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Dimension-free mixing times of Gibbs samplers for Bayesian

hierarchical models

Filippo Ascolani* and Giacomo Zanella�

Abstract

Gibbs samplers are popular algorithms to approximate posterior distributions arising
from Bayesian hierarchical models. Despite their popularity and good empirical perfor-
mances, however, there are still relatively few quantitative results on their convergence
properties, e.g. much less than for gradient-based sampling methods. In this work we anal-
yse the behaviour of total variation mixing times of Gibbs samplers targeting hierarchical
models using tools from Bayesian asymptotics. We obtain dimension-free convergence
results under random data-generating assumptions, for a broad class of two-level models
with generic likelihood function. Specific examples with Gaussian, binomial and categorical
likelihoods are discussed.

1 Introduction

Gibbs samplers [12] are a family of Markov Chain Monte Carlo (MCMC) algorithms [10]
commonly used in various scientific fields. In the context of Bayesian Statistics, they are
routinely employed to draw samples from posterior distributions of unknown parameters
conditional to the observed data [28, 37]. Like most MCMC methods, they are guaranteed
to converge to the correct posterior distribution as the number of iterations tends to in-
finity under mild assumptions [54]. However, understanding how quickly this convergence
occurs, for example by quantifying the so-called mixing time of the Markov chain gener-
ated by the algorithm, is in general a hard task. In this paper we address this question for
Gibbs samplers targeting certain classes of high-dimensional Bayesian hierarchical models.
Analysing convergence properties, such as mixing times, is the key technical step needed
to rigorously quantify the computational cost of MCMC algorithms.

1.1 Hierarchical models

Our motivating example is given by classical Bayesian hierarchical models of the form

Yj | θj ∼ f(· | θj) j = 1, . . . , J,

θj | ψ
iid∼ p(· | ψ) j = 1, . . . , J,

ψ ∼ p0(·) .
(1)

Here the observed dataset Y1:J = (Yj)j=1,...,J is divided into J groups, with data for each
group typically containing multiple observations, e.g. Yj = (Yj1, . . . , Yjm). Each group
features some local (i.e. group-specific) parameters θj ∈ Rℓ, while ψ ∈ RD are global
(hyper)-parameters. Above f(· | θ), p(· | ψ) and p0(·) denote some likelihood function, local
prior and global prior, respectively. See Section 4 for the assumptions we require on each
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Figure 1: Integrated autocorrelation times (on log-scale) of Gibbs samplers targeting the posterior
distribution of model (1) with specification (2). Quantiles refer to repetitions over datasets randomly
generated according to the model with true parameters µ∗ = τ∗ = 1. Left: m = 3. Right: m = 5. See
Section 5.2 for more details.

of those. Given model (1), posterior inferences are based on the conditional distribution
of ψ and θ = (θ1, . . . , θJ) given Y1:J , which we denote as L(dθ,dψ|Y1:J). Hierarchical
models such as (1) are the workhorse of Bayesian Statistics and are commonly employed
in many applied contexts (see e.g. [25, 24] and references therein). In this paper, we are
mostly interested in the high-dimensional regime where J → ∞, so that both the number
of datapoints and parameters, i.e. n = Jm and p = Jℓ+D respectively, diverge.

One iteration of a Gibbs sampler targeting L(dθ,dψ|Y1:J) sequentially samples each pa-
rameter from its full-conditional distribution, i.e. it performs the updates θj ∼ L(dθj |Y1:J , ψ)
for j = 1, . . . , J and ψ ∼ L(dψ|Y1:J ,θ). Algorithms based on conditional updates are
well-suited to model (1), since they naturally exploit the underlying sparse dependence
structure. In particular, the conditional independence of θ1, . . . , θJ given Y1:J and ψ im-
plies that the sequence of updates from the low-dimensional distributions L(dθj |Y1:J , ψ) for
j = 1, . . . , J is equivalent to an exact joint update from the high-dimensional distribution
L(dθ|Y1:J , ψ). Also, since local parameters interact only with local data conditional on
ψ, i.e. L(dθj |Y1:J , ψ) = L(dθj |Yj , ψ), one iteration of the Gibbs sampler can typically be
implemented with a computational cost that scales linearly with J . For the sake of com-
parisons, a similar cost is required by a single likelihood evaluation or a single posterior
gradient evaluation for model (1). See also Remark 4.2 in Section 4.2 for related discussion.

The key question to properly assess the effectiveness of Gibbs samplers targeting model
(1) is how fast the resulting Markov chain converges to its stationary distribution L(dθ,dψ|Y1:J).
Interestingly, such chain often enjoys dimension-free convergence speed, meaning that the
number of iterations required to converge does not grow (or grows only logarithmically)
with J . Figure 1 illustrates numerically this behaviour on a hierarchical logistic model,
where the likelihood and prior in (1) are specified as

f(y | θ) =
(
m

y

)
eyθ

(1 + eθ)m
, p(θ | ψ) = N(θ | µ, τ−1), ψ = (µ, τ), (2)

with y ∈ {0, . . . ,m} and m being a positive integer. The prior for ψ = (µ, τ) is set to µ |
τ ∼ N

(
0, 103/τ

)
and τ ∼ Gamma(0.1, 0.1). Full details on the simulation set-up of Figure

1 are described in Section 5.2. The results suggest that the number of iterations required by
the Gibbs sampler to draw each sample from L(dθ,dψ|Y1:J) remains bounded as J grows
and asymptotes to a finite value as J → ∞. Combined with cost per iteration, this implies a
computational complexity that grows linearly with J . Note that this complexity is smaller
than the one of popular gradient-based MCMC methods when applied to these models
(see Section 1.2 for more details), supporting the idea that Gibbs samplers can achieve
state-of-the-art performances for hierarchical models with sparse dependence structures.
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In Section 4 we provide rigorous support to the above empirical evidences. In particular,
we study the asymptotic behavior of mixing times of Gibbs samplers targeting model (1).
There we prove that mixing times remain bounded as J → ∞ under mild assumptions on
the likelihood f and the global prior p0. We instead require stronger assumptions on the
local priors p(· | ψ), which we assume to be in the exponential family. Our results (see
e.g. Theorem 4.2) are average-case ones and hold with high probability with respect to
the law of the data-generating process. To do so we assume the observed data Y1:J to be
randomly generated. This allows to use tools of Bayesian asymptotics, such as Bernstein-
von Mises type statements (see e.g. Chapter 10 of [64]), to characterize the asymptotic
posterior behaviour as J → ∞ and then extract information about the limiting behaviour
of the associated sequence of MCMC algorithms.

1.2 Related literature

The literature on performances of MCMC methods is very broad. The most well-studied
classes of algorithm are probably gradient-based ones, such as Langevin [57] and Hamilto-
nian [38] Monte Carlo, see e.g. [14, 18, 19] and related literature. Available results suggest
that the number of iterations (or target gradient evaluations) required by those algorithm
to converge to stationarity increases with dimensionality, e.g. growing as O(Jα) with the di-
mensionality J , for some α > 0 that depends on the setup and type of algorithm [51, 7, 66].
In the context of hierarchical models, given that each target gradient evaluation has a lin-
ear cost in J , this leads to a computational cost to sample from L(dθ,dψ|Y1:J) that scales
super-linearly with J , e.g. as O(J1+α) with α > 0. Comparing these results to the one
we develop here for Gibbs samplers suggests that, while being state-of-the-art black-box
schemes to sample from generic high-dimensional distributions with appropriate regularity
conditions (e.g. log-concavity), default gradient-based MCMC schemes can be suboptimal
for high-dimensional hierarchical models. See also [46] for related numerical evidences.

Compared to gradient-based MCMC, results for Gibbs-type schemes are less abundant
and more model-dependent. Notable recent examples include [67, 30, 49], which provide
convergence bounds for hierarchical models, similar to (1), with Gaussian and Poisson like-
lihoods. Another recent result is given by [48], which provides dimension-free convergence
bounds for Gibbs samplers for high-dimensional probit regression models under appropri-
ate regimes. Providing sharp non-asymptotic analyses like the ones above requires proof
techniques, such as drift-and-minorization techniques [58] and random mappings [48], that
are usually likelihood-specific and potentially hard to construct. For example, they may re-
quire to devise and study a suitable Lyapunov function that depends on the specific choices
of both likelihood and priors in (1) (see e.g. formulae (6) and (33) in [30] and [67], respec-
tively). On the other hand, these approaches provide non-asymptotic bounds that apply
to fixed sample size and dimensionality, thus being complimentary to the high-dimensional
asymptotic analysis we develop here.

Interestingly, there are relatively few papers combining the tools of Bayesian asymp-
totics and MCMC theory in rigorous ways. The work in [6] uses Bernstein-von Mises Theo-
rem to provide polynomial bounds on the convergence of random walk Metropolis-Hastings
schemes. After that, very recent papers use similar techniques to provide complexity anal-
ysis of MCMC schemes, see e.g. [41, 39, 62] dealing with gradient-based methods, the first
in the context of inverse problems. A brief discussion about the use of asymptotic posterior
characterisations to study the convergence properties of Gibbs samplers is given in [56].
A more in-depth use of Bayesian asymptotics to study data augmentation procedures is
given in [32], which also considers hierarchical models. See Remark 4.2 in Section 4 for
more details on the results in [32]. Finally, an interesting exception is given by Bayesian
variable selection models, where multiple works have exploited the asymptotic behaviour
of the posterior distribution to characterize the computational performances of Bayesian
methods [68, 3, 69].
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1.3 Sketch of the main arguments and structure of the paper

The argument we employ to study Gibbs samplers targeting L(dθ,dψ | Y1:J) can be de-
composed in three main parts. First, if p(· | ψ) belongs to the exponential family, there
exists a set of sufficient statistics T = T (θ), whose dimensionality does not depend on J ,
such that L (dψ | θ, Y1:J) = L (dψ | T (θ), Y1:J). Lemma 4.1 in Section 4.1 shows that, as
a result, the Gibbs sampler on L (dθ,dψ | Y1:J) has the same mixing times as the one on
L (dT ,dψ | Y1:J). This allows to focus on the latter distribution which, unlike the former, is
intractable but fixed dimensional. Note that this dimensionality reduction does not require
the likelihood f to admit sufficient statistics (see Remark 4.1) and is a peculiar property of
Gibbs samplers, since it exploits the presence of exact updates. The second step consists in
studying the asymptotic behaviour of L (dT ,dψ | Y1:J) as J increases. In particular, Propo-
sition 4.5 shows that a suitable rescaling of (T , ψ) converges to a multivariate Gaussian
distribution in total variation distance. The proof combines a classical Bernstein-von Mises
Theorem for ψ (Lemma 4.3) with a less standard Central Limit Theorem for T conditional
on ψ (Lemma 4.4). More details can be found in Section 4.3. The final and key point is then
to connect the convergence of the target distributions, in this case {L (dT ,dψ | Y1:J)}J≥1,
to the convergence of the associated Gibbs sampler operators. Theorem 2.4 proves that the
limiting behaviour of a sequence of Gibbs samplers is equivalent to the behaviour of the
Gibbs sampler on the limiting distribution: this is shown in total variation distance and
under warm start assumption. The fundamental link is given by Proposition 2.2, which
provides an upper bound on the distance between Gibbs sampler operators in terms of the
one between the target distributions. Since those results are of independent interest and
are not specific to hierarchical models, we start by developing those in a general setup in
Section 2. Then, Section 3 recalls the Bernstein-von Mises Theorem and illustrates the
results of Section 2 to the fixed-dimensional setting. Section 4 develops the main results
of the paper dealing with general hierarchical models (see e.g. Theorem 4.2) and Section 5
verifies the general conditions for some specific likelihood families, e.g. Gaussian, binomial
and categorical, together with providing numerical simulations and extension to different
graphical model structures. Since a warm start initialization for the sampler is assumed
throughout, the availability of feasible starts is discussed in Section 6. Finally, Section 7
discusses extensions and future work.

2 Gibbs sampler and asymptotics

In this section, after recalling basic definitions about Gibbs kernels and mixing times, we
connect the convergence of a sequence of target distributions to the convergence of the asso-
ciated Gibbs kernels. This leads to Theorem 2.4, which characterizes the limiting behaviour
of the Gibbs samplers mixing times. Throughout this section, the target distributions are
assumed to have fixed dimensionality.

2.1 Setup and notation

Let (πn)n≥1 =
(
πn(· | Y (n))

)
n≥1

be a sequence of probability distributions on a common

product space X = X1 × · · · × XK , where each πn is allowed to depend on some observed
data Y (n) ∈ Y(n). In our applications, πn(· | Y (n)) represents the posterior distribution of
some unknown parameter x ∈ X conditioned on the data Y (n). For the sake of brevity, we
will often omit the explicit dependence on Y (n).

