOverSampler, Cluster-

Centroids, and SMOTETomek). We report the values of the percentage gap of AUC,

Brier Score, precision, and recall of the default class (computed according to Eq. (2.2) or

its analogous) for all the ML classifiers in all the datasets in Figure 2. The lower the gap

values, the better the classifier is. Each boxplot collects the data on 5 ML algorithms,

5 relationships, and 10 repetitions (for a total of 250 data) for the balanced (named

identity) and imbalanced (SMOTE) data, presented with different colors. In this figure,

different portfolio sizes correspond to different couples of box plots.

Figure 2: Boxplots of AUC, Brier Score, precision, and recall of the default class. Each
boxplot collects the data on 5 ML algorithms, 5 relationships, and 10 repetitions (for a
total of 250 data) for the balanced (named identity) and imbalanced (SMOTE) data, in
blue and orange respectively. Different portfolio sizes d correspond to different couples
of box plots.

Although imbalance techniques lead to higher precision and recall for datasets with

d = 500, they do not have positive effects on datasets of higher dimensions. Moreover, in-

dependently of the size of d, SMOTE decreases the Brier Score. As a consequence, since

our main interest is in default probabilities, we do not consider imbalance techniques.

As for calibration, several ML techniques focus on predicting the correct label (i.e.,

default/ no default) and do not aim to model default probabilities. When this is the case
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(as for the AB, RT, and KNN) it is important to calibrate the ML method (Brownlee,

2016). This procedure aims at minimizing the error of the forecasted probability. The

two most commonly used techniques are the Sigmoid calibration (or Platt scaling), which

is better if the calibration error is symmetric, and the isotonic calibration, which is a

more powerful calibration method that can correct any monotonic distortion but that

is prone to overfitting on small datasets (Brownlee, 2016). Since the smallest d is 500,

we consider this last calibration method. We apply isotonic calibration to RF, AB, and

KNN since both LR and MLP do not require it, as they minimize the log loss and the

cross-entropy loss, respectively.

Calibration may change the performance in terms of precision and recall; thus, it is

usually good practice to update the threshold for the methods after calibration. Since

our goal is not classification, we consider just the Brier score and see if calibration is

worth being used. We report the Brier score in Figure 3, where each boxplot represents

the percentage Gap Brier score computed according to a formula analogous to Eq. (2.2).

Each boxplot is obtained using 10 repetitions for each relationship, i.e. a total of 50 data.

Again, we have a boxplot for each portfolio dimension d.

Figure 3: Gap of the Brier Score with and without calibration (in blue and orange
respectively) for RF, AB, and KNN computed for different d.

As the reader can observe, calibration is beneficial for all the methods considered,

especially for the AB, which thanks to calibration for d = 1000 reaches an average gap

of 0.83% (with a standard deviation of 0.41%). We therefore work on calibrated data.

Once isotonic calibration and no smoothing techniques have been adopted, we com-

pute the true default probabilities and we evaluate the average absolute error between

the true and forecasted probability in the different ML methods, i.e., we compute

1

d

d
X

i=1

|h(xi)− ĥ(xi)|, (2.3)

over all the portfolio sizes (4) and repetitions (10). The results for various settings are
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reported in Table 1.

UI 2S NC TC 5NL

AB 4.55(2.33) 4.56(2.40) 4.61(2.15) 4.84(2.45) 4.53(1.55)
KNN 9.18(0.91) 9.19(0.81) 8.02(0.59) 8.65(0.95) 6.87(0.44)
LR 1.99(1.62) 2.23(1.44) 1.81(1.67) 2.01(1.68) 1.57(0.89)
MLP 1.66(1.17) 2.44(1.42) 1.84(1.57) 2.11(1.62) 1.64(0.98)
RF 8.38(1.14) 8.37(1.07) 7.72(0.97) 8.35(1.17) 5.89(1.02)

Table 1: Average error between true and simulated sample marginal default probability
for different ML techniques (per row) and over different relationships (per column).
Standard deviation in brackets.

The smallest errors in terms of sample marginal probabilities are obtained by LR

and MLP. This is because we generate the data using a logit model so that these two

methods do not have model errors. The third best method is AB which, on average, has

an error of around 4%.

