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Abstract

We study a market with non-iid returns linked to an ESG (Envir-
onmental, Social and Governance) and a market factor. Motivated by
empirical evidence, we assume that the investor does not know which
part of the return is due to the ESG component, unless he pays a cost.
We provide conditions on the persistence, risk premium and observab-
ility of the ESG factor, relative to the market one, to invest in ESG
assets. Information should be acquired when its costs are below a
threshold that we find explicitly.
We calibrate the model to the German twin bonds, separate the ESG
from the market risk factor, compute their risk premia and simulate
optimal asset allocation.
Keywords: ESG assets, Information costs, Optimal filtering, Greenium,
ESG risk premium, Unobservable ESG-factor returns.

JEL Classification: G11, G14.

The empirical evidence on whether ESG assets provide extra returns
with respect to non-ESG assets is somewhat mixed: some papers, such
as Hong and Kacperczyk (2009), show that stocks who do not have ESG
features, such as sin stocks (tobacco, oil & gas) deserve an extra-return
for market participants, while some others show that social features, like
employees’ satisfaction, or good governance ones, generate higher ex post
returns (see respectively Edmans (2011) and Gompers et al. (2003) for
seminal contributions). More recent equilibrium theory shows that it is
possible to reconcile this evidence. Pastor et al. (2021), in a model with
ESG-motivated or ESG-aware investors, suggest that in the long run ESG
assets should not deserve an extra-return, but can have it in the convergence
to the equilibrium, or when new shocks to ESG features arrive. Avramov et
al. (2021) show that the extra-return can disappear, as uncertainty on ESG
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ratings, which characterizes the past and current phase of ESG investing,
disappears.

It is a matter of fact that, for the time being, it is hard and costly to
isolate the part of the risk and return of ESG assets that depends exclusively
from sustainability. Our interest is then in studying investor demand for
ESG assets when the separation of the two sources of returns does not come
for free, because information is costly.

To do so, we build a multiperiod model, in a realistic, non-iid return
setting. We depart from the iid assumption, because both Avramov et al.
(2023) and Giglio et al. (2021) find significant parameters for a VaR model
of green asset returns.

Our investors live in a world with autoregressive returns, optimally filter
information and maximize the expected utility of final wealth, as in Avramov
et al. (2021), Pastor et al. (2021), Pedersen et al. (2021), without having
explicit ESG preferences. We assume that they are green-neutral, to focus
on the unobservability feature. We assume however that they are green-
aware: they know that ESG returns are related to an additional risk factor,
the ESG one. They can therefore diversify by inserting a product with ESG
features in their portfolio, and do so without getting informed about its
contribution to returns, or getting the appropriate information about the
ESG risk-return profile, at a cost. We examine their cost-of-information
versus diversification benefit trade-off assuming Bayesian learning.

We provide conditions on the persistency, importance in determining
returns and observability of the ESG factor, under which the investor should
better buy an ESG product than stick to his "old", market portfolio. If
information costs are low, he will also buy information on it, and the opposite
if information costs become too high. As a result, ESG-related assets can
provide both a risk premium and a discount with respect to the market-based
asset, even in expectation, and not only ex post.

We show how this applies to the German Govies market, where both
conventional and green bonds are traded - the so-called twin German bonds
studied in Pastor et al. (2022) - and parametrize their greenness from market
data. This allows us to uncover whether in that market there is an expected
extra or lower return on green assets (greenium), what the optimal policy
of a green neutral investor should be and which welfare increase - measured
by the rate of return on the certainty equivalent of his utility - the optimal
policy should provide.

The outline of the paper is as follows. In Section 1 we add to the port-
folio choice of a green-neutral investor ESG assets, characterize the optimal
filtering of information in case he does not pay a cost to separate different
sources of returns, determine the maximum cost or fee that he is willing
to pay to acquire ESG information and make optimal asset allocation and
welfare explicit. In Section 2 we study the German Govies market through
the lens of our model. In Section 3 we summarize and conclude.
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1 Investor’s preferences and asset allocation

Portfolio models in the presence of assets with ESG-related returns can be
divided into several strands: those in which some of the investors have a
preference for greenness per se, or get some non-pecuniary benefits from
green stocks, those in which they do not, but are still aware of the ESG
properties of asset returns, and those in which they ignore the greenness
features completely. Pedersen et al. (2021) call the former investors ESG-
motivated, the second ESG-aware, the third ESG-unaware. We focus on
ESG-aware investors, to isolate the unobservability effect, show how and
when they can integrate ESG assets in their portfolio, and what drives their
choice. In a static portfolio setting, with non-perfectly correlated returns
on the ESG and the market factor, an ESG-aware investor should invest in
both, to increase diversification. This is not the case any more with non-iid
returns.