Let Pn be the Markov transition kernel of the deterministic-scan Gibbs sampler target-
ing πn, defined as the product of K kernels

Pn = Pn,1 · · · Pn,K . (3)

For each i ∈ {1, . . . ,K}, Pn,i is the transition kernel on X that updates the i-th coordinate
drawing it from its conditional distribution πn(dxi|x(−i)), where x(−i) = (xj)j ̸=i, while
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leaving the other components unchanged. Equivalently

Pn,i (x, Sx,i,A) =

∫
A

πn

(
dyi | x(−i)

)
, A ⊂ Xi, i = 1, . . . , n,

with Sx,i,A = {y ∈ X : yj = xj ∀ j ̸= i and yi ∈ A}. It is easy to show that Pn,i is reversible
with respect to πn for every i, so that πn is the invariant distribution of Pn [53, 29, 13].

Given ϵ ∈ (0, 1), define the ϵ-total variation mixing time of Pn with starting distribution
µn ∈ P(X ), where P(X ) denotes the set of probability distribution on X , as

t
(n)
mix(ϵ, µn) = inf

{
t ≥ 0 :

∥∥µnP tn − πn
∥∥
TV

< ϵ
}
, (4)

where P t denotes the t-th power of P , µnP
t
n(A) =

∫
X P

t
n(x, A)µn(dx) for any A ⊆ X and

∥ · ∥TV denotes the total variation norm. By definition, mixing times quantify the number
of Markov chain’s iterations required to obtain a sample from the target distribution πn
up to error ϵ. We will focus on worst-case mixing times with respect to M -warm starts.
The set of M -warm starts relative to a distribution π is defined as

N (π,M) = {µ ∈ P(X ) : µ(A) ≤Mπ(A) for all A ⊆ X} , M ≥ 1, π ∈ P(X ) , (5)

and the associated worst-case mixing times for Pn targeting πn are

t
(n)
mix(ϵ,M) = sup

µn∈N (πn,M)

t
(n)
mix(ϵ, µn) . (6)

Remark. While being common in the literature, see e.g. [14, 19, 62] for gradient-based
methods, the warm start assumption can be quite stringent and potentially unrealistic.
In particular, assuming that the algorithm can be initialised by sampling the starting
configuration from a warm start with relatively small M (e.g. one that does not grow
exponentially fast with dimensionality) may be unrealistic. In Section 6 we show that in
the specific case of hierarchical models as in (1) a feasible start, i.e. a starting distribution
which can be implemented in practice and allows to control the value of M , is available
under some assumptions.

2.2 Assumptions on the sequence of target distributions

We consider settings where a rescaled version of the sequence (πn)n≥1 converges to a well
defined limiting distribution as n→ ∞. This is often the case in a Bayesian context where
some version of the Bernstein von-Mises theorem holds (see e.g. Theorem 3.1 below). The
convergence of (πn)n≥1 occurs with high probability assuming the data Y (n) is randomly
generated from some distribution. In particular, we assume for the rest of this section that
Y (n) is random with distribution Q(n) ∈ P

(
Y(n)

)
. The following assumption specifies the

convergence we require for (πn)n≥1:

(A1) There exists π̃ ∈ P(X ) and a sequence of transformations ϕn : X → X that act
coordinate-wise, i.e. where

ϕn(x) = (ϕn,1(x1), . . . , ϕn,K(xK)) , x ∈ X (7)

with ϕn,j : Xj → Xj injective and measurable, such that

∥π̃n − π̃∥TV → 0 as n→ ∞ , (8)

in Q(n)-probability, i.e. such that limn→∞Q(n)(∥π̃n − π̃∥TV > ϵ) = 0 for every
ϵ ∈ (0, 1), where π̃n = πn ◦ ϕ−1

n is the law of x̃ = ϕn(x) under x ∼ πn.
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Remark. The necessity of rescaling x by some transformation ϕn in (7) comes from the
typical behaviour of posterior distributions in Bayesian models. Indeed, without rescaling,
πn often converges to a random variable which is degenerate to a Dirac delta at a fixed
value (e.g. the underlying data-generating parameter). Thus, in order to have a non-
trivial limit and total variation convergence, which is essential for our purposes, a suitable
rescaling is needed. In our context the specific form of this transformation is dictated by
the theory of Bayesian asymptotics, see e.g. Theorem 3.1 below. Moreover, we assume ϕn
to act coordinate-wise because this class of transformations leaves Gibbs samplers invariant
(see e.g. Lemma 2.1 below), while general one-to-one transformations can alter the Gibbs
sampler dynamics and change its convergence speed [45].

Remark. The results we develop below could be extended to more general versions of
assumption (A1), including ones where the co-domain of ϕn is not equal to the domain,
i.e. ϕn : X → Z for some Z, and where the limiting distribution π̃ is random, i.e. allowed
to depend on the sequence (Y (n))n. Since (A1) is enough for our purposes and motivating
applications, we do not consider such extensions here to keep notation simple.

Let P̃ and P̃n be the kernels of the Gibbs samplers targeting π̃ and π̃n, respectively.
The following lemma shows that studying total variation convergence from M -warm starts
for the sequence of kernels (Pn)n≥1 is equivalent to doing it for the sequence (P̃n)n≥1 .
The proof, which can be found in Appendix C, relies on the coordinate-wise and bijective
requirements of (A1).

Lemma 2.1. Under Assumption (A1) we have

sup
µn∈N (πn,M)

∥∥µnP tn − πn
∥∥
TV

= sup
µ̃n∈N (π̃n,M)

∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

.

2.3 Convergence of Gibbs samplers operators

Since by (A1) the stationary distribution of P̃n, the Gibbs samplers targeting π̃n, converges
to the one of P̃ , one may be tempted to translate such convergence at the level of the kernels,
e.g. ∥P̃n(x, ·)− P̃ (x, ·)∥TV → 0 for (π̃-almost) every x ∈ X . However this is not only false
for generic Markov operators, but even in the special class of Gibbs sampler operators: one
can have ∥π̃n − π̃∥TV → 0 as n→ ∞, while ∥P̃n(x, ·)− P̃ (x, ·)∥TV ↛ 0 for any x ∈ X , see
e.g. Example A.1 in Appendix A. The reason is that convergence of the joint distribution
π̃n in total variation distance does not imply convergence of the associated conditional
distributions, that are the building blocks of the Gibbs sampler operator. However, it
turns out that a control on the total variation distance between two target distributions
is in general sufficient to control the distance between the corresponding Gibbs sampler
operators applied to warm starts. The following Proposition makes the connection precise.
Interestingly, no assumptions on the target distribution and Gibbs samplers are required.

Proposition 2.2. Let P1 and P2 be the transition kernels of Gibbs samplers targeting
π1 ∈ P(X ) and π2 ∈ P(X ), respectively. Then we have

∥µP1 − µP2∥TV ≤ 2MK ∥π1 − π2∥TV , (9)

for every µ ∈ N (π1,M) ∪N (π2,M) and M ≥ 1.

Proposition 2.2 translates convergence of the stationary distributions, given by (A1),
into convergence of the Gibbs samplers operators when a warm start is considered. It is
worth noting that a bound of this form cannot hold for generic Markov transition kernels.
Indeed, consider transition kernels P1 and P2 with the same stationary distribution π: by
basic properties of the total variation distance it holds ∥µP1 − µP2∥TV ≤ 2 ∥µ− π∥TV .
The latter bound cannot be improved in general, meaning that it is possible to find ergodic
kernels P1 and P2 that get arbitrarily close to the above upper bound, see Example A.2 in
Appendix A.
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Proposition 2.2 is used in the proof of Theorem 2.4, which shows that the limiting
behaviour of Pn, in terms of distance to stationarity from M -warm starts, is completely
characterized by the behaviour of the limiting operator P̃ . The proof of Theorem 2.4 also
relies on the fact that the total variation distance between π1 and π2 provides a control
on the distance between the two sets N (π1,M) and N (π2,M), as shown in the following
Lemma.

Lemma 2.3. Let π1, π2 ∈ P(X ). Then, for every µ1 ∈ N (π1,M), there exists µ2 ∈
N (π2,M) such that ∥µ1 − µ2∥TV ≤M ∥π1 − π2∥TV .

Lemma 2.3 implies that, under assumption (A1), for every µ̃ ∈ N (π̃,M) there exists
a sequence {µ̃n}n such that µ̃n ∈ N (π̃n,M) and ∥µ̃n − µ̃∥TV → 0 as n → ∞ in Q(n)-
probability. We can now state Theorem 2.4.

Theorem 2.4. Let assumption (A1) holds. Then for every t ∈ N and M ≥ 1 it holds

lim
n→∞

sup
µn∈N (πn,M)

∥∥µnP tn − πn
∥∥
TV

= sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

,

in Q(n)-probability.

Remark. An alternative approach to derive convergence statements on the sequence of
Gibbs kernels would be to consider stronger forms of convergence for the sequence (π̃n)n≥1

than the one in total variation distance in (8). However, we prefer to derive results under
weaker convergence requirements for (π̃n)n≥1 to allow for a more direct use of standard
asymptotic results in the Bayesian literature (e.g. common formulations of the Bernstein-
von Mises theorem), which are usually derived in terms of weaker metrics such as total
variation one.

2.4 Implications for mixing times

Denote the mixing times of P̃ as

t̃mix(ϵ,M) = sup
µ̃∈N (π̃,M)

inf
{
t ≥ 1 :

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

< ϵ
}
.

The following corollary of Theorem 2.4 shows how to use t̃mix(ϵ,M) to deduce statements

on the behaviour of the sequence of mixing times of interest, (t
(n)
mix(ϵ,M))n≥1.

Corollary 2.5. Let assumption (A1) holds. If (M, ϵ) ∈ [1,∞) × (0, 1) is such that
t̃mix(ϵ,M) <∞, then

Q(n)
(
t
(n)
mix(ϵ,M) ≤ t̃mix(ϵ,M)

)
→ 1 (10)

as n→ ∞. Otherwise, if (M, ϵ) ∈ [1,∞)× (0, 1) is such that t̃mix(ϵ,M) = ∞, then it holds

Q(n)
(
t
(n)
mix(ϵ,M) < T

)
→ 0

as n→ ∞, for every ϵ < ϵ and T > 0.

Remark (Mixing times bounded in probability). When t̃mix(ϵ,M) < ∞, the statement in

(10) implies that t
(n)
mix(ϵ,M) = OP (1) as n→ ∞, i.e. that the sequence of random variables

(t
(n)
mix(ϵ,M))n≥1 is bounded in probability. The latter means that for every δ > 0 there

exist an integer Nδ and a real constant Bδ < ∞ such that Q(n)(t
(n)
mix(ϵ,M) ≤ Bδ) ≥ 1− δ

for every n ≥ Nδ, which holds by (10) taking Bδ = t̃mix(ϵ,M).
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By Corollary 2.5, establishing whether P̃ is ergodic (in the sense of yielding finite mixing
times) or not is enough to discriminate between sequences of kernels (Pn)n≥1 whose mixing
times diverge as n → ∞ as opposed to ones that do not (see e.g. Figure 4 in Section 5
for an illustration). Since ergodicity of Gibbs samplers can be established under very mild

assumptions [54], in practice one can expect P̃ to be ergodic and thus (t
(n)
mix(ϵ,M))n≥1 to

be bounded in probability whenever (A1) holds for a well-behaved, non-singular limiting
distribution π̃. Sections 4 and 5 combine Corollary 2.5 with dimensionality reduction
techniques to provide results on Gibbs samplers targeting high-dimensional hierarchical
models.

Remark (Alternative metrics). It is natural to wonder whether the result of Corollary 2.5
may hold for weaker metrics, like the one induced by the Wasserstein distance. However,
it is possible to find examples where the convergence of the stationary distributions (in
Wasserstein distance) does not imply convergence of the associated mixing times (neither
the ones defined based on the TV distance nor the ones defined based on the Wasserstein
one). The intuition is that the limiting distribution in weaker metrics (e.g. Wasserstein,
weak convergence, etc) may ignore features of the joint distribution, such as full conditionals
behaviours, that have a relevant impact on Gibbs sampler dynamics. For example, a
sequence of increasingly correlated random variables (whose Gibbs samplers converge slower
and slower) may converge to a single point mass, for which independence and immediate
convergence automatically holds. See Example A.3 in Appendix A.