Table 2 reports the default probability pĥ and equicorrelation ρĥ estimated with

the sample default probabilities obtained with each ML method and the true sample

probabilities of the synthetic datasets (called real in the table). While the former are

similar, the latter are not. The best estimates are again obtained with LR and MLP, since

they do not have model errors. However, the other ML methods provide better results

when the covariates are generated with a non-linear model (5NL). The best estimates

are obtained with AB and the worst with KNN, because they are the methods with the

lowest and highest absolute error, respectively (see Table 1). The table contains the

results for the portfolio of 5000 obligors (for the others see Appendix B)

UI 2S NC TC 5NL

p ρ p ρ p ρ p ρ p ρ

AB 0.20 0.25 0.21 0.16 0.20 0.07 0.23 0.11 0.18 0.07
KNN 0.20 0.15 0.21 0.08 0.20 0.02 0.23 0.04 0.19 0.02
LR 0.20 0.23 0.20 0.14 0.20 0.07 0.23 0.10 0.18 0.07
MLP 0.20 0.25 0.21 0.15 0.20 0.07 0.22 0.10 0.18 0.07
RF 0.20 0.18 0.21 0.12 0.20 0.04 0.23 0.05 0.19 0.05
real 0.20 0.24 0.22 0.16 0.20 0.09 0.21 0.11 0.19 0.06

Table 2: Each row represents the average of p and ρ for different ML methods. The
average is over 10 repetitions of the 5000 portfolio, for different relationships (across
columns)

Passing now to risk bounds for joint defaults, we compute the Beta-Binomial and

lower bound VaRs for α = 0.9 and portfolio size 5000. Figure 4 represents the boxplot

of the percentage VaR0.9 and the lower bound for the percentage VaR0.9 considering 10

repetitions. The bottom box plots represent the lower bounds for the VaRα in S(pĥ)
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computed according to Proposition 5.2 in Fontana et al. (2021) using

pĥ =
1

d

d
X

i=1

ĥ(xi).

Instead, the upper part shows the beta-binomial VaR0.9 computed in the following way:

1. for each obligor we compute pĥi := ĥ(xi)

2. using the observation of pĥi , we calibrate a beta-binomial using the methods of

moments

3. we compute analytically the VaR0.9 of the estimated beta-binomial distribution.

The upper bounds are omitted because they are 100%. While the lower bounds are

similar across the models and the different synthetic data, the VaRα values obtained

using the beta-binomial model are more sensitive to the ML model used and to the

structure of the synthetic data.

Moreover, it is possible to see that:

• in all the datasets KNN and RF underestimate the VaRα (looking at Table 2 you

can see how KNN often underestimates ρ; a similar, but less extreme, behavior

characterizes RF).

• all the other models (LR, MLP, and AB) have values similar to the true one

(therefore they are able to describe the VaRα well).

• all the lower bounds are practically the same, which means that the estimate of

the lower bounds is robust with respect to the choice of the model.

• the VaRs in the relationship 5NL present very low variability across the different

datasets.

Summing up, the in-vitro analysis tells us that if the true model is the LR, the

estimates of p are robust with respect to the ML technique chosen, as well as the cor-

responding VaRα bounds in E(p). On the contrary, the estimates of ρ are different,

meaning that correlation is more sensitive to the ML method adopted. This is also re-

flected in the estimate of the joint beta-binomial model, whose parameters are estimated

using the first and second-order sample moments of Q - that correspond to the mean

and correlation among defaults. In these two cases the best performance is obtained

with LR (that does not have model risk), MLP (that also does not have model risk),

and AB.
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Figure 4: Lower bound for the VaRα and VaRα computed using the binomial, level
α = 0.9. The values are expressed in percentages.

2.2 Real data application

We now perform the full analysis on a real database. The real, Kaggle dataset collects

data from 30000 clients of a bank issuing credit cards in Taiwan, from April to September

2005. The dataset contains information on 24 covariates, including demographic factors,

credit data, history of payment, and bill statements of credit card customers from April

2005 to September 2005. The dataset obviously contains the binary response of default

for each obligor. We only consider continuous covariates, i.e. covariates that assume

values on the real line, as opposed to discrete ones, to reduce the difference with respect

to the in-vitro datasets. In fact, this study aims to compare the effect of adopting

different ML methods and not to analyze a specific group of obligors. Although the

results themselves do not incorporate all the available information, the magnitudes of the

risk measures are coherent with the corresponding measures obtained in the preliminary

analysis performed on this dataset in Doria et al. (2022), where all the covariates were

included in the analysis. Relying on the in-vitro analysis we do not apply imbalance

techniques, but we calibrate the probabilities.