Because of unobservability, our model resembles the one in Guasoni et al.
(2019), whose investors either know the returns on single commodities or on
a fund made out of them. Guasoni et al. assume that investors have power
utility, of which log utility, that we are going to use below, is a special case,
in which there is no hedging demand. In Guasoni et al. (2019) investors are
simply either informed on the separate returns of different commodities or
informed about the fund returns only. We add to their model the possibility
to collect information to switch from one to the other type of information,
at a cost.

To increase the clarity of the effects, we assume first that there are only
assets , whose risk premium is market-related, then introduce green assets
 , whose returns depend on both factors.

1.1 Without ESG-diversifying assets

Suppose first that the representative investor can invest (going long or short)
in a riskless asset and buy a risky asset subject to a market-wide risk source
or factor. For the sake of simplicity we normalize the riskless rate to zero,
so that the riskless asset is worth 0 ∈ R+ at all times.

The market, non-ESG risk factor follows an Ornstein-Uhlenbeck process,

1() = −11()+ 1()

where 1  0 and 1() is a standard Brownian motion. Call F() the
augmented filtration generated by 1().

Let  be the instantaneous standard deviation of the log returns on the
risky asset,  its drift, and let both of them be constant. On (ΩF  F())
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the risky asset has the price dynamics

()

()
= + 1()

= (− 11()) + 1()

with ,  ∈ R   0.
Note that returns are not iid because the shock 1 has a mean-reverting

component: the higher is the mean-reverting parameter 1, the less persist-
ent will be the shock. The iid return is nested as a subcase when 1 = 0
In the case of interest to us, 1  0, the mean reverting factor 1 has long
term variance 1

21
: the higher is the parameter of the mean reversion, the

less noise will be accumulated over time and the lower will be the long term
variance of non-ESG assets.

We assume that investors are log and solve their expected utility max-
imization problem

E(U;  ) = sup
()

µ

E
ln( ( ))


;(0) = 

¶

(1)
where  ( ) = ( ) +0, () is the total amount invested in  at time
,   0, the utility function is log and () is the fraction of wealth invested
in  at . It follows that:

() =  exp

∙
Z 

0

∙
()−()11()−

1

2
()22

¸

+

Z 

0
()1()

¸



(2)
The budget constraint or self-financing condition is:

()

()
= ()

()

()

We then compute the limit, when the horizon of the investor tends to infinity,
of the derived utility E(U;  ) per unit of time. Because of the certainty
equivalent definition with log utility, this represents the rate of growth of
the certainty equivalent itself over time. This is the measure that we use to
evaluate the welfare of optimal policies

() = lim
→∞

E(U;  )



It is easy to prove - see Guasoni et al. (2019) - that:

Theorem 1 (Guasoni et al. (2019)) The optimal strategy in non-ESG as-
sets ∗(), and the corresponding rate of growth of expected utility (),
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which solve problem (1) subject to (2) are

∗() =
− 11()

2
 (3)

() =
2

22
+
1
4
 (4)

The portfolio allocation differs from the standard, myopic one with iid
returns (1 = 0), which coincides with its first addendum, and represents
now a strategic component. The second addendum represents a tactical
component and is time dependent, because of the mean reversion in the
risk process. The higher is the current value of the mean reverting part of
returns, if positive, the lower is the expected return, and therefore the lower
is the position in the risky asset. Also, the tactical allocation is inversely
proportional to both the short and long run variance. As a result, the
utility is greater, by a factor proportional to mean reversion - and inversely
proportional to the long-run variance - with respect to the one which would
obtain with iid return.

1.2 With ESG-diversifying assets

Suppose now that the investor can buy/sell either the same riskless asset as
above or a risky asset that, on top of the dependence on a market-wide risk
factor, depends also on an ESG risk factor. Call the new asset  . Since its
returns depend on 1 and on another risk source, the ESG factor 2 we say
that an investor preferring  to  diversifies.