2.5 Explicit limiting bounds

Corollary 2.5 can also be used to derive quantitative bounds on the limiting behaviour of

the mixing times (t
(n)
mix(ϵ,M))n≥1. In particular, if one is able to establish explicit bounds

on t̃mix(ϵ,M), then (10) implies a corresponding bound in high probability on t
(n)
mix(ϵ,M)

for large n. While deriving quantitative bounds on Gibbs samplers mixing times is in
general hard, the limiting distribution π̃ is often more tractable than the original sequence
(πn)n≥1, a common case being the one where π̃ is multivariate Gaussian while (πn)n≥1

is not. In those scenarios explicit bounds on t̃mix(ϵ,M) can be derived using available
results on the convergence properties of Gibbs samplers targeting multivariate Gaussian
distributions, see e.g. [1, 33, 55]. For example, Theorem 2 in [1] provides an explicit bound
for deterministic scan Gibbs samplers on Gaussian targets in L2-distance (and therefore
total variation [2]).

In Sections 4 and 5 we will apply this strategy mostly to cases where K = 2, meaning
that P̃ is a two-block Gibbs sampler. In this situation, one can use spectral gaps to bound
Gibbs samplers mixing times, as shown in the Corollary 2.6. Given a π-invariant kernel P
with π ∈ P(X ) we define its spectral gap as

Gap(P ) = inf
f :π(f2)<∞,Varπ(f)>0

{∫
X 2 [f(y)− f(x)]

2
π(dx)P (x,dy)

2Varπ(f)

}
,

where f : X → R are measurable functions, π(f) =
∫
X f(x)π(dx) and Varπ(f) =∫

X [f(x)− π(f)]
2
π(dx). We refer to [59] and the proof of Corollary 2.6 for discussion

on why spectral gaps, which are commonly used for π-reversible chains, can be used to
analyse two-block Gibbs samplers, which are technically not reversible. We also note that
Corollary 2.6 is only one possible approach to bound t̃mix(ϵ,M) and that any quantitative
bound on the latter can be combined with Corollary 2.5 to deduce limiting statements on

(t
(n)
mix(ϵ,M))n≥1.

Corollary 2.6. Let K = 2, assumption (A1) be satisfied and Gap(P̃ ) > 0. Then, for every
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(M, ϵ) ∈ [1,∞)× (0, 1) it holds

Q(n)

(
t
(n)
mix(ϵ,M) ≤ 1 +

log(M/2)− log(ϵ)

− log(1−Gap(P̃ ))

)
→ 1 as n→ ∞ .

Given the result of Corollary 2.6, it is natural to ask whether the convergence proved
in Theorem 2.4 could be rephrased in terms of spectral gaps, i.e. Gap(Pn) → Gap(P̃ ).
However, once again, convergence in total variation is too weak for this purpose: indeed it
is not difficult to find examples where (A1) holds and the associated Gibbs sampler spectral
gaps do not converge, even under the stronger condition requiring ∥P̃n(x, ·)− P̃ (x, ·)∥TV →
0 for any x ∈ X , see Example A.4 in Appendix A. Controlling directly the spectral
gaps would require extremely stringent conditions on the convergence of π̃n to π̃ that are
rarely satisfied (e.g. uniform convergence of the associated densities on the log-scale, i.e.
supx∈X | log π̃n(x) − log π̃(x)| → 0). An alternative approach to the direct warm-start
mixing time analysis that we perform here, would be to consider asymptotic behaviours of
approximate spectral measures, such as approximate spectral gaps, see e.g. [3, 62].

3 Illustrative example: fixed-dimensional parametric
models

We first consider the fixed-dimensional case. While this is not our main interest or moti-
vating application, it allows to show the type of results we will derive and also introduce
notation about classical Bayesian asymptotic results that we will use. In this setting
πn(dψ) = p(dψ | Y (n)) is the posterior distribution of the Bayesian model defined as

Yi | ψ
iid∼ f(Y | ψ), ψ ∼ p0(ψ), (11)

where ψ = (ψ1, . . . , ψK), with X ∈ RK , and Y (n) = (Y1, . . . , Yn), with Yi ∈ Y, i = 1, . . . , n,

so that Y(n) = Yn. Moreover, if Yi
iid∼ Q for some Q ∈ P(Y), we denote with Q(n) and

Q(∞) the associated product measures. We study the mixing times of the Gibbs sampler
that updates one coordinate of ψ at the time as n grows. In order to apply the results
of Theorem 2.4 we need a suitable transformation of ψ, that is given by the celebrated
Bernstein-von Mises Theorem, which we now recall. The version we provide here, which
makes stronger than needed assumptions, can be obtained combining Theorem 10.1 in [64],
with other remarks in Chapter 10 therein, incuding Lemmas 10.4 and 10.6.

Theorem 3.1 (Bernstein-von Mises). Consider model (11) and let the map ψ → f(· | ψ) be
one-to-one. Let the map ψ →

√
f(y | ψ) be continously differentiable for every y ∈ Y, with

non-singular and continuous Fisher Information I(ψ). Let the prior measure be absolutely
continuous in a neighborhood of ψ∗ ∈ X with a continuous positive density at ψ∗. Finally,
let Ψ be a compact neighborhood of ψ∗ for which there exists a sequence of tests un such
that ∫

Y(n)

un(y1, . . . , yn)

n∏
i=1

f(dyi | ψ∗) → 0,

sup
ψ ̸∈Ψ

∫
Y(n)

[1− un(y1, . . . , yn)]

n∏
i=1

f(dyi | ψ) → 0, as n→ ∞ .

(12)

Then, if Yi
iid∼ Qψ∗ for i = 1, 2, . . . with Qψ∗ admitting density f(y | ψ∗), it holds∥∥∥L(dψ̃ | Y (n)

)
−N

(
I−1(ψ∗)∆n,ψ∗ , I−1(ψ∗)

)∥∥∥
TV

→ 0, as n→ ∞

in Q
(∞)
ψ∗ -probability, where ψ̃ =

√
n(ψ − ψ∗) and ∆n,ψ∗ = 1√

n

∑n
i=1 ∇ log f(Yi | ψ)

∣∣
ψ=ψ∗ .

9



Remark. Differentiability of
√
f(y | ψ) and continuity of I(ψ) imply that the model is

differentiable in quadratic mean, which allows to prove local asymptotic normality of the
log-likelihood function. See Theorem 7.2 and Lemma 7.6 in [64].

Remark. A test is a measurable function u : Y(n) → [0, 1]. The integrals in (12) represent
probabilities of errors of first and second kind, respectively, when the null hypothesis H0 :
ψ = ψ∗ is rejected with probability u(y1, . . . , yn).

Loosely speaking, Theorem 3.1 implies that, if the model is well-specified and ψ is
suitably rescaled, the posterior distribution converges to a multivariate normal. The result
holds under some identifiability requirements: first of all, the true parameter ψ∗ must
belong to the support of the prior; moreover, we must be able to separate ψ∗ from the
complements of its neighborhood, given infinitely many data. Such assumption is mild in
most interesting cases and it is implied by the existence of uniformly consistent estimators
for ψ (that is guaranteed if the support of p0 is compact). See Chapter 10 in [64] for more
details. Finally, the Fisher Information matrix must be non singular.

Remark. Notice that Theorem 3.1 requires the model to be (perfectly) well-specified, which
rarely happens in practice. However there exist extended versions for the case of misspec-
ified likelihoods [34], where the limiting distribution is still Gaussian with a different co-
variance matrix. Indeed, we expect the results of this and the following sections to hold in
a similar way under misspecification: of course the different limiting distribution will have
an impact on the final result, especially in the application of Corollary 2.6.

We can now use Theorem 2.4 and Corollary 2.5 to bound the mixing times of the Gibbs
sampler associated to model (11) as n diverges.

Proposition 3.2. Let model (11) satisfy the hypotheses of Theorem 3.1 and let Pn be
the Gibbs sampler kernel targeting πn(dψ) = p(dψ | Y (n)) by updating one coordinate
of ψ = (ψ1, . . . , ψK) at a time. Then, for every (M, ϵ) ∈ [1,∞) × (0, 1) there exists
T (ψ∗, ϵ,M) <∞ such that

lim
n→∞

Q
(n)
ψ∗

(
t
(n)
mix(ϵ,M) ≤ T (ψ∗, ϵ,M)

)
= 1 .

Proposition 3.2 shows that, under the conditions of Theorem 3.1 and starting from
an M -warm distribution, the number of iterations required to get ϵ-close to the posterior
distribution does not grow as n→ ∞. An application to the normal model with unknown
mean and precision is given by Corollary C.7 in Section C.10 of Appendix C.

The main take-away of this Section is that, under relatively mild conditions, the Gibbs
sampler behaves well with models of fixed dimensionality and growing number of observa-
tions. In the remaining of the paper we consider the more challenging setting of hierarchical
models, where the number of parameters grows with the number of observations: in par-
ticular we will explore situations in which the number of required iterations remains fixed
even with a growing dimensionality of the problem.

4 Hierarchical models with exponential family priors
and generic likelihood

We consider a general class of hierarchical models, with data divided in J groups, each
having a set of group-specific parameters θj . The latter share a common prior with hyper-
parameters ψ. Recalling (1), the model under consideration is

Yj | θj ∼ f(· | θj) , θj | ψ
iid∼ p(· | ψ) , ψ ∼ p0(·). (13)

We assume that the prior for θj ∈ Rℓ belongs to the exponential family, that is

p(θ | ψ) = h(θ)exp

{
S∑
s=1

ηs(ψ)Ts(θ)−A(ψ)

}
, (14)

10



where ψ ∈ RD, h : Rℓ → R+ is a non-negative function and ηs(ψ), Ts(θ) and A(ψ) are
known real-valued functions with domains RD, Rℓ and RD respectively. We will always
assume the family to be minimal, that is both (η1(ψ), . . . , ηS(ψ)) and (T1(θ), . . . , TS(θ)) are
linearly independent. On the other hand, we let f(y | θ) be an arbitrary likelihood function
with data y ∈ Rm and parameters θ ∈ Rℓ, dominated by a suitable σ-finite measure (usually
Lebesgue or counting one).

Denoting θ = (θ1, . . . , θJ), Y1:J = (Y1, . . . , YJ) and πJ(dθ,dψ) = L (dθ,dψ | Y1:J), we
are interested in studying the two-block Gibbs sampler targeting πJ(dθ,dψ), i.e. the kernel
defined as

PJ

((
θ(t−1), ψ(t−1)

)
,
(
dθ(t),dψ(t)

))
= πJ

(
dθ(t) | ψ(t−1)

)
πJ

(
dψ(t) | θ(t)

)
. (15)

Throughout Section 4 we denote by
(
θ(t), ψ(t)

)
t≥1

the Markov chain with operator PJ , and

by t
(J)
mix the associated mixing times, i.e.

t
(J)
mix(ϵ, µ) = inf

{
t ≥ 0 :

∥∥µP tJ − πJ
∥∥
TV

< ϵ
}
, t

(J)
mix(ϵ,M) = sup

µ∈N (πJ ,M)

t
(J)
mix(ϵ, µ).

4.1 Dimensionality reduction

In order to apply Corollary 2.5 to characterize t
(J)
mix, we would need to study the asymp-

totic distribution of πJ as J → ∞. The latter is a distribution over ℓJ + D parameters,
therefore its dimensionality grows with the size of the data. However, the next lemma
shows that the convergence properties of PJ can be described through a Gibbs sampler
on an intractable, but fixed-dimensional target, namely π̂J(dT ,dψ) = L (dT ,dψ | Y1:J)
where T =

(∑J
j=1 T1(θj), . . . ,

∑J
j=1 TS(θj)

)
, with Ts as in (14). Let

(
T (t), ψ(t)

)
t≥1

=(
T (θ(t)), ψ(t)

)
t≥1

be the stochastic process obtained as a time-wise mapping of
(
θ(t), ψ(t)

)
t≥1

under (θ, ψ) 7→ (T (θ), ψ). The latter process contains all the information characterising
the convergence of

(
θ(t), ψ(t)

)
t≥1

, in the sense made precise in the following lemma. Below

we denote by P̂J the kernel of the two-block Gibbs sampler targeting π̂J .

Lemma 4.1. For each J ≥ 1, the process
(
T (t), ψ(t)

)
t≥1

is a Markov chain, its transition

kernel coincides with P̂J , and its mixing times t̂
(J)
mix satisfy

sup
µ∈N (πJ ,M)

t
(J)
mix(ϵ, µ) = sup

ν∈N (π̂J ,M)

t̂
(J)
mix(ϵ, ν) (M, ϵ) ∈ [1,∞)× (0, 1) .

Remark (Prior and likelihood assumptions). In order to reduce the dimensionality of
the Markov chain under consideration, Lemma 4.1 requires the existence of sufficient
statistics only for the prior density of the group-specific parameters. It does not re-
quire any condition on the likelihood function in model (13). In particular, we have
L (dψ | θ, Y1:J) = L (dψ | T (θ), Y1:J), while L (dY1:J | θ, ψ) ̸= L (dY1:J | T (θ), ψ) in gen-
eral.