We construct a high dimensional portfolio of d = 6000 obligors, find the risk measures

bound in E(p), and estimate the parametrical model. Due to the computational limits

when finding by enumeration the VaRα and ESα bounds in E(p, ρ) discussed in Section

1.3, the bounds in this class are found on a portfolio of d0 = 200 obligors and only

for the ESα, by solving the optimization in Eqs. (1.11)-(1.13). To make the results

obtained with the two portfolios of different sizes comparable, we present them in terms

of percentages instead of the number of defaults.
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Beta parameters
a b p ρ

AB 0.81 [0.77, 0.85] 2.88 [2.67, 3.01] 0.22 [0.22, 0.23] 0.21 [0.21, 0.23]
KNN 0.50 [0.39, 0.59] 1.78 [1.39, 2.11] 0.22 [0.21, 0.23] 0.31 [0.27, 0.36]
LR 2.44 [2.34, 2.53] 6.80 [6.63, 6.97] 0.26 [0.26, 0.27] 0.10 [0.10, 0.10]
MLP 0.63 [0.55, 0.75] 2.27 [1.91, 2.54] 0.22 [0.20, 0.23] 0.26 [0.23, 0.29]
RF 0.94 [0.89, 1.00] 3.31 [3.08, 3.55] 0.22 [0.22, 0.23] 0.19 [0.18, 0.20]

Table 3: Parameters of the beta distribution and corresponding p and ρ of the different
ML techniques.

To give an initial sense of how different the ML techniques can be, we focus first,

as we did for the in vitro case, on the marginal probabilities: here we cannot compare

the estimated beta distribution with the theoretical one, but we can appreciate how far

apart they are. Table 3 reports the estimated beta parameters for the distribution of

the default probability. Since one estimation can be noisy, we report the problem by

sampling 50 different training sets. The LR and the ML techniques lead to different

results in the shape and tail of the estimated distribution. This generates different

estimates of the default probability and equicorrelation, also reported in Table 3.

Here, we report the coefficients a and b of the beta distribution estimated using the

method of moments from the probabilities ĥ(xi) as in the previous Section.

Considering the results in Table 3, we can notice that:

• LR has p greater and ρ smaller than the other methods. The in-vitro analysis

shows that if the true model is LR the other ML methods provide good estimates

of p. These results support the idea that LR does not fit well the real data.

• all the ML methods are close to each other.

These parameters are the main factors affecting the portfolio risk, which we measure

using both VaRα and ESα.

2.2.1 Bounds using only the marginal probability

In this section, we compute both VaRα and ESα analytically computing them from a

beta-binomial distribution calibrated, using the methods of moments, on the probabili-

ties ĥ(xi). Moreover, using the average of ĥ(xi), we also compute the lower bounds using

Proposition 5.2 in Fontana et al. (2021). Since one estimation can be noisy we repeat

the problem by sampling 50 different training sets. The average results are reported

in Table 4 and in Table 5, for the VaRα and the ESα, respectively (together with an

interval obtained from the minimum and maximum value observed). As the reader can

notice the effects of a higher estimate of p and of a higher estimate of ρ are opposite.
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α

0.9 0.95 0.99

VaRα

β bin

AB 49.50 [49.45, 52.23] 60.94 [59.63, 62.80] 77.46 [76.18, 79.38]
KNN 58.06 [54.93, 62.45] 70.69 [66.80, 76.11] 87.65 [84.10, 92.15]
LR 45.56 [45.21, 45.85] 51.86 [51.46, 52.23] 63.26 [62.80, 63.75]
MLP 53.83 [51.45, 57.30] 65.36 [62.66, 69.48] 82.56 [80.05, 86.43]
RF 48.77 [47.53, 50.01] 58.36 [56.90, 59.91] 74.33 [72.61, 76.10]

min VaRα

AB 13.42 [12.82, 13.97] 17.97 [17.40, 18.50] 21.29 [20.75, 21.80]
KNN 13.36 [12.37, 14.05] 17.93 [16.97, 18.58] 21.24 [20.33, 21.87]
LR 18.21 [17.75, 18.62] 22.52 [22.08, 22.90] 25.65 [25.23, 26.02]
MLP 13.12 [11.47, 14.40] 17.69 [16.12, 18.90] 21.02 [19.50, 22.18]
RF 13.42 [12.87, 13.98] 17.97 [17.45, 18.50] 21.29 [20.78, 21.80]

Table 4: VaRα for different α, d = 6000. The values are expressed in percentage.