Also 2 follows a mean-reverting Ornstein-Uhlenbeck process

2() = −22()+ 2() (5)

with 2  0 2 6= 11()2() independent Brownian motions. Let 
be exposed by 1  0 to the market risk factor, by 2  0 to the ESG one,
with 21 + 22 = 1. Note that the market-only case is nested as a subcase for
2 → 0. Define as  () the −weighted sum of 1 and 2:

 () = 11() + 22() (6)

and let  satisfy the following dynamics

()

()
= +  () (7)

where   are the same as for asset  .
The long-term variance of  is 21(21) + 22(22) which depends on

both mean reversions.
When he invests in the ESG asset, the investor observes its price, re-

turns, but cannot observe separately the returns on the first and second risk
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factor, unless he pays for distinguishing the two signals. He just observes
the innovations in the “pooled signal” or risk factor  . While he knows 
and , he does not observe separately the realizations of the inoovations in
the processes , namely how the dependence on the market and the ESG
features of the asset contribute to its return. He is uninformed. As an al-
ternative, the investor can decide to get full information on both risk factors,
by paying a fee  per unit of time, and observe separately the innovations
in 1 and 2. He becomes informed

It follows from (7) that - all others equal - the additional source of risk 2
has a stronger effect on the uninformed investor, the higher is the mean re-
version parameter 2 associated to it. The greater is the difference between
2 and 1, with 2  1, the greater is the “gap” in terms of information
between an informed and an uninformed investor. If the investor decides
to stay uninformed, his filtration is (F ())∈[0+∞). The filtration for the
informed investor is (F())∈[0+∞). F () is the augmented filtration gen-
erated by  () alone while F() denotes the augmented filtration generated
by 1() and 2(). Further, F ()⊂F().

From standard filtration theory, we get that the dynamics for the unin-

formed investor are

 ()

 ()
=

∙
− 

³

11̂1() + 22̂2()
´

¸

+ ̂ 

where ̂ is an F ()-Brownian motion and represents the innovation process
obtained from the filtering procedure:

̂ () =

Z 

0

h

11(̂1()− 1()) + 22

³

̂2()− 2()
´i



+

Z 

0
(11() + 22())

The estimates of the OU processes, ̂()  = 1 2, solve the SDE

̂() = − ̂()+ ()̂() (8)

The vector () is defined as

() = 0 − ()0

where  = [1 2]  = [11 22] and  is the variance covariance matrix of
the errors in the learning procedure of the return processes, namely

() = E[
³

1 ()− ̂1 ()
´³

2 ()− ̂2 ()
´

]

so that

() =

∙
1 − 1111()− 2212()
2 − 1121()− 2222()

¸
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For the informed investor the dynamics can be written substituting (6)
in (7) as follows

()

()
= (− 111()− 222()) + ()

where () = 11() + 22() is an F()-Brownian motion.
The risk premium on the market or green-neutral asset  was

() = − 11()− 22

The risk premium on the green asset  , under the informed filtration,
is

() = − 111()− 222()− 22− 

while under the uninformed is

 () = − 11̂1()− 22̂2())− 22

Both can be lower or higher than the risk premium on the non-ESG as-
set. The first and third coincide when 2 → 0, when the second is dominated
because it is net of the (unuseful) information fees. This is of the outmost
importance in our achievements: there is no positive or negative greenium
implicit in the model, because ESG-related assets can provide both a risk
premium and a discount with respect to the market-based asset, even in ex-
pectation, or ex ante, and not only ex post. The premium can be positive
or negative, and it changes sign over time, because of the evolution of the
factors. Also, unless the weight of the ESG factor is null, it is differently
perceived by uninformed and informed investors.