Lemma 4.1 allows to focus the analysis on the convergence speed of
(
T (t), ψ(t)

)
t≥1

,

which is a chain whose dimensionality does not grow with the size of the data. Note that
its target distribution π̂J is usually not available in closed form, and the corresponding
two-block Gibbs sampler P̂J cannot be implemented directly (unless by implementing the
original algorithm PJ and keeping track of

(
T (t), ψ(t)

)
t≥1

). In this sense the latter chain

is useful for convergence analysis purposes but less so as an algorithmic shortcut.
The result of Lemma 4.1 is a peculiar property of the Gibbs sampler, which naturally

ignores ancillary information about ψ in θ. Indeed, the proof of Lemma 4.1 crucially
relies on the fact that the algorithm is performing exact conditional updates and analogous
reductions do not occur for most other MCMC schemes (e.g. Metropolis-Hastings based
schemes, including gradient-based ones).
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This dimensionality reduction trick can be applied beyond hierarchical models and has
already been employed in similar settings, mainly with the idea of obtaining suitable drift
functions [58]: for example, in [48] it is used to derive the convergence complexity of a
data augmentation algorithm for the Bayesian probit regression model, while in [50] a
similar tecnique allows to study the geometric convergence rate of a Gibbs sampler for high
dimensional Bayesian linear regression.

4.2 Regularity assumptions and main result

In order to apply the techniques of Theorem 2.4, we need to provide an asymptotic charac-
terization of π̂J . To do so we require the technical assumptions listed in this section. The
assumptions will be verified in specific examples in Section 5.1 and 5.2.

The approach we use to analyse π̂J , which is discussed after Theorem 4.2, is based on
the decomposition π̂J(dT ,dψ) = π̂J(dψ)π̂J(dT | ψ). The first set of assumptions contains
standard regularity and identifiability conditions to study the marginal distribution π̂J(dψ).
In particular, assumptions (B1)−(B3) allow the application of Theorem 3.1 to the posterior
distribution of ψ. Their applicability has been discussed in Section 3. We denote the
marginal likelihood of the model, obtained by integrating out the group specific parameter
θ, as

g(y | ψ) =
∫
Rℓ

f(y | θ)p(θ | ψ) dθ , (16)

and its Fisher Information matrix as

[I(ψ)]d,d′ = E

[
{∂ψd

log g(Y | ψ)}
{
∂ψd′ log g(Y | ψ)

}]
, d, d′ = 1, . . . , D.

We will assume the following:

(B1) There exists ψ∗ ∈ RD such that Yj
iid∼ Qψ∗ for j = 1, 2, . . . , where Qψ∗ admits density

g(y | ψ∗). Moreover the map ψ → g(· | ψ) is one-to-one and the map ψ →
√
g(x | ψ)

is continuously differentiable for every x. Finally, the prior density p0 is continuous
and strictly positive in a neighborhood of ψ∗.

(B2) There exist a compact neighborhood Ψ of ψ∗ and a sequence of tests uj : RmJ →
[0, 1] such that

∫
RmJ uj (y1, . . . , yJ)

∏J
j=1 g(yj | ψ∗) dy1:J → 0 and

supψ ̸∈Ψ

∫
RmJ [1− uj (y1, . . . , yJ)]

∏J
j=1 g(yj | ψ) dy1:J → 0, as J → ∞.

(B3) The Fisher Information matrix I(ψ) is non-singular and continuous w.r.t. ψ.

The second set of regularity assumptions (B4)-(B6) are described and discussed in
Appendix B. They deal with smoothness and regularity of the conditional distribution
π̂J(T |ψ) and they allow to derive a suitable conditional Central Limit Theorem in total
variation for π̂J(T |ψ) as J → ∞.

We can now state the main result of this section. Below we denote the product measures

associated to Qψ∗ by Q
(J)
ψ∗ and Q

(∞)
ψ∗ .

Theorem 4.2. Consider model (13) and the Gibbs sampler defined as in (15), with mixing

times t
(J)
mix(ϵ,M). Then, under assumptions (B1)-(B6), for every (M, ϵ) ∈ [1,∞) × (0, 1)

there exists T (ψ∗, ϵ,M) <∞ such that

Q
(J)
ψ∗

(
t
(J)
mix(ϵ,M) ≤ T (ψ∗, ϵ,M)

)
→ 1,

as J → ∞. It follows that t
(J)
mix(ϵ,M) = OP (1) as J → ∞.

Remark. Theorem 4.2 provides a formal proof of the linear in J cost for Gibbs samplers on
hierarchical models. Indeed, it proves that a bounded (in J) number of iterations suffices to
get a good mixing: assuming that the cost of a single iteration scales linearly with J , which
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is typically the case, this implies an overall computational cost of order OP (J). Note that
a single evaluation of the likelihood of (θ, ψ), or the associated gradients, which is required
at every iteration of usual gradient-based methods, yields a cost of the same order.

Remark. The conclusions of Theorem 4.2 are similar in spirit to those of [32, Thm.1]. Also
there the convergence of Gibbs Samplers targeting two-level hierarchical models is studied
using tools from Bayesian asymptotics. The results therein, which deal with convergence
of ergodic averages when the algorithm is started in stationarity, are quite different from
ours, which deal with mixing times. Nonetheless they also support the idea that Gibbs
samplers targeting two-level hierarchical models can exhibit OP (1) convergence as J → ∞.

4.3 Posterior convergence lemmas for Theorem 4.2

The proof of Theorem 4.2 can be found in Appendix C. It relies on Lemma 4.1, which
allows to focus on the two-blocks Gibbs sampler targeting π̂J(dT ,dψ), and on Lemmas
4.3 and 4.4 below. These two lemmas imply that π̂J(dT ,dψ) satisfies assumption (A1) as
J → ∞ and that the associated limiting kernel is ergodic, thus allowing to apply Corollary
2.5.

In order to prove (A1) for π̂J(dT ,dψ) = L (dT ,dψ | Y1:J), we need to identify a suitable

transformation of (T , ψ), denoted by
(
T̃ , ψ̃

)
. We define a one-to-one transformation of ψ

as

ψ̃ =
√
J (ψ − ψ∗)−∆J , ∆J =

1√
J

J∑
j=1

I−1(ψ∗)∇ log g(Yj | ψ∗). (17)

The asymptotic distribution of ψ̃ follows directly through Theorem 3.1, as summarized in
the next lemma.

Lemma 4.3. Define ψ̃ as in (17). Under assumptions (B1)− (B3) it holds∥∥∥L(dψ̃ | Y1:J)−N
(
0, I−1(ψ∗)

)∥∥∥
TV

→ 0,

as J → ∞, in Q
(∞)
ψ∗ -probability.

LetM (1)(ψ | y) =
(
M

(1)
1 (ψ | y), . . . ,M (1)

S (ψ | y)
)
∈ RS withM

(1)
s (ψ | y) = E [Ts(θj) | Yj = y, ψ]

and

[C(ψ)]s,d = EYj

[
∂ψd

M (1)
s (ψ | Yj)

]
, [V (ψ)]s,s′ = EYj

[Cov (Ts(θj), Ts′(θj) | Yj , ψ)] ,
(18)

with s, s′ = 1, . . . S and d = 1, . . . , D. We use the notation EYj [·] for expectations with
respect to the law of Yj as defined in (B1). Then we define a one-to-one transformation of
T as

T̃ =
1√
J

J∑
j=1

[
T (θj)−M (1) (ψ∗ | Yj)

]
− C(ψ∗)∆J , (19)

with C(ψ∗) defined in (38). The next lemma proves the required asymptotic normality of
T̃ , conditional to ψ̃ .

Lemma 4.4. Let T̃ be as in (19). Under assumptions (B1)-(B6) for every ψ̃ it holds∥∥∥L(dT̃ | Y1:J , ψ̃)−N
(
C(ψ∗)ψ̃, V (ψ∗)

)∥∥∥
TV

→ 0,

as J → ∞, for Q
(∞)
ψ∗ -almost every (Y1, Y2, . . . ).

Lemma C.18 in Section C.14 of Appendix C combines Lemmas 4.3 and 4.4 to prove
that L(dT̃ , ψ̃ | Y1:J) converges in total variation to a multivariate Gaussian vector with
non singular covariance matrix, which allows to apply Corollary 2.5 as desired.
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Remark. The definition of T̃ and Lemma 4.4 are an important part of the proof of Theorem
4.2. Lemma 4.4 relies on the fact that, conditional to ψ̃ and Y1:J , T is a sum of independent
(but not identically distributed) terms. The proof of convergence in total variation requires
more than the usual tools from Lindeberg-Feller Central Limit Theorem, as discussed in
Appendix B after assumptions (B5) and (B6).

4.4 Analysis of the limiting chain

As a byproduct of the proof of Theorem 4.2, it is possible to characterize the limiting

distribution of the rescaled vector
(
T̃ , ψ̃

)
, as the next proposition shows.

Proposition 4.5. Consider the same assumptions of Theorem 4.2. Then∥∥∥L(dT̃ , dψ̃ | Y1:J)−N (0,Σ)
∥∥∥
TV

→ 0,

as J → ∞, in Q
(∞)
ψ∗ -probability, where

Σ =

V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗) C(ψ∗)I−1(ψ∗)

I−1(ψ∗)C⊤(ψ∗) I−1(ψ∗)

 (20)

with C(ψ∗) and V (ψ∗) defined in (38).

The expression for the limiting covariance in (20) can be used to investigate the con-
vergence properties of the limiting Gibbs sampler, since the spectral gap is explicitly com-
putable from that. We can then apply Corollary 2.6 and obtain the following result.

Corollary 4.6. Under the assumptions of Theorem 4.2, for every (M, ϵ) ∈ [1,∞)× (0, 1),

we have Q
(J)
ψ∗

(
t
(J)
mix(ϵ,M) ≤ T (ψ∗, ϵ,M)

)
→ 1 as J → ∞, with

T (ψ∗, ϵ,M) = 1 +
log(M/2)− log(ϵ)

− log (1− γ(ψ∗))
,

γ(ψ∗) = min

{
1

1 + λi
: λi eigenvalue of V −1(ψ∗)C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}
.

Thus, once the limiting distribution is obtained, an upper bound on the mixing times
can be derived by computing the eigenvalues of a S × S matrix. As an application, the
next corollary provides the value of γ when S = D = 1.

Corollary 4.7. Consider the same setting of Corollary 4.6, with S = D = 1. Then we
have

γ(ψ∗) =
VarYj

(E [T (θj) | ψ∗, Yj ])

Var (T (θj) | ψ∗)
. (21)

By the law of total variance, we have that γ(ψ∗) → 0 if and only if

VarYj
(E [T (θj) | ψ∗, Yj ])

E
[
VarYj

(T (θj) | ψ∗, Yj)
] → 0,

i.e., loosely speaking, when the data Yj yield little information about T (θj) and therefore
about ψ. This phenomenon arises since model (13) is an example of centered parametriza-
tion, see e.g. [23, 43, 44]. The formula in (21) resembles the definition of the so-called
Bayesian fraction of missing information [35], with the notable difference of not involving
an infimum over a set of test functions.
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5 Examples

In this section various examples, which differ by the choice of likelihoods and priors, are
discussed.

5.1 Hierarchical normal model

Consider the following hierarchical specification:

Yj,i | θj ∼ N
(
θj , τ

−1
0

)
, i = 1, . . . ,m, j = 1, . . . , J

θj | µ, τ1
iid∼ N(µ, τ−1

1 ) , j = 1, . . . , J

(µ, τ1) ∼ p0(·) .

(22)

where (µ, τ1) are unknown hyperparameters. In this section we assume τ0 to be fixed
and known, see Section 5.3.1 for the case with τ0 unknown. The prior p0 can be any
distribution satisfying the assumptions stated in Proposition 5.1 below. It can be seen
that (22) is a particular case of model (13), with f(Yj | θj) =

∏m
i=1N(Yj,i | θj , τ−1

0 ),
p(· | µ, τ1) = N(µ, τ−1

1 ). The marginal likelihood of Yj conditional to (µ, τ1, τ0) is given by

g(y | µ, τ1, τ0) = N
(
y | µ, τ−1

0 I + τ−1
1 H

)
y ∈ Rm, (23)

where I is the m×m identity matrix and H is the m×m matrix of ones.
We consider three Gibbs sampler specifications, which vary depending on which pa-

rameters are unknown and treated as random and which blocking rules are used. First,
when τ1 is fixed, we define P1 as the transition kernel of the Gibbs sampler that targets
L (dθ,dµ | Y1:J) by alternating updates from L (dθ | µ, Y1:J) and L (dµ | θ, Y1:J). If instead
µ and τ1 are unknown, we define P2 and P3 as the transition kernels of the two Gibbs sam-
plers targeting L (dθ,dµ,dτ1 | Y1:J) by alternating updates from L (dθ,dµ | τ1, Y1:J) and
L (dτ1 | θ, µ, Y1:J) for P2; and L (dθ | τ1, Y1:J), L (dµ | θ, τ1, Y1:J), L (dτ1 | θ, µ, Y1:J) for P3.
In the following we will show that the asymptotic behaviour of P2 and P3 is essentially the
same.