The range for the VaRα and ESα that depend only on p are significantly wider for the

LR estimate, while the beta-binomial VaRα and ESα, that depend on two moments, are

significantly higher for the ML estimates. The latter provide results close to the other.

Here we can notice that:

• For all the α we have that the LR entry is the lowest. AB and RF follow. The

highest entries are given by MLP and KNN. So all MLs are above LR. We cannot

say which of the MLs is more correct but we can say that LR underestimates ρ

(both from Table 3 and because otherwise MLP should have results similar to it,

since it is a more flexible model).

• For the ML estimates the lower VaRα bounds are close to each other, with LR

standing out from all the others; it is reasonable to think that LR is not able to

describe the dataset considered well.

• For the ML estimates the beta-binomial VaRα has higher values than LR; in this

case, we see more variability also within different ML methods.

• MLP VaRα has values that intersect AB, RF, and KNN, so it can be seen as a

tradeoff.

• Considering the results of Table 3 we see that the greater VaRα measured by ML

goes together with a higher ρ.

• Similar conclusions hold for ESα.
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α

0.9 0.95 0.99

ES
β bin

AB 63.18 [61.92, 65.00] 70.92 [69.67, 72.82] 83.32 [82.12, 85.10]
KNN 72.48 [68.83, 77.42] 80.95 [77.27, 85.90] 92.14 [89.18, 95.52]
LR 53.66 [53.25, 54.07] 58.84 [58.38, 59.27] 68.45 [68.02, 68.98]
MLP 67.47 [64.90, 71.35] 75.75 [73.13, 79.70] 87.93 [85.75, 91.10]
RF 60.62 [59.18, 62.18] 68.03 [66.47, 69.73] 80.36 [78.73, 82.00]

min ES

AB 22.09 [21.55, 22.60] 22.09 [21.55, 22.60] 22.10 [21.55, 22.60]
KNN 22.04 [21.13, 22.67] 22.04 [21.13, 22.67] 22.04 [21.13, 22.67]
LR 26.40 [25.97, 26.77] 26.40 [25.97, 26.77] 26.41 [25.98, 26.77]
MLP 21.82 [20.33, 22.98] 21.82 [20.33, 22.98] 21.82 [20.33, 22.98]
RF 22.09 [21.60, 22.60] 22.09 [21.60, 22.60] 22.09 [21.60, 22.60]

Table 5: ESα for different α, d = 6000. The values are expressed in percentage.

2.2.2 Bounds using the marginal probability and the correlation

Using the results in Fontana et al. (2021) we could in principle find the bounds for the

VaRα in Sd(p, ρ), as the authors do for a portfolio of dimension d = 100. However,

the number of extreme points increases very fast and it is computationally infeasible

to compute the VaRα for enumeration for larger portfolios. For example with d =

1000 and p = 0.2 the number of extremal points in E(p) is 160.000. Building on the

convexity of ESα we can find its bounds on S(p, ρ), using a different approach and

solving the optimization method described in Eqs (1.11)-(1.13), which can be solved by

the commercial solver Gurobi. We set d = 200 which leads to instances that can be

solved in 1 minute. The results are shown in Table 6.

Here, we can notice that:

• the lower bound computed using only p is higher for the LR and the same happens

for all the ML methods, as in the previous section;

• the lower bounds computed using only p and ρ are lower for LR and higher for all

the ML methods. However, they differ across themselves more than if only p is

considered;

• an analogous result holds for the ESα Beta (KNN leads to the greatest ESα, MLP

AB and RF are almost the same and LR is way lower);

As a final consideration, we observe that ML methods provide more similar risk eval-

uation than LR. This is evident for bounds produced using only p, where ML estimates

also provide similar results. Including correlation ML estimates differ across themselves,

supporting the idea that the risk measure is more sensitive to the correlation estimate

than to the marginal default probabilities. While for estimating default probability the
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ESp ESβ ESp,ρ

α = 0.9

AB 22.40 [22.00, 22.50] 64.50 [64.00, 65.50] 39.10 [38.50, 39.50]
KNN 22.20 [21.50, 23.00] 72.80 [70.00, 75.50] 45.60 [44.00, 47.50]
LR 26.60 [26.50, 27.00] 55.70 [55.00, 56.50] 34.20 [34.00, 34.50]
MLP 21.70 [20.50, 22.50] 69.10 [66.50, 72.50] 43.00 [40.50, 45.50]
RF 22.30 [22.00, 22.50] 62.00 [61.00, 63.00] 37.50 [37.00, 38.00]