We are ready to spell out the conditions under which the investor par-
ticipates in the ESG-market as an uninformed () or as an informed ()
investor. For this we solve the logarithmic utility maximization problem in
the two cases, namely (1) with  =  =  +0,  =  , and  = ,
 =  . The self-financing condition for the uninformed investor is

 ()

 ()
=  ()

 ()

 ()
(9)

while the self-financing condition for the informed investor is

()

()
= ()

()

()
−  (10)

Let us introduce the vector  = 0− 0 where  is the stationary value
of the variance covariance matrix of the errors in the learning procedure of
the return processes, namely

 = lim
→∞

E[
³

1 ()− ̂1 ()
´³

2 ()− ̂2 ()
´

]
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The matrix  exists unique, if (0) is positive definite, and satisfies the
Riccati equation (see Guasoni et al. (2019))

− − +  − 0 = 0

where  is the diagonal matrix with the parameters  on the main diagonal
and  is the 2 x 2 identity matrix. This is a CARE matrix equation, whose
solution obtains from the eigenvalues and vectors of the following matrix

 =

µ

0−  −0

− + 0 −0+ 

¶

and

 =

µ

1 0
2 0

¶

Indeed, if we select the two eigenvectors of  with negative real parts, 1
and 2, split them into the first two and second two components, define by
so doing the submatrices 1 and 2, the  matrix is the product

 = −11 2

It can be proved, as a straightforward extension of Guasoni et al. (2019),
that the optimal portfolio allocation in

Theorem 2 The optimal strategies in ESG assets ∗,  =   and the
asymptotic rate of growth of the certainty equivalent ,  =  , which
solve problem (1) subject to (9) for the uninformed investor, (1) subject to
(10) for the informed one, exist. They are

∗ () =
− 11̂1()− 22̂2()

2
(11)

 () =
2

22
+
211

2
1 + 222

2
2

4
+
12(1 + 2)12

4
 (12)

∗() =
− 111()− 222()

2
(13)

( ) =
2

22
+
1

2
1 + 2

2
2

4
−  (14)

The strategic allocation components are the usual, myopic ones. With
perfect information, the tactical one is a straightforward extension of the
one with the market factor only. With imperfect information, the tactical
component incorporates also the estimates of the variance-covariances of the
forecast errors. Note that the utility of the informed investor  is higher
than the one of the uninformed agent  if and only if the information cost
is low enough,   ∗ where

∗ =
£

211(1− 2
1) + 222(1− 2

2)− 1212(1 + 2)
¤

4 (15)
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Also, for the informed investor, utility  is higher than with the market
factor only  if and only if the information cost is low enough,   ∗∗
where:

∗∗ =
(2 + 1) 

2
2

4
(16)

while for the uninformed one the comparison with the market case depends
on the parameters driving his estimates of the role of the two factors, namely
the   and the covariances in . It follows that, when the returns on green
assets are relatively less persistent than the ones on the market-related asset,
it is optimal to invest in the ESG assets. The investor acquires information
when fees are low and remains uninformed when fees are too high. If they
are relatively more persistent, the investor remains invested only in the
market factor, and therefore does not acquire information, if fees are high,
or diversifies in the ESG one acquiring information on it, if fees are low.

Theorem 3 a) If 2(
2
2

2
2 + 1212)  1(1− 21

2
1 − 1212), the

investor should invest in ESG assets, and acquire information only if
it is not too costly, since

()   ()  ( )    ∗ (17)

( )   ()    ∗ (18)

()   ()

(19)

b) If the opposite inequality holds, the investor should neither invest in
ESG assets nor acquire information if   ∗, since

( )   ()  ()    ∗ (20)

or if max(∗∗ ∗) = ∗ ∗∗    ∗, since

( )   ()  ()  max(∗∗ ∗) = ∗ ∗∗    ∗

He should invest and get information, if   (∗ ∗∗), since

 ()  ()  ( )    (∗ ∗∗) (21)
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Proof If the inequality sub a) holds, then   . If it is also true that
  ∗ then    and consequently      . If instead it is true
that   ∗ then    and consequently    ,    . This proves
the statement sub a).

If the inequality sub b) holds, then   . If it is also true that   ∗
then    and consequently       . We need to compare  and
 . If ∗  ∗∗ then    if ∗∗    ∗ and    if   ∗∗
If ∗  ∗∗ then     Still under sub b), if it is true that   ∗ then
   and consequently     . This proves the statements sub b).

The main reason for these results is that higher mean reversion implies
lower long-run variance of the factor and enhances the value of information.

Note that, in the special case of no costs ( =0), the investor should
invest in ESG assets and get information, independently of the inequality
that distinguishes the cases a) and b) of the theorem. This happens because
of diversification benefits, and would be even more pronounced if we had
ESG-motivated investors.