It is possible to prove that P1 falls directly in the setting of Theorem 4.2, with T (θj) = θj
for P1. Even if P2 and P3 are not exactly particular cases of the general theorem, since
different update schemes are considered, it turns out that they can be studied with the
same tools introduced in the previous section, with T (θj) =

(
θj , (θj − µ∗)2

)
.

The next proposition shows that the settings introduced above lead to well-behaved

asymptotic regimes. Here t
(J)
mix,l(ϵ,M) denotes the mixing times of the Gibbs sampler

defined by Pl with l ∈ {1, 2, 3}.

Proposition 5.1. Let Yj
iid∼ Qψ∗ , with Qψ∗ admitting density g(y | ψ∗) as in (23), where

ψ∗ = (µ∗, τ∗1 , τ
∗
0 ), and consider model (22) with τ0 = τ∗0 . Consider the Gibbs sampler

with operator Pl, with l ∈ {1, 2, 3}, and let the prior density p0 be continuous and strictly
positive in a neighborhood of µ∗ when l = 1 and (µ∗, τ∗1 ) when l ∈ {2, 3}. Finally, when
l = 1 let τ1 = τ∗1 . Then for every (M, ϵ) ∈ [1,∞) × (0, 1) there exists Tl (ψ

∗, ϵ,M) < ∞
such that

Q
(J)
ψ∗

(
t
(J)
mix,l(ϵ,M) ≤ Tl (ψ

∗, ϵ,M)
)
→ 1 as J → ∞, l = 1, 2, 3 . (24)

Under model (22), the matrices in Corollary 4.6 can be explicitly computed, leading to
the following result.

Corollary 5.2. Under the same assumptions and notation of Proposition 5.1, for every
(M, ϵ) ∈ [1,∞)× (0, 1), (24) holds with

Tl (ψ
∗, ϵ,M) = 1 +

log(M/2)− log(ϵ)

− log (1− γl(ψ∗))
, l = 1, 2, 3 ,
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where

γ1(ψ
∗) =

(
1 +

τ∗1
mτ∗0

)−1

and γ2(ψ
∗) = γ3(ψ

∗) = γ1(ψ
∗)2 . (25)

The expressions for the asymptotic gaps in (25) are insightful in many ways. First, µ∗

does not appear in any of the spectral gaps, meaning that the limiting value of the mean
parameter seems not to play a role in the asymptotic behaviour of the Gibbs sampler.
Moreover, the gaps are a function of the ratio (mτ∗0 )

−1τ∗1 , that is the ratio of the prior
and likelihood precisions, respectively. In particular the gaps converge to 0, i.e. the upper
bound on the mixing times diverges, if and only if (mτ∗0 )

−1τ∗1 → ∞, which happens when
the prior is increasingly more informative than the data. As discussed after Corollary
4.7, such phenomenon arises since all the three formulations are an example of centered
parametrization [23, 43]. On the contrary, the gaps converge to 1, i.e. asymptotically a
single iteration suffices, if and only if (mτ∗0 )

−1τ∗1 → 0.
When τ1 is fixed and p0(µ) is Gaussian, then L (dθ,dµ | Y1:J) is a multivariate Gaussian

and P1 is amenable to finite-sample analysis. In fact, the expression for γ1(ψ
∗) appeared

previously in the literature, see e.g. [43]. The result in Corollary 5.2 is, however, different
since it is asymptotic and it applies also to general priors.

On the contrary, a finite-sample analysis of P2 are P3 is hard even when p0(µ) is
Gaussian (see e.g. [30, 49, 67]) and γ2(ψ

∗) and γ3(ψ
∗) did not appear previously in the

literature, to the best of our knowledge. It is interesting that, regardless of the value of
(m,µ∗, τ∗1 , τ

∗
0 ), including the random precision parameter, when moving from P1 to either

P2 or P3, always slows down the sampler (asymptotically), since γ1(ψ
∗) > γi(ψ

∗) for
i = 2, 3, and that the two blocking rules of P2 and P3 are asymptotically equivalent in
terms of mixing times, since γ2(ψ

∗) = γ3(ψ
∗).

5.2 Models with binary and categorical data

Let now f(y | θ) be a probability mass function, whose point masses are denoted by
y0, . . . , ym, with m <∞, such that for every θ ∈ RK we have

m∑
r=0

f(yr | θ) = 1, f(yr | θ) > 0, r = 0, . . . ,m. (26)

The assumption in (26) is mild and holds for most likelihoods usually employed with
categorical data, e.g. multinomial logit and probit. We focus on hierarchical models with
normal priors, i.e.

Yj | θj ∼ f(Yj | θj) , θ1, . . . , θJ | µ, τ iid∼ N(µ, τ−1) , (µ, τ) ∼ p0(·) . (27)

For example the case f(y | θ) =
(
m
y

)
eyθ

(1+eθ)m
, with y = 0, . . . ,m, corresponds to the logistic

hierarchical model with Gaussian random effects. The prior p0 can be any distribution
satisfying the assumptions stated in Proposition 5.4 below. We define P as the transition
kernel of the Gibbs sampler that targets L (dθ,dµ,dτ | Y1:J) by alternating updates from
L (dθ | µ, τ, Y1:J) and L (dµ,dτ | θ, Y1:J). This is a particular case of the setting of Theorem
4.2, with ψ = (µ, τ) and T (θj) = (θj , θ

2
j ). Notice that usually L (dθ | µ, τ, Y1:J) is not known

in closed form (with the notable exception of the probit case, see [17]), but nonetheless exact
sampling is often feasible through adaptive rejection sampling (see e.g. [26]) since each θj
is one dimensional. The marginal likelihood is given by

g(y | ψ) =
∫
R
f(y | θ)N

(
θ | µ, τ−1

)
dθ. (28)

The next lemma shows that assumptions (B4)-(B6) follow directly from (27).

Lemma 5.3. Consider model (27) and let Yj
iid∼ Qψ∗ , with Qψ∗ admitting density g(y | ψ∗)

as in (28), with ψ∗ = (µ∗, τ∗). Then assumptions (B4)-(B6) are satisfied.
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Thus, in order to apply Theorem 4.2, it suffices to prove assumptions (B2) and (B3),
i.e. that the parameters ψ are identifiable with non singular Fisher Information matrix.
Therefore, as formalized in the next proposition, standard identifiability conditions (which
are also necessary to consistently estimate ψ) are sufficient to prove boundedness of the
mixing times.

Proposition 5.4. Consider model (27) and let Yj
iid∼ Qψ∗ , with Qψ∗ admitting density

g(y | ψ∗) as in (28), where ψ∗ = (µ∗, τ∗). Consider the Gibbs sampler with operator P and
let p0 be continuous and strictly positive in a neighborhood of ψ∗. Let the map ψ → g(· | ψ)
be one-to-one, with non singular and continuous I(ψ). Finally, assume tests as in (B2)
exist. Then for every (M, ϵ) ∈ [1,∞)× (0, 1) there exists T (ψ∗, ϵ,M) <∞ such that

Q
(J)
ψ∗

(
t
(J)
mix(ϵ,M) ≤ T (ψ∗, ϵ,M)

)
→ 1 as J → ∞ .

Remark. In most cases m ≥ 2 is required to avoid the pair (µ, τ) being not identifiable
and the associated Fisher Information matrix being singular. For example Lemma C.35 in
Section C.23 of Appendix C shows that with the logit link I(ψ) is singular if and only if
m = 1.

As already discussed in the Section 1, the results of Proposition 5.4 are illustrated on
simulated data in Figure 1. Since mixing times are very hard to approximate numerically in
high-dimensions, we employ the Integrated Autocorrelation Times (IATs) as an empirical
measure of convergence time. The IAT associated to a π-invariant Markov chain X =
{X(t)}t≥1 and a test function f ∈ L2(π) is defined as

IAT(f) = 1 + 2

∞∑
t=2

Corr
(
f(X(1)), f(X(t))

)
. (29)

Loosely speaking, IAT(f) is the number of MCMC samples that is equivalent to a single
independent sample in terms of estimation of

∫
f(x)π(dx), thus the higher IAT the slower

the convergence. When dealing with hierarchical models as in (27), we compute the maxi-
mum IAT over all the parameters (both global and group specific). We estimate the IAT
with the ratio of the number of iterations and the effective sample size, as described in [27],
with the effective sample size computed with the R package mcmcse [21]. For a review
of different methods to estimate the IATs, see [63]. In Figure 1 we plot the quantiles of
the IATs as a function of the number of groups for the Gibbs sampler, implemented using
adaptive rejection sampling [26] for the exact updates of local parameters with full condi-
tionals L (dθj | µ, τ, Y1:J). As expected by Proposition 5.4, the IATs do not diverge as J
increases for both values of m under consideration. Note that variability decreases as J
increases and the posterior gets closer to its asymptotic limit.

Corollary 5.5. Consider the same setting of Proposition 5.4. For every (M, ϵ) ∈ [1,∞)×
(0, 1) define

T (ψ∗, ϵ,M) = 1 +
log(M/2)− log(ϵ)

− log (1− γ(ψ∗))
,

for γ(ψ∗) ∈ (0, 1) as in Corollary 4.6. Then

Q
(J)
ψ∗

(
t
(J)
mix(ϵ,M) ≤ T (ψ∗, ϵ,M)

)
→ 1 as J → ∞ .

The study of the limiting spectral properties, i.e. of γ(ψ∗), can be useful to predict
under which scenarios the Gibbs sampler will perform well or not for large J . We illustrate
this by considering model (27) with logit link and known τ set to 1. In this setting, where µ
is the only global parameter, the value of γ(ψ∗) can be computed as in (21) through simple
one-dimensional numerical integration. In Figure 2 we compare the resulting mixing time
upper bound, T (ψ∗, ϵ,M), with the numerical estimates of IATs defined in (29), obtained
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Figure 2: Left: upper bounds on mixing times for model (27) with τ known, where τ∗ = 1, µ∗ ∈ (−3, 3),
m = 1, M = 2 and ϵ = 0.2. A priori µ ∼ N

(
0, 103

)
. Right: median IATs with J = 2000.
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Figure 3: Graphical models of different hierarchical structures. Left: one level nested model as in
Theorem 4.2. Center: hyperparameters specifying the likelihood. Right: dependent latent parameters.

by running a long MCMC chain with a moderately large value of J . We compare such
quantities for different values of the true success probability induced by µ∗, i.e.

∫
R f(1 |

θ)N (θ | µ∗, 1) dθ. Both theoretical and empirical measures of convergence highlight that
the performances of the Gibbs sampler deteriorate when the problem is not balanced: such
conclusion is coherent with the findings in [31], that considers an asymptotic regime with
increasing imbalancedness.

5.3 Different graphical models structure

In the previous subsections we have studied applications of Theorem 4.2 for some spec-
ification of the hierarchical model in (13). These correspond to the graphical models in
the leftmost panel of Figure 3. While this structure is very common in Bayesian modeling
and it constitutes our main motivating application, the techniques we developed - and in
particular the dimensionality reduction and posterior asymptotic approach - can be ap-
plied to different classes of models, including other widely used ones. Here we provide two
examples, the first is a relatively direct extension of the model in (13) with the addition
of parameters in the likelihood, the second is a more different setting of Gaussian Process
regression where the latent parameters are not independent. See respectively the center
and rightmost panels in Figure 3 for the resulting graphical models. More generally, we
expect our methodology to be potentially useful to analyse samplers for models that fea-
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ture a fixed set of hyperparameters ψ, conditional to which a growing set of parameters or
latent variables is tractable enough for posterior sampling.