α = 0.95

AB 22.40 [22.00, 22.50] 72.60 [71.50, 74.00] 39.10 [38.50, 39.50]
KNN 22.20 [21.50, 23.00] 81.70 [80.00, 83.50] 45.60 [44.00, 47.50]
LR 26.60 [26.50, 27.00] 60.80 [60.00, 61.50] 34.20 [34.00, 34.50]
MLP 21.70 [20.50, 22.50] 77.10 [74.50, 80.00] 42.90 [40.50, 45.50]
RF 22.30 [22.00, 22.50] 69.80 [69.00, 70.50] 37.50 [37.00, 38.00]

α = 0.99

AB 22.40 [22.00, 22.50] 87.40 [85.50, 89.00] 39.10 [38.50, 39.50]
KNN 22.20 [21.50, 23.00] 95.00 [92.50, 98.00] 45.60 [44.00, 47.50]
LR 26.60 [26.50, 27.00] 72.80 [71.50, 74.00] 34.20 [34.00, 34.50]
MLP 21.70 [20.50, 22.50] 90.30 [89.00, 92.00] 42.90 [40.50, 45.50]
RF 22.30 [22.00, 22.50] 83.70 [82.00, 85.50] 37.50 [37.00, 38.00]

Table 6: ESp: ESα lower bound in S(p); ESp,ρ: ESα lower bound in S(p, ρ); ESβ: ESα

of the beta-binomial model. The values are expressed in percentage.

only relevant choice is to adopt a traditional LR estimate or a ML technique, when

incorporating correlation as well as for the estimate of a specific joint distribution for

the vector of default indicators the choice of a specific ML method becomes relevant.

3 Conclusions

Both in the in-vitro and in the actual dataset case, risk measures do differ between LR

and ML techniques.

In the in-vitro case, which we know to be linear, LR performs very well, by construc-

tion. Sophisticated neural network techniques - such as the MLP - which collapse into

the LR when needed, are so flexible that they can capture even this extreme case in

which traditional techniques are by definition sufficient. However, alternative methods

such as AB also perform very well in capturing the risk.

The real point of the analysis is that, although all ML methods give similar esti-

mates of the marginal probability on single defaults (as expected from the existing liter-

ature), they actually differ in the estimate of the correlation, and therefore give different

bounds for the risk measures and different specifications for single models such as the

beta-binomial distribution. This consideration is helpful in reading the real credit case

application, where the appropriateness of a specific model can no longer be judged from

its distance from the true VaRα. Risk measures differ between LR and ML techniques,
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and also among ML techniques, when we use both the marginal default probability and

the correlation, or a specific reference model such as the beta-binomial distribution.

When little information is used, the estimates from different ML approaches are closer.

ML techniques provide different risk bounds in the richer model with correlation or

under the binomial assumption.

We conclude that for credit portfolios, if only information on the mean is available,

the risk measures significantly differ between LR or ML. In contrast, they are very close

across all the different ML techniques. When information on correlation is included,

the difference between LR and ML remains, but more variability is revealed across the

different ML techniques: this is due to the way in which different models exploit data

information.
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A Dataset description

The dataset contains 30.000 obligors with 24 covariates each, namely:

• ID: ID of each client.

• LIMIT BAL: Amount of the given credit (NT dollar), which includes both the

individual consumer credit and his/her family (supplementary) credit.

• SEX: Gender (1 = male; 2 = female).

• EDUCATION: (1 = graduate school; 2 = university; 3= high school; 4= others;

5= unknown; 6= unknown).

• MARRIAGE: Marital status (1 = married; 2 = single; 3 = others).

• AGE: Age in years.

• PAY 1 to 6 : Repayment status in September to April 2005.

• BILL AMT1 to 6: Amount of bill statement in September to April, 2005 (NT

dollar).

• PAY AMT1: Amount of previous payment in September to April, 2005 (NT dol-

lar).
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• default.payment.next.month: Default payment (1=yes, 0=no).

We do not include in our analysis sex, education, marriage, and age, because they

are not continuous variables. Table 7 provides the descriptive statistics of the data.