At the opposite, if information is very costly or cannot be bought (
→∞), the investor should invest in ESG asset without getting information
in the case sub a), and do not diversify in the ESG risk factor sub b). The
decision would be based on the persistence properties and long-run variance
of returns, given that imperfect information cannot be overcome..

1.3 Fee-threshold for information acquisitio

The previous theorem allow us to spell out under which conditions an in-
vestor participates in the market as informed or uninformed, as a function
of the cost . Among the thresholds in the theorem, we focus on ∗ the
level of indifference fees which matches  () in (12) and ( ) in (14). It
represents the welfare gain from information on the role of the ESG versus
market factor.

Note that ∗ does not depend on  and , which are common knowledge,
but only on the weights 1 2 and the mean reversion parameters 1, 2,
which enter the risk factors 1 2 and their weighted sum  . Both in the
first and second subcase of the previous theorem, if the level of  remains
below the value ∗ it is better to be informed, because

  ∗ ⇒ ( )   ()
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If the level of  is greater than the value ∗ it is better to be uninformed

  ∗ ⇒ ( )   ()

Note that

lim
1→0
2→1

∗ = 2(22
2
2 + 2222)

lim
1→1
2→0

∗ = 1(11
2
1 + 2111)

This means that, when either the ESG represents the overall riskiness of the
asset (2 → 1) or gives no contribution to it (2 → 0), the value of getting
to know it in isolation is positive, since 11  0 22  0.

When 2 → 1 the higher the mean reversion of the ESG factor 2, as
well as the variance of the error in its estimate 22, the higher the value of
the information fee. This is because an higher mean reversion provides more
information and less noise, that allows an investor who has access to all the
information to reap his welfare gain, even though he does not like green-
ness per se. Also an higher volatility of the error from limited information
increases the maximum acceptable fees, as intuition would suggest.

When 2 → 0 instead the limit value of the fee is independent of 2, as
intuition suggests, because only the market factor remains. Considerations
symmetric to the ones for 2 and the variance of the corresponding estimate
now apply to the market factor.

In the second case studied in the theorem, also the comparison with the
level of fees which equates the informed and non-diversified investor, ∗∗,
enters, because, when it is optimal to get information, it may well be case
that the cost of getting it is so high that sticking to the market factor is
better.

2 Twin German bonds

We now provide a calibrated example, which allows us to extract the  ,
but above all  and  parameters from market data, to specify the optimal
asset allocation for the corresponding market, to comment on whether on
that market the market premium for greenness is positive or negative and
to simulate from it.

In the example we study the first issue of the so-called twin German
bonds, which are issued by the German Federation and are a couple of bonds
equal in all features but size of the issue, namely with the same maturity
and coupon. The former (ISIN DE0001102507) is conventional, while the
latter (ISIN DE0001030708) is green, since it is issued with a declaration of
allocation of the resources raised through it to green projects and with an
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evaluation of the potential impact of such an allocation. The general scope
is transition to a low-carbon economy.1 The very first issue of the green
bonds, for a face value of 6.5 billion euros and a duration and maturity of 10
years, took place in September 2020. The data we use are from September 8,
2020, to September 29, 2023 for both the green bond and the same-maturity
conventional bond (source: Bloomberg). Together with them, we consider
as riskless rate the OIS (Euro short-term rate - Volume-weighted trimmed
mean rate (EST, B, EU000A2X2A25,WT), source: Refinitiv). We compute
the daily log returns on both bonds and subtract the daily OIS rate, so as
to enter into the model set up above. Consistently with the model itself, the
part of wealth not invested in the Govies will be invested at the OIS rate.

We report in the table below the statistics of such issues over the obser-
vation period, namely the average yield, as well as its initial (September 8,
2020) and final (September 29, 2023) values, the average realized log return
and its cumulative value, in basis points per day. We accompany them with
the average, initial and final value of the annualized OIS, still in basis points.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

green bond conventional
yield

average 7158 7491
initial −5120 −4960
final 2697 2716

real ized log return
average −0454 −0454

cumulative −0842 −0822

OIS
average 48
initial −554
final 388

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In our terminology, conventional bonds are−type securities, green are
−ones. Note that on average, the green bond yield is smaller than the
conventional one, by 3 bp per day approximately, while both are greater
than the OIS rate.