5.3.1 Likelihood parameters

Consider again the hierarchical normal model

Yj,i | θj , τ0 ∼ N
(
θj , τ

−1
0

)
, θj | µ, τ1

iid∼ N(µ, τ−1
1 ) , (µ, τ1, τ0) ∼ p0(·) , (30)

with i = 1, . . . ,m and j = 1, . . . , J . The unknown parameters are now given by the
triplet ψ = (µ, τ1, τ0). We denote with P the transition kernel of the Gibbs sampler
targeting L (dθ,dµ,dτ1,dτ0 | Y1:J) by alternating updates from L (dθ,dµ | τ1, τ0, Y1:J) and
L (dτ1,dτ0 | θ, µ, Y1:J). This cannot be seen as a specific case of Theorem 4.2 with ψ =
(µ, τ1, τ0), since τ0 is a parameter of the likelihood f and therefore there is no conditional
independence between Yj and ψ, given θj . However, an approach similar to the one of the
previous section can be employed. In particular, a result analogous to Lemma 4.1 can be

derived, with T (θj) =
((
θj − Ȳj

)2
, (θj − µ)

2
)

playing the role of the sufficient statistics

and Ȳj =
1
m

∑m
i=1 Yj,i. It is interesting to notice that T in this case depends also on the data

Y1:J , exactly because the group specific parameters θ do not contain all the information
regarding ψ. The next proposition shows that also this specification leads to a well-behaved
asymptotic regime.

Proposition 5.6. Consider model (30) with m ≥ 2 and let Yj
iid∼ Qψ∗ , with Qψ∗ admitting

density g(y | ψ∗) as in (23), where ψ∗ = (µ∗, τ∗1 , τ
∗
0 ). Consider the Gibbs sampler with op-

erator P and let the prior density p0 be a continuous and strictly positive in a neighborhood
of ψ∗. Then for every (M, ϵ) ∈ [1,∞)× (0, 1) there exists T (ψ∗, ϵ,M) <∞ such that

Q
(J)
ψ∗

(
t
(J)
mix(ϵ,M) ≤ T (ψ∗, ϵ,M)

)
→ 1 as J → ∞ . (31)

An explicit value for T (ψ∗, ϵ,M) can be found through Corollary 2.6, as shown in the
next corollary.

Corollary 5.7. Consider the same setting of Proposition 5.6. Then, for every (M, ϵ) ∈
[1,∞)× (0, 1), (31) holds with

T (ψ∗, ϵ,M) = 1 +
log(M/2)− log(ϵ)

− log (1− γ(ψ∗))
,

where

γ(ψ∗) =

(
1 +

1

m− 1

(
1− τ∗1

mτ∗0

)2

+

(
τ∗1
mτ∗0

)2
)−1

.

Remark. The assumption m ≥ 2 cannot be relaxed: indeed, if a single observation per
group is available, the pair (τ1, τ0) is not identifiable and the Fisher Information matrix is
singular. For an empirical illustration of the issues arising in this context, see the top left
panel in Figure 4 or Section 6.2 of [50].

Unlike the case of Corollary 5.2, in this setting the limiting gap does not depend on
m only through the ratio of prior and likelihood precisions, but also directly on its value.
Loosely speaking, a higher value of m allows to better recover the relation between τ0 and
τ1.

The results of Proposition 5.6 and Corollary 5.7 are illustrated on simulated data in
Figure 4, which depicts the Integrated Autocorrelations Times (IATs) as defined in (29).
When the model is not identifiable, i.e. m = 1 (top left panel), the IATs diverge with the
number of groups, while with m = 3 and m = 5 they stabilize as J increases. Differently
from the binomial setting of Figure 4, the IATs grow for small values of J before the
asymptotic regime kicks in.
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Figure 4: Quantiles of the integrated autocorrelations times (on log-scale) for model (30) with µ∗ = 4,

τ∗0 = 1 and τ∗1 = 3. A priori (τ0, τ1)
i.i.d.∼ Gamma(1, 1) and p0(µ) ∝ 1. Top left: m = 1 (last points not

plotted due to numerical instability). Center: m = 3. Top right: m = 5.

5.3.2 Gaussian processes

We now consider the popular setting where the groups are identified by a continuous covari-
ate (e.g. location) and group specific parameters are modeled through a Gaussian process.
It turns out that the main arguments of the paper, namely dimensionality reduction and
impact of posterior asymptotic characterization, can be applied also in this context. This
section, compared to the previous ones, aims to provide a proof of concept rather than a
detailed analysis, e.g. we directly assume limiting statements on the posterior distributions
of interest. Nonetheless we find it useful to show how widely our methodology could be
applied and illustrate interesting directions of ongoing work.

Assume to observe n data points Y (si) with i = 1, . . . , n, at a set of locations (s1, . . . , sn),
together with input variables or covariates x(si) ∈ R. We consider Gaussian Process re-
gression models of the form

Y (si) | β ∼ f(· | β(si), x(si)), i = 1, . . . , n

β(n) | ψ ∼ N(θ1, τ−1
β R(n))

ψ ∼ p0(·).
(32)

where β = (β(s1), . . . , β(sn))
⊤

is a Gaussian Process (GP) observed at (s1, . . . , sn) and f
is a density function with respect to a suitable dominating measure. Here 1n = (1, . . . , 1)⊤

is an n-dimensional vector and R(n) = (Rij)i,j=1,...,n is a n × n correlation matrix, with

Rij = Corr (β(si), β(sj)), defined through a suitable kernel function, that we assume to be
fixed and known. Typically, strength of correlation among coefficients at different locations
depends on their distance, with Rij defined e.g. through a kernel of the Matérn family (see
e.g. Section 4.2.1 in [65]). In this Section we focus on a single real covariate for notational
convenience, but everything could be restated on a general p-dimensional space with little
effort: direct analogues of the next lemma and corollaries similarly follow. We first consider
cases where the likelihood function has no specific hyper-parameters, such as in the common
binary case where Y (sj) | β ∼ Bernoulli(σ(β(sj)x(sj))), with σ logistic link function and
Y (sj) ∈ {0, 1}.

Let Pn be the kernel of the Gibbs sampler which targets πn(dβ,dθ,dτβ) = L
(
dβ,dθ,dτβ | Y (n)

)
,

by sequentially performing updates from the full conditionals of β, θ and τβ . Despite the
different graphical model structure, the analysis of mixing times of Pn as n → ∞ can
be approached with the techniques we developed above, regardless of the specific likeli-
hood used in (32). The first step is to perform a dimensionality reduction analogous to
the one in Section 4.1. Define ψ = (θ, τβ) and T (β) =

(
Tθ, Tτβ

)
, where Tθ = 1⊤R−1β,

Tτβ = β⊤R−1β, which play the same role of global parameters and sufficient statistics in
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Lemma 4.1. Indeed it holds L
(
dψ | β, Y (n)) = L(dψ | T (β), Y (n)

)
and we can provide an

analogue of Lemma 4.1 for model (32).

Lemma 5.8. Let πn and Pn be defined as above for model (32). Let P̂n be the transition
kernel of Gibbs sampler targeting π̂n(dT , dθ, dτβ) = L

(
dT , dθ, dτβ | Y (n)

)
which sequen-

tially performs updates from the full conditionals of T , θ and τβ. Let (T (t), dθ(t), dτ
(t)
β )t≥1

be the stochastic process obtained as a time-wise transformation of (β(t), dθ(t), dτ
(t)
β )t≥1.

Then (T (t), dθ(t), dτ
(t)
β )t≥1 is a Markov chain, its transition kernel coincides with P̂n, and

its mixing times t̂
(n)
mix satisfy

sup
µ∈N (πn,M)

t
(n)
mix(ϵ, µ) = sup

ν∈N (π̂n,M)

t̂
(n)
mix(ϵ, ν) M ≥ 1 .

Also, provided a rescaled version of (T , θ, τβ) converges to a suitable limit conditional
on the data, the mixing times are bounded with respect to the number of observations.

Corollary 5.9. Under model (32), let π̂n satisfy assumption (A1) for a given data gener-
ating process Y (n) ∼ Q(n), with limiting distribution π̃. If (M, ϵ) ∈ [1,∞) × (0, 1) is such
that t̃mix(ϵ,M) <∞, then it holds

Q(n)
(
t
(n)
mix(ϵ,M) ≤ t̃mix(ϵ,M)

)
→ 1 as n→ ∞ . (33)

In some cases the likelihood contains some unknown parameters that are also included
in the Bayesian model. A common example is the likelihood precision τϵ in normal linear
models with spatially varying regression coefficients (see e.g. [22] or Section 2 in [65]), where

Y (si) | β ∼ N(β(si)x(si), τ
−1
ϵ ), i = 1, . . . , n. (34)

Let Pn be the Gibbs sampler kernel targeting πn(dβ,dθ,dτβ ,dτϵ) = L
(
dβ,dθ,dτβ ,dτϵ | Y (n)

)
,

by sequentially performing updates from the full conditionals of β, θ, τβ and τϵ. Analo-
gously to Section 5.3.1, the results of Lemma 5.8 and Corollary 5.9 extend to this context

with ψ = (θ, τβ , τϵ) and T defined as T =
(
Tθ, Tτβ , Tτϵ

)
, where Tτϵ =

(
Y (n) −Dβ

)⊤ (
Y (n) −Dβ

)
and D is the n× n diagonal matrix with values (x(s1), . . . , x(sn)). This is summarized in
the next corollary.

Corollary 5.10. Under model (32) with likelihood as in (34), assume the conditions of
Corollary 5.9 are satisfied with ψ = (θ, τβ , τϵ) and T =

(
Tθ, Tτβ , Tτϵ

)
. Then (33) holds.

Similarly to the hierarchical normal case, studied in Section 5.1, if the precisions (τβ , τϵ)
are fixed in specification (34), then the spectral gap of Pn can be explicitly studied to deduce
limiting bounds on mixing times (see e.g. [5]); while if the precisions are unknown, as it is
mostly the case in applications, the performances of Pn have only been empirically studied
through simulations. The methodology we introduce here can be used to formally analyze
the behaviour of these samplers as n→ ∞.

To conclude this section, it is important to note that in this context the kernel Pn may
or may not be directly implementable, depending on the specific model formulation. In the
commonly used linear case, the full conditional distribution πn(dβ | ψ) is normal, so that
sampling becomes accessible and Pn is directly the algorithm used to sample from πn. See
e.g. Appendix 2 of [5] for details on the implementation, including expressions for the full
conditionals. In other cases, e.g. for log-concave likelihoods such as the binary regression
ones, adaptive rejection sampling techniques (e.g. [26]) can be used in low dimensions.
In the more general case the exact update from πn(dβ | ψ) is commonly replaced with a
Metropolis update from πn(dβ | ψ) (using e.g. a gradient-based kernel such as MALA or
HMC). In the latter case, the Gibbs kernel Pn we analyse here is an idealized version of
the practically used Metropolis-within-Gibbs kernel. Under suitable (mild) assumptions,
we expect the convergence properties of this idealized scheme to provide a lower bound to
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the Metropolis-within-Gibbs schemes used in practice. Also, we expect the convergence of
the two kernels to be of the same order when the kernel used for the Metropolis updates
on the full conditional mixes fast. Providing quantitative results in this direction is an
interesting area for future work, which we are currently pursuing. This would extend
the applicability of the proof techniques developed in this work to broad classes of non
conditionally-conjugate models, such as Gaussian Processes with non-Gaussian likelihood
discussed above. See Section 7 for more details.

6 Feasible start

All the previous results are stated in terms of mixing times from worst case M -warm start,
as defined in (5). Since starting from µ ∈ N (πJ ,M) with small M (e.g. not increasing
with J) may be in principle infeasible, it is of interest to provide an explicit example of a
starting distribution that can be implemented in practice, a so-called feasible start, where
the associated value ofM can be controlled. In the setting of Theorem 4.2, the properties of
the Gibbs samplers combined with the probabilistic structure of hierarchical models allow
to translate the problem of feasible starts into the one of having a good initialisation for
the hyper-parameters ψ, as we now show. Indeed, assume that the maximum marginal
likelihood estimator ψ̂J = arg max

∏J
j=1 g(Yj | ψ), with g as in (16), is well-defined. Let

µJ ∈ P
(
RlJ+D

)
be given by

µJ (B) =

∫
B

Unif
(
ψ̂J , c/

√
J
)
(dψ)

J∏
j=1

p(θj | Yj , ψ) dθ B ⊂ RlJ+D (35)

where c > 0 is a fixed constant and Unif (ψ, r) denotes the uniform distribution over
the closed ball of center ψ and radius r > 0. Therefore, the initial point is obtained
by sampling from the uniform distribution around the maximum likelihood estimator for
ψ and, conditional on this value, from the posterior distribution of the groups specific
parameters. The next theorem shows that this choice leads to a good asymptotic behaviour
of the mixing times.

Theorem 6.1. Consider the same setting of Theorem 4.2 and let µJ ∈ P
(
RlJ+D

)
as in

(35). Then, for every ϵ ∈ (0, 1) there exists T (ψ∗, ϵ, c) <∞ such that

lim inf
J→∞

Q
(J)
ψ∗

(
t
(J)
mix(ϵ, µJ) ≤ T (ψ∗, ϵ, c)

)
→ 1 as J → ∞ .