- def pay LIMIT BAL SEX EDUCATION MARRIAGE AGE

mean 0.2212 167484.3227 - - - 35.4855
std 0.4150 129747.6616 - - - 9.217904068
- BILL AMT1 BILL AMT2 BILL AMT3 BILL AMT4 BILL AMT5 BILL AMT6

mean 51223.3309 49179.07517 47013.1548 43262.94897 40311.40097 38871.7604
std 73635.86058 71173.76878 69349.38743 64332.85613 60797.15577 59554.10754
- PAY 1 PAY 2 PAY 3 PAY 4 PAY 5 PAY 6

mean - - - - - -
std - - - - - -
- PAY AMT1 PAY AMT2 PAY AMT3 PAY AMT4 PAY AMT5 PAY AMT6

mean 5663.5805 5921.1635 5225.6815 4826.076867 4799.387633 5215.502567
std 16563.28035 23040.8704 17606.96147 15666.15974 15278.30568 17777.46578

Table 7: Descriptive statistics.

B Other Results

In this section, we report the extended results for the computational experiments shown

in Section 2.1. In particular, Table 8 reports the results of p and ρ of the different

ML methods for the different relationships and the different numbers of obligors. The

last rows of the table report p and ρ computed using the true model. As the reader

can notice, the results are all very close to the true one already when 500 obligors are

considered. This further testifies the expressive power of ML methodologies.

Instead, in Figure 5 we represent the percentage VaRα with α = 0.9 for different

numbers of obligors (d). For completeness, we report d = 1000 (i.e., Figure 4). As

the reader can notice, the general trend is that the more data, the smaller the boxplot

variation, with some small exceptions due to the stochasticity in the data.

In all the plots it is possible to observe that:

• the variation for the relationship 5NL dataset is far smaller than the other and it

shrinks very fast as d increases;

• the relationship TC has the second greatest variation (after 5NL) but the reduction

of variance is far smaller:

• the bound are very similar independently by the methodology used;

• logistic regression performances are deeply influenced by d and it start to have

good performance from d = 5000.
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UI 2S NC TC 5NL

d p ρ p ρ p ρ p ρ p ρ

AB

500 0.21 0.22 0.25 0.17 0.21 0.08 0.21 0.06 0.18 0.03
1000 0.19 0.24 0.27 0.19 0.20 0.09 0.17 0.14 0.17 0.08
5000 0.20 0.25 0.21 0.16 0.20 0.07 0.23 0.11 0.18 0.07
10000 0.20 0.23 0.24 0.16 0.20 0.08 0.20 0.11 0.19 0.07

KNN

500 0.20 0.11 0.24 0.11 0.23 0.04 0.23 0.02 0.18 0.03
1000 0.19 0.14 0.26 0.10 0.20 0.02 0.17 0.06 0.17 0.04
5000 0.20 0.15 0.21 0.08 0.20 0.02 0.23 0.04 0.19 0.02
10000 0.20 0.14 0.24 0.08 0.20 0.02 0.21 0.04 0.19 0.02

LR

500 0.20 0.14 0.23 0.11 0.22 0.06 0.22 0.04 0.18 0.04
1000 0.20 0.19 0.26 0.14 0.20 0.06 0.17 0.11 0.17 0.07
5000 0.20 0.23 0.20 0.14 0.20 0.07 0.23 0.10 0.18 0.07
10000 0.20 0.23 0.24 0.15 0.20 0.08 0.20 0.10 0.19 0.07

MLP

500 0.20 0.18 0.23 0.12 0.21 0.07 0.22 0.04 0.18 0.03
1000 0.20 0.23 0.26 0.14 0.20 0.07 0.17 0.12 0.17 0.07
5000 0.20 0.25 0.21 0.15 0.20 0.07 0.22 0.10 0.18 0.07
10000 0.20 0.23 0.23 0.15 0.20 0.08 0.21 0.11 0.18 0.07

RF

500 0.20 0.22 0.24 0.15 0.21 0.09 0.22 0.05 0.17 0.05
1000 0.20 0.21 0.26 0.15 0.21 0.05 0.15 0.09 0.17 0.09
5000 0.20 0.18 0.21 0.12 0.20 0.04 0.23 0.05 0.19 0.05
10000 0.20 0.16 0.24 0.10 0.20 0.04 0.21 0.06 0.19 0.05

true

500 0.20 0.23 0.23 0.16 0.19 0.09 0.23 0.10 0.19 0.06

1000 0.20 0.25 0.25 0.16 0.21 0.09 0.19 0.11 0.18 0.07

5000 0.20 0.24 0.22 0.16 0.20 0.09 0.21 0.11 0.19 0.06

10000 0.20 0.24 0.24 0.16 0.21 0.09 0.21 0.11 0.19 0.06

Table 8: Each cell represents average p and ρ for the different ML methods. The bold
numbers are the ones achieved by using the real probability computed by ĥ(X).
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