Let us remind first that the log returns on the conventional bonds are

 log =
¡

− 22− 111()
¢

+ 1

while the true - or informed - ones on green bonds are

 log =
¡

− 22−  (111() + 222())
¢

+ 

Therefore, conventional bond returns have instantaneous drift

− 22− 111()

1The twin bonds have been discussed also in Pastor et al. (2022), For fur-
ther details see also https://www.deutsche-finanzagentur.de/en/federal-securities/types-
of-federal-securities/green-federal-securities/twin-bond-concept
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and variance 2, while returns on the green bond have instantaneous drift

− 22−  [111() + 222()]

and variance 2. The long-run value of the drift is in both cases

− 22

The drift variance is
2(1())

for the conventional bond and

2( ())

for the green, with long-run values

221(21)

for the conventional bond and

2
£

21(21) + 22(22)
¤

for the green.
So, we can take any estimate of the instantaneous variance of log returns

on either conventional or green bonds, including the variance of a time series,
to get  from either the conventional or green bond.

We can compute the drift from different time series of log returns on
either conventional or green bonds and obtain the mean of the estimates.
Because the stationary distribution of 1 and 2 has zero mean. That mean
represents an estimate of the long run-mean of the drift,  − 22. Using
the known value for , we can therefore obtain .2

Once the parameters  and  are fixed, we can use the observations on
the returns on the two bonds to get the observations of  and  since
from the expression of log returns it follows that

1() =
 log − (− 22)


2The previous methodology assumes that the estimates of  and  are not different,

whether one uses the green or non-green bonds. In case they are, a modification of the
previous model with different  and  on the  and  asset must be used. Since in the
data this was the case, we used the drift long-run values  − 2 2  = 1 2, with variance

21
2

1(21)

for the conventional bond and

21
2

1(21) + 21
2

2(22)

for the green. We maintain the simplified version in which the drift and diffusion coefficient
are the same in the text.
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 () =
 log − (− 22)



The usual methods to estimate the mean reversion of an OU process can be
used to get 1 from the observations on 1().

From different time series of log returns on conventional and green bonds
we can obtain different drift estimates, and compute the variance of the
drifts. We do that by simulation, bootstrapping from the original data
smaller time series. If we do that on the conventional and green bonds, we
get respectively

221(21)

and
2

£

21(21) + (1− 1)
2(22)

¤

The former, together with the already fixed values of  and 1 gives an
estimate of 1, while the second gives 2. All the needed parameters have
therefore been obtained.3

For the case at hand, we obtain the following parameter values:4

1 -0.00036184
2 -0.000354343
1 0.003019844
2 0.003018847
1 0.003018847
2 44.77073546
1 0.13220658

which show the daily values of the drift and standard deviation, the
mean reversion of the market and ESG factor and the former’s weight in the
green bond. We have therefore separated the two signals, as an informed

3To sum up, the calibration strategy consists in obtaining the variance of log returns
on  or  , 2, obtain  from the long-run mean of the drift, compute the increments 1
implicit in the log returns on  and the mean reversion of the OU market factor from the
observations on its changes 1, obtain 1 and 2 from the variance of the long-run drift
of  and obtain the mean reversion of the ESG factor from the variance of the long run
drift of  . In particular, after taking the variance of a time series of log returns on either
conventional or green bonds as an estimate of the instantaneous variance, we bootstrap
smaller ones. When we compute a mean of the drift estimates from the sub-series, we
read it as a long-run mean − 22.
Pastor et al. (2021) define an ESG factor, which also in their case is a second factor

in ESG-asset returns, on top of the traditional CAPM one. The factor and its premium
can be separately observed by agents. To build the ESG factor, they suggest running a
cross-sectional regression of market-adjusted excess stock returns on the stocks’ ESG char-
acteristics, with no intercept. The ESG factor is the slope of that regression, a weighted
average of market-adjusted stock returns, in which the weights are the ESG features of
the stock under exam. Pastor et al. also add that, to obtain the time series of the
ESG factor’s actual values, one can run a series of such cross-sectional regressions. The
technique cannot be applied here.

4See footnote 2.
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investor would do. By so doing, we discover that the drift  of both assets
is negative, consistently with the general behavior of bond returns in the
observation period. We also discover that the 1 process, which represents
the market factor, has a higher persistence than the green, with a mean
reversion much smaller than 2 the ESG process. Consequently, its has a
much smaller weight in determining the returns on the green bond, since
22 = 1 − 21 = 9825%. So, the green factor is priced and has a smaller
contribution to the long-run variance.