The difference with Theorem 4.2 is in the specification of the starting distribution,
that is now made explicit. Note that whether or not µJ is a feasible start in practice
depends on whether the maximum likelihood estimate ψ̂J can be computed, using e.g. an
Expectation-Maximization algorithm, up to a O(1/

√
J) error.

Remark. By its definition in (3), the Gibbs sampler does not depend on the starting point
of the first block. Therefore Theorem 6.1 extends to any µJ ∈ P

(
RlJ+D

)
such that

µJ
(
RlJ ×A

)
= Unif

(
ψ̂J , c/

√
J
)
(A) A ⊂ RD .

7 Future works

A first natural extension in this context would be the case where no fixed dimensional
sufficient statistic is available, i.e. p(· | ψ) in (1) does not belong to the exponential family.
Since the above dimensionality reduction does not apply there, a possibility is to study
the marginal chain induced on ψ; indeed the latter has the same properties of the Gibbs
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sampler on (θ, ψ), see e.g. [52]. Also, in this work we have focused on the case with well-
specified likelihoods but, as discussed after Theorem 3.1, we expect the misspecified setting
to behave in qualitatively similar ways.

Secondly, when dealing with Gibbs samplers, it is often the case that some of the condi-
tional updates cannot be performed exactly. A natural solution is to employ more general
coordinate-wise schemes, where exact sampling is replaced by Markov updates with sta-
tionary measure given by the conditional distribution. For example in hierarchical models
for categorical data (see Section 5.2), while in principle exact conditional sampling is feasi-
ble, the parameters θj are often sampled in a Metropolis-within-Gibbs fashion, for reasons
of computational efficiency and easiness of implementation. While algorithmically conve-
nient, the modification makes theoretical analysis significantly more involved: in particular
Proposition 2.2 ceases to hold and the dimensionality reduction given by Lemma 4.1 is not
available without exact sampling. In ongoing work we are considering a different strategy,
by providing lower bounds on the approximate conductance [36]: our preliminary results
suggest that, provided the conditional Markov updates have good spectral properties, gen-
eral coordinate-wise schemes can enjoy the same dimension-free convergence of the Gibbs
sampler. Another interesting direction would be to derive results analogous to the ones in
Section 2 for other MCMC kernels (e.g. gradient-based ones) under appropriate regularity
assumptions on the sequence of target distribution, potentially exploiting tools from the
recent work in [11].

Finally, we expect (at least parts of) our methodology to be applicable much beyond
hierarchical models as in (1). For example, when fitting (finite or infinite) Bayesian mix-
ture models, it is customary to use a Gibbs sampler over a properly augmented space by
introducing latent allocation variables (see e.g. [16]): this leads to a problem of increasing
dimensionality, since the number of latent variables grows linearly with n. An asymptotic
analysis, as performed in this paper, seems accessible: indeed, posterior concentration
results are available [40] and a dimensionality reduction similar to Lemma 4.1 can be ex-
ploited. However there are still significant challenges to perform a rigorous analysis in this
setting: for example posterior contraction is often proved using Wasserstein distance, that
is in general too weak for our purposes. We leave the discussion of such issues to a future
work.
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Appendix A Simple counter-examples for Section 2

A.1 Convergence of the stationary distribution does not imply
pointwise convergence of Gibbs operators

Let X = [0, 1]2 and define An =
[
rn
ln
, rn+1

ln

]
, where

rn = n− 2kn , ln = 2kn , kn = ⌊log2 n⌋,

with ⌊a⌋ denoting the integer part of a and n ≥ 2. Therefore {An}n is a collection of
intervals with decreasing length, such that x ∈ An infinitely often, for every x ∈ [0, 1]. We
define a sequence {πn}n ⊂ P (X ) as

πn(dx1 | x2) =

{
1[0,1](x1) dx1, x2 ̸∈ An

δ0(dx1), x2 ∈ An
, πn(dx2) = 1[0,1](x2) dx2,

where 1A(x) dx denotes the uniform measure on A. Define now

π(dx1,dx2) = 1[0,1](x1)1[0,1](x2)dx1dx2

and denote C = {0} ×An. For every B ⊂ X we have

|πn(B)− π(B)| ≤ |πn (B ∩ C)− π (B ∩ C) |+ |πn (B ∩ Cc)− π (B ∩ Cc) |
= πn (B ∩ C) ≤ πn (C) .

Therefore we conclude
∥πn − π∥TV ≤ πn (C) → 0,

as n → ∞. However, if Pn and P are the operators of the associated Gibbs samplers, for
every x ∈ X it holds

∥Pn(x, ·)− P (x, ·)∥TV ≥ |Pn(x, C)− P (x, C)|,

so that, since x2 ∈ An infinitely often, we get

∥Pn(x, ·)− P (x, ·)∥TV = 1

infinitely often. Incidentally, it is not difficult to show that Gap(Pn) = 0 for every n, while
Gap(P ) = 1. Example 1.4 shows that this mismatch may hold under significantly less
pathological scenarios.

A.2 Equality of the stationary distributions does not imply close-
ness of the transition operators

Let π1 = π2 = π, with π the standard Gaussian distribution. Moreover, let

P1(x, ·) = ϵπ(·) + (1− ϵ)δx(·) and P2(x, ·) = ϵπ(·) + (1− ϵ)δ−x(·),

with ϵ ∈ [0, 1). P1 and P2 are uniformly ergodic transition operators with invariant distri-
bution π. Let µ be the truncation of π on the positive real numbers: it is easy to show
that µ ∈ N (π, 2). However

∥µP1 − µP2∥TV ≥ (1− ϵ) [µ((0,∞))− µ((−∞, 0])] = 1− ϵ.

Moreover, it holds that ∥µ− π∥TV = 1/2, so that we conclude

2 ∥µ− π∥TV − ϵ ≤ ∥µP1 − µP2∥TV ≤ 2 ∥µ− π∥TV .
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A.3 Convergence of the stationary distribution in Wasserstein dis-
tance does not imply convergence of the mixing times for Gibbs
sampler operators

Let X = R2 and π̄n(dx) = N(x1 | 0, 1/n)N(x2 | 0, 1/n)dx1dx2. Define πn to be the
truncation of π̄n on the set

A = {(−∞, 0]× (−∞, 0]}
⋃

{[0,+∞)× [0,+∞)} .

Let f : X → R be a Lipschitz function with constant 1. Then it holds∫
X
[f(x1, x2)− f(0, 0)]πn(dx) ≤

∫
X

√
x21 + x22 πn(dx) → 0,

as n → ∞, so that ∥πn − π∥W → 0, where π(dx) = δ(0,0)(x) and ∥·∥W denotes the
Wasserstein distance.

If P is the kernel of the Gibbs sampler targeting π, then it is immediate to show that

sup
µ∈N (π,M)

∥µP − π∥W = 0

for every M ≥ 1, so that the mixing times in Wasserstein distance are equal to 1 for every
ϵ > 0.

Instead, denote with µn the truncation of πn on A1 = (−∞, 0]× (−∞, 0]. It is easy to
show that µn ∈ N (πn, 2), but

µnP
t
n(A1)− πn(A1) =

1

2

for every n and t, where Pn is the kernel of the Gibbs sampler targeting πn. Since the
Wasserstein distance is stronger than the weak one, there exists an absolute constant c
such that ∥µnP tn − πn∥W ≥ c for every n and t. Therefore, with ϵ small enough and
M ≥ 2, the mixing times of Pn in Wasserstein distance are equal to infinity for every n.

A.4 Convergence of the stationary distribution does not imply
convergence of the spectral gaps for Gibbs operators

Let X = R2 and
π(dx) = N(x1 | 0, 1)N(x2 | 0, 1)dx1dx2,

where N(x | µ, σ2) is the density function of a gaussian distribution with mean µ and
variance σ2. Define πn to be the truncation of π on the set An, where

An = {(−∞, n]× (−∞, n]}
⋃

{[n,+∞)× [n,+∞)} .

If Pn and P are the operators of the associated Gibbs samplers, it is not difficult to show
that

∥πn − π∥TV → 0 and ∥Pn(x, ·)− P (x, ·)∥TV → 0

as n→ ∞, for every x ∈ X . However, if Bn = (−∞, n]× (−∞, n] we have

πn(Bn) > 0 and

∫
Bn

Pn (x, B
c
n)πn(dx) = 0,

so that Gap(Pn) = 0 for every n, while Gap(P ) = 1.
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Appendix B Regularity assumptions (B4)-(B6) for The-
orem 4.2

Let

M (p)
s (ψ | y) = E [T ps (θj) | Yj = y, ψ] , (36)

M
(p)
s,s′(ψ | y) = E [T ps (θj)T

p
s′(θj) | Yj = y, ψ] , (37)

be the posterior moments of T given ψ, denoteM (p)(ψ | y) =
(
M

(p)
1 (ψ | y), . . . ,M (p)

S (ψ | y)
)
∈

RS and

[C(ψ)]s,d = EYj

[
∂ψd

M (1)
s (ψ | Yj)

]
, [V (ψ)]s,s′ = EYj [Cov (Ts(θj), Ts′(θj) | Yj , ψ)] ,

(38)
with s, s′ = 1, . . . S and d = 1, . . . , D. Moreover we write Bδ for the ball of center ψ∗ and
radius δ, and denote expectations with respect to the law of Yj as defined in (B1) by EYj

[·].

(B4) The expectation M
(p)
s (ψ | y) is well defined for every y and p = 1, . . . , 6. More-

over, there exist δ4 > 0 and C finite constant such that for every ψ ∈ Bδ4 it holds

EYj

[∣∣∣∂ψd
M

(6)
s (ψ | Yj)

∣∣∣] < C, EYj

[∣∣∣∂ψd
∂ψd′M

(1)
s (ψ | Yj)

∣∣∣] < C,

EYj

[∣∣∣∂ψd
M

(1)
s,s′(ψ | Yj)

∣∣∣] < C and EYj

[∣∣∣∂ψd

{
M

(1)
s (ψ | Yj)M (1)

s′ (ψ | Yj)
}∣∣∣] < C for

s, s′ = 1, . . . , S and d, d′ = 1, . . . , D. Finally, the matrix V (ψ∗) defined in (38) is non
singular.

Assumption (B4) can be understood as a smoothness condition. The posterior distribution
of T should not change considerably, if we move from ψ∗ to a sufficiently close ψ: this
is measured in terms of the derivative of the posterior moments, that must be finite in
average. Thanks to (B4) we can prove a suitable conditional Central Limit Theorem to
show convergence of a rescaled version of T , conditional to ψ and Y1:J .

We define the posterior characteristic function of T (θj) = (T1(θj), . . . , TS(θj)) and∑k
j=1 T (θj), given ψ, as φ (t | Yj , ψ) = E

[
eit

⊤T (θj) | Yj , ψ
]
for t ∈ RS . and φ(k) (t | Y1:k, ψ) =∏k

j=1 φ (t | Yj , ψ), respectively. We will assume:

(B5) There exist k ≥ 1 and δ5 > 0 such that

sup
ψ∈Bδ5

∫
RS

∣∣∣φ(k) (t | Y1:k, ψ)
∣∣∣2 dt <∞,

for almost every Y1, . . . , Yk
iid∼ Qψ∗ .

(B6) There exist k′ ≥ 1 and δ6 > 0 such that

sup
ψ∈Bδ6

sup
|t|>ϵ

∣∣∣φ(k′) (t | Y1:k′ , ψ)
∣∣∣ < ϕ(ϵ),

for almost every Y1, . . . , Yk
iid∼ Qψ∗ , with ϕ(ϵ) < 1 for every ϵ > 0.

Assumptions (B5) and (B6) allow the convergence of T to hold for the total variation
distance, that is stronger than the weak one, proved through (B4). Loosely speaking,
integrability of the characteristic function and its strictly positive distance from 1 guarantee
that the distribution is far from being discrete: the latter is exactly the case where weak
convergence does not translate to stronger metrics. The problem of proving Central Limit
theorems in total variation distance has received considerable attention over the decades:
it can be tackled with Fourier-based techniques [47, 61], as we do here, but also with Stein’s
method (see [60] for a survey), Malliavin calculus (e.g. [4]) or through bounds based on
entropy (e.g. [9]). Conditions (B5) and (B6) are somewhat reminiscent of the ones in
Theorem 19.3 in [8].
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Appendix C Proofs

C.1 Statement and proof of Lemma C.1

Lemma C.1. Let N ⊂ P(X ) and π ∈ P(X ). Then

sup
µ∈N

inf
{
t ≥ 1 :

∥∥µP t − π
∥∥
TV

< ϵ
}
= inf

{
t ≥ 1 : sup

µ∈N

∥∥µP t − π
∥∥
TV

< ϵ

}
,

for every Markov transition kernel P .