The mean of the simulated processes 1 2 and  , over a one year hori-
zon, using a daily time step, expressed in basis points, are as represented in
the following picture. The initial value of the process 1 is assumed to be
one, and the effect of the higher mean reversion in 2 and  , together with
the different importance of the ESG versus the market factor in determining
the actual returns on  is clearly visible:

Average simulated values of the processes 1 (dashed), 1 (crosses), 
(dots) over 250 days. Simulations are over a one-year horizon (days on the

abscissae).

The processes for returns on  and  , once simulated over a one year
horizon, using a daily time step, and expressed in basis points, are as rep-
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resented in the following picture, through their mean over the realizations
and standard deviations. In the German market, over the horizon of in-
terest, the changes in the two processes are quite similar, up to the second
moment.

Average of the simulated changes in the conventional (top left) and green
bond (bottom left), together with their standard deviations (top and

bottom right, respectively), over250 days.

Also, the daily risk premium on the conventional  is

() = −000036184− 00030198441()− 000301984422

The daily risk premium on the green bond  , under the informed filtra-
tion, is

() = −0000354343− 1 205 3× 10−61()− 0134 2()

−000301984422− 

while under the uninformed is
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() = −0000354343− 1 205 3× 10−6̂1()− 0134 ̂2()

−000301984422

which evidently depend on the realizations of the noises and the fees. So,
there is no dominated asset, in spite of the difference in yields. However,
given that the drift is negative, and we are working on returns net of the
OIS one, we can expect negative optimal positions in both bonds, with an
implied positive one in the riskless contract.

In order to determine the optimal allocation policies and the corres-
ponding rates of growth of the certainty equivalent, we need to solve for the
stationary variance-covariance matrix of the error estimates, for the case at
hand. By so doing, we obtain

 =

µ

00233 −00180
−00180 00292

¶

It follows that the daily rates of growth of the certainty equivalent by in-
vesting in the bond  , computed according to Theorem 1, is

00080

That is smaller than the rate of growth by investing in the bond , computed
according to Theorem 2, while staying uninformed:

067

The informed one depends on fees:

110043− 

Since subcase a) of Theorem 3 applies, ∗ = 10334, ∗∗ = 10998, and the
optimal policy consists in investing in the ESG asset and getting information
only as long as   10334 basis points per day. Investing in the ESG asset
and getting no information is optimal if fees are above that threshold.

Using theorems 1 and 2, we can make the optimal policies explicit:

∗ = −40− 100631()

∗ = −40− 013301()− 15× + 042()

∗ = −40− 01330̂1()− 15× + 04̂2()

As for the risk premia, we can simulate them, using the same horizon
and step as above, both for the conventional (left) and green bond (right),
as seen by the informed investor. The right plot is gross of fees, and both
are in basis points. Assuming an initial value of 1 for the OU processes and
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100 for the bonds, the risk premium on  is on average negative, while the
one on  goes from negative to positive and is much bigger in magnitude.
So, on the German market exposure to the green factor pays, even if not at
all times.

Average simulated values of the risk premia on the conventional (left) and
green (right) bond, over 250 days.

Last, to give a sense of the asset allocation, let us simulate the weights of the
two assets in the portfolio, for the cases when the optimal allocation consists
in remaining invested in the riskless asset and the market one (information
fees greater than 10, top), and for the case in which the optimal policy
consists in investing in the ESG asset and getting information (information
fees smaller than 10, bottom). The figure below represents the positions in
the risky assets, obtained by simulation, using the same horizon and step as
above. We compute the average and standard deviations of the positions -
the weights  and  in the portfolio - over simulations. The bottom plots are
as seen by the informed investor, gross of fees, and both are in basis points.
If, as we assumed, the riskless alternative is the OIS, the optimal policies
on  goes short the risky asset, while the one on  is sometimes positive,
sometimes negative. The standard deviations of the optimal policies are
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very different, with the green bond much more erratic.

Average of the simulated portfolio weights on the conventional (top left)
and green bond (bottom left), over a one-year horizon. Standard deviation
of the weights on the right, respectvely top for the conventional, bottom

for the green bond.

3 Summary and Conclusions

In this paper we investigate diversification benefits versus information cost
effects in ESG assets, and the optimal behavior of a rational green-neutral
investor facing them and choosing at the same time how much information
to acquire and how to invest. When information is imperfect the investor
adopts optimal filtering to process it. To get perfect information the investor
has to pay a fee. Two cases are relevant: the first occurs when the shocks
on the ESG factor are relatively less persistent than the market ones, the
second otherwise. In the first case it is optimal to invest in the ESG assets.
The investor acquires information when fees are low and remains uninformed
when fees are too high. In the second case the investor remains invested only
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in the market factor, and therefore does not acquire information, if fees are
high, or diversifies in the ESG one acquiring information on it, if fees are
low. The barriers with respect to which fees are high or low are different in
the two cases. The reason for this behavior is that persistency contributes
to extra returns, but also to their long-term variance.

Once applied to the German bond market, taking as an alternative the
OIS, the model indicates that the risk premium on green German bonds
changes sign, that the optimal policy consists in taking a position in them -
which depends on the current, actual realizations of the shocks - and getting
informed about their returns if fees are low, while continuing to invest, in
a different proportion, that depends on the current estimates of the shocks,
otherwise. We quantify the welfare effect of such policies. The certainty
equivalent of wealth invested like that grows at the rate 11.0043, gross of
information fees, while it grows at 0.67 without information. It would grow
only at .008 with no diversification.

Inserting explicit ESG preferences, as in most of the reference literature,
would increase the optimal exposure to ESG assets, as if we increased di-
versification benefits. The same is expected to happen with a greater risk
aversion.

All in all, the model and its application show that the possibility to split
the effect of the ESG factor versus the market one on asset returns is import-
ant: investors should abstain from entering the ESG market based not only
on returns’ properties, but also on their costs. Lowering information costs
is certainly beneficial, and consistent with the current regulatory approach,
which aims at increasing portfolio allocation in green assets and lowering
the cost of capital of their issuers.

Acknowledgment
We thank seminar participants at the Catholic University of Milano,

2024, as well as Workshop Participants at the Politechnical School of Mil-
ano, Quantitative Methods for Green Finance, 2024, for helpful comments
and suggestions on a previous version of this paper. The comments of the
discussant, Andrea Tarelli, are particularly appreciated.

CRediT Author Statement
Elisa Luciano: Conceptualization; Data curation; Formal analysis;

Funding acquisition; Investigation; Methodology; Project administration;
Resources; Software; Supervision; Validation; Visualization; Writing — ori-
ginal draft; Writing — review & editing.

Antonella Tolomeo: Methodology.

4 References

Avramov, D., Cheng, S., Lioui, A., and A. Tarelli (2021). Sustainable in-
vesting with ESG rating uncertainty. Journal of Financial Economics. 142

20



(2): 572-597
Edmans, A. (2011). Does the stock market fully value intangibles? Em-

ployee satisfaction and equity prices. Journal of Financial Economics 101
(3): 621—640

Giglio, S., Maggiori, M., Rao, K. Stroebel, J., and A. Weber (2021).
Climate Change and Long-Run Discount Rates: Evidence from Real Estate,
The Review of Financial Studies, 34 (8): 3527—3571

Gompers, P., Ishii, J., Metrick, A. (2003). Corporate governance and
equity prices. Quarterly Journal of Economics 118 (1): 107-156.

Guasoni, P., Tolomeo, A. and H. Wang (2019). Should commodity in-
vestors follow commodity prices? SIAM Journal on Financial Mathematics,
10 (2): 466-490.

Hong, H., Kacperczyk M. (2009). The price of sin: the effects of social
norms on markets. Journal of Financial Economics 93 (1): 15-36

Pastor, L., Stambaugh, R.F., and L.A. Taylor (2021). Sustainable In-
vesting in Equilibrium, Journal of Financial Economics, 142 (2): 550-571

Pastor, L., Stambaugh, R. F., and L.A. Taylor (2022). Dissecting green
returns, Journal of Financial Economics, 146 (2): 403-424

Pedersen, L. H., S. Fitzgibbons, and L. Pomorski (2021). Responsible
investing: The ESG-efficient frontier, Journal of Financial Economics 142
(29): 572-597

21



22