Proof. Let

t(1) = sup
µ∈N

inf
{
t ≥ 1 :

∥∥µP t − π
∥∥
TV

< ϵ
}
, t(2) = inf

{
t ≥ 1 : sup

µ∈N

∥∥µP t − π
∥∥
TV

< ϵ

}
.

Assume t(1) <∞. Then
∥∥∥µP t(1) − π

∥∥∥
TV

< ϵ for every µ ∈ N . This implies

sup
µ∈N

∥∥∥µP t(1) − π
∥∥∥
TV

< ϵ,

i.e. t(2) ≤ t(1). With a similar reasoning, if t(2) < ∞ we have t(1) ≤ t(2). Therefore
t(1) = t(1) if either t(1) <∞ or t(2) <∞.

Assume now t(1) = ∞ and fix t∗ > 0. By definition of t(1) there exists µ ∈ N such that∥∥∥µP t∗ − π
∥∥∥
TV

≥ ϵ,

that implies

sup
µ∈N

∥∥∥µP t∗ − π
∥∥∥
TV

≥ ϵ,

i.e. t(2) > t∗. Since t∗ is arbitrary, we have t(2) = ∞. With a similar reasoning, if t(2) = ∞
it holds t(1) = ∞.

C.2 Statement and proof of Lemma C.2

Lemma C.2. Let M ≥ 1, π ∈ P(X ), µ ∈ N (π,M) and P be a π-invariant Markov
transition kernel. Then µP t ∈ N (π,M), for every t ∈ N.

Proof. Let A ⊆ X . Since µ ∈ N (π,M) and P is π-invariant, we have (µP )(A) ≤
M(πP )(A) =Mπ(A). Thus µP ∈ N (π,M) and the result follows by induction on t.

C.3 Proof of Lemma 2.1

Proof. Let P̂n = Pn ◦ ϕ−1
n be the push-forward operator of Pn under ϕn, defined as

P̂n(x, B) = Pn
(
ϕ−1
n (x), ϕ−1

n (B)
)

(39)

for every x ∈ ϕn(X ) and B ⊆ X . Since ϕn is an injective transformation, P̂n is a
well-defined Markov transition kernel (see e.g. Lemma 1 in [42]). Moreover, since ϕn is
coordinate-wise as in (7) we have P̂n = P̂n,1 . . . P̂n,K , where

P̂n,i (x, Sx,i,A) = Pn,i

(
ϕ−1
n (x), Sϕ−1

n (x),i,ϕ−1
n,i(A)

)
=

∫
ϕ−1
n,i(A)

πn

(
dyi | ϕ−1

n (x)(−i)
)

=

∫
A

π̃n

(
dyi | x(−i)

)
, A ⊂ Xi,
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so that P̂n is exactly the operator of the Gibbs sampler targeting π̃n, i.e. P̃n = P̂n.
Therefore, since ϕn is an injective transformation, by Corollary 2 in [52] we have∥∥µnP tn − πn

∥∥
TV

=
∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

,

with µ̃n = µn ◦ ϕ−1
n . To conclude the proof, we show that µ̃n ∈ N (π̃n,M) if and only

if µn ∈ N (πn,M). Indeed, to prove the implication from right to left, by definition of
push-forward measure we have

µ̃n(A) =µn
(
ϕ−1
n (A)

)
=

∫
ϕ−1
n (A)

dµn
dπn

(x)πn(dx) ≤Mπn
(
ϕ−1
n (A)

)
=Mπ̃n(A),

for every set A ⊂ X . Equivalently we obtain the other implication.

C.4 Proof of Proposition 2.2

For any π ∈ P(X ) and Q Markov transition kernel with state space X , we define (π ⊗Q) ∈
P (X × X ) as

(π ⊗Q) (B) =

∫
B

Q(x,dy)π(dx)

for every B ⊆ X × X .

Lemma C.3. Let π1, π2 ∈ P(X ) and Q be a Markov transition kernel with state space X .
Then

∥π1 ⊗Q− π2 ⊗Q∥TV = ∥π1 − π2∥TV .

Proof. By definition of total variation distance we have

∥π1 ⊗Q− π2 ⊗Q∥TV

= sup
f :X×X → [0,1]

∣∣∣∣∫
X×X

f(x,y)Q(x,dy)π1(dx)−
∫
X×X

f(x,y)Q(x,dy)π2(dx)

∣∣∣∣
= sup
f :X×X → [0,1]

∣∣∣∣∫
X

(∫
X
f(x,y)Q(x,dy)

)
π1(dx)−

∫
X

(∫
X
f(x,y)Q(x,dy)

)
π2(dx)

∣∣∣∣
≤ sup
g :X → [0,1]

∣∣∣∣∫
X
g(x)π1(dx)−

∫
X
g(x)π2(dx)

∣∣∣∣ = ∥π1 − π2∥TV .

Also, taking f(x,y) = g(x) for every (x,y) ∈ X × X we have

∥π1 − π2∥TV = sup
g :X → [0,1]

∣∣∣∣∫
X
g(x)π1(dx)−

∫
X
g(x)π2(dx)

∣∣∣∣
≤ sup
f :X×X → [0,1]

∣∣∣∣∫
X×X

f(x,y)Q(x,dy)π1(dx)−
∫
X×X

f(x,y)Q(x,dy)π2(dx)

∣∣∣∣
=∥π1 ⊗Q− π2 ⊗Q∥TV .

For j = 1, 2, denote the kernel of the Gibbs sampler targeting πj as Pj = Pj,1 . . . Pj,K ,
where

Pj,i (x, Sx,i,A) =

∫
A

πj

(
dyi | x(−i)

)
, A ⊂ Xi,

with Sx,i,A = {y ∈ X : yj = xj ∀ j ̸= i and yi ∈ A} as in the main. By definition, Pi(x,dy)
depends only on x(−i). Thus we can define

(
π(−i) ⊗Q

)
∈ P

(
X (−i) ×X

)
as(

π(−i) ⊗ Pi

)
(B) =

∫
B

Pi

(
x(−i),dy

)
π
(
dx(−i)

)
,
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for every B ⊂ X (−i) ×X and similarly for

(
π(−1) ⊗ P

)
∈ P

(
X (−1) ×X

)
and

π(−i) ⊗
∏
j≥i

Pj

 ∈ P
(
X (−i) ×X

)
,

with i = 1 . . . ,K. Given this notation we have the following Lemmas.

Lemma C.4. We have

∥µP1 − µP2∥TV ≤M
∥∥∥π(−1)

2 ⊗ P1 − π
(−1)
2 ⊗ P2

∥∥∥
TV

for every µ ∈ N (π2,M) and M ≥ 1.

Proof. By definition of total variation distance

∥µP1 − µP2∥TV = sup
f :X → [0,1]

∣∣∣∣∫
X
f(y)µP1(dy)−

∫
X
f(y)µP2(dy)

∣∣∣∣ .
Then, by definition of N (π2,M), it holds

∥µP1 − µP2∥TV

=M sup
f :X → [0,1]

∣∣∣∣∫
XK

f(y)

M

∫
X (−1)

dµ(−1)

dπ
(−1)
2

(x(−1))P1(x
(−1),dy)π2

(
dx(−1)

)
−
∫
X

f(y)

M

∫
X (−1)

dµ(−1)

dπ
(−1)
2

(x(−1))P2(x
(−1),dy)π2

(
dx(−1)

)∣∣∣∣
≤M sup

g :X (−1)×X → [0,1]

∣∣∣∣∫
X (−1)×X

g(x(−1),y)P1

(
x(−1),dy

)
π2

(
dx(−1)

)
−
∫
X (−1)×X

g(x(−1),y)P2

(
x−1,dy

)
π2

(
dx(−1)

)∣∣∣∣
=M

∥∥∥π(−1)
2 × P1 − π

(−1)
2 ⊗ P2

∥∥∥
TV

.

Lemma C.5. We have∥∥∥∥∥∥π(−i)
1 ⊗

∏
j≥i

P1,j − π
(−i)
2 ⊗

∏
j≥i

P2,j

∥∥∥∥∥∥
TV

≤ 2 ∥π1 − π2∥TV

+

∥∥∥∥∥∥π(−(i+1))
1 ⊗

∏
j≥i+1

P1,j − π
(−(i+1))
2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

(40)
for every i = 1, . . . ,K − 1 and∥∥∥π(−K)

1 ⊗ P1,K − π
(−K)
2 ⊗ P2,K

∥∥∥
TV

= ∥π1 − π2∥TV .

Proof. We start by proving (40). Notice that, by definition of P1,i and P2,i, we have∫
X (−i)×X

g
(
x(−i),y

)∏
j≥i

P1,j

(
x(−i),dy

)
π
(−i)
1

(
dx(−i)

)
=

∫
X×X (−i)

h
(
x,y(−i)

) ∏
j≥i+1

P1,j

(
x(−i−1),dy

)
π1 (dx)
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and ∫
X (−i)×X

g
(
x(−i),y

)∏
j≥i

P2,j

(
x(−i),dy

)
π
(−i)
2

(
dx(−i)

)
=

∫
X×X (−i)

h
(
x,y(−i)

) ∏
j≥i+1

P2,j

(
x(−i−1),dy

)
π2 (dx) ,

where g : X (−i)×X → R is any measurable function and h is the composition of g and the
function c : X (−i) ×X → X ×X (−i) that relocates the (K − 1+ i)-th element of a vector
after the (i − 1)-th element. Since there is a one-to-one relationship between functions g
and h, we have∥∥∥∥∥∥π(−i)

1 ⊗
∏
j≥i

P1,j − π
(−i)
2 ⊗

∏
j≥i

P2,j

∥∥∥∥∥∥
TV

=

∥∥∥∥∥∥π1 ⊗
∏
j≥i+1

P1,j − π2 ⊗
∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

. (41)

Then by triangular inequality and Lemma C.3 we have∥∥∥∥∥∥π1 ⊗
∏
j≥i+1

P1,j − π2 ⊗
∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

≤

∥∥∥∥∥∥π1 ⊗
∏
j≥i+1

P1,j − π2 ⊗
∏
j≥i+1

P1,j

∥∥∥∥∥∥
TV

+

∥∥∥∥∥∥π2 ⊗
∏
j≥i+1

P1,j − π2 ⊗
∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

≤ ∥π1 − π2∥TV +

∥∥∥∥∥∥π2 ⊗
∏
j≥i+1

P1,j − π2 ⊗
∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

.

(42)
Notice that

∏
j≥i+1 P1,j and

∏
j≥i+1 P2,j do not depend on xi+1 by construction, that

implies∥∥∥∥∥∥π2 ⊗
∏
j≥i+1

P1,j − π2 ⊗
∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

= sup
h :X×X → [0,1]

∣∣∣∣∫
X×X

h (x,y)
∏
j≥i+1

P1,j

(
x(−(i+1)),dy

)
π2 (dx)

−
∫
X×X

h (x,y)
∏
j≥i+1

P2,j

(
x(−(i+1)),dy

)
π2 (dx)

∣∣∣∣,
so that we have∥∥∥∥∥∥π2 ⊗

∏
j≥i+1

P1,j − π2 ⊗
∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

= sup
h :X×X → [0,1]

∣∣∣∣ ∫
X (−(i+1))×X

∫
Xi+1

h (x,y)π2

(
dxi+1 | x(−(i+1))

) ∏
j≥i+1

P1,j

(
x(−(i+1)),dy

)
π2

(
dx(−(i+1))

)
−
∫
X (−(i+1))×X

∫
Xi+1

h (x,y)π2

(
dxi+1 | x(−(i+1))

) ∏
j≥i+1

P2,j

(
x(−(i+1)),dy

)
π2

(
dx(−(i+1))

)∣∣∣∣
≤

∥∥∥∥∥∥π(−(i+1))
2 ⊗

∏
j≥i+1

P1,j − π
(−(i+1))
2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

.
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Moreover, it is clear that∥∥∥∥∥∥π(−(i+1))
2 ⊗

∏
j≥i+1

P1,j − π
(−(i+1))
2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

≤

∥∥∥∥∥∥π2 ⊗
∏
j≥i+1

P1,j − π2 ⊗
∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

,

thus combining the two above inequalities we get∥∥∥∥∥∥π2 ⊗
∏
j≥i+1

P1,j − π2 ⊗
∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

=

∥∥∥∥∥∥π(−(i+1))
2 ⊗

∏
j≥i+1

P1,j − π
(−(i+1))
2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

.

(43)
Combining (41), (42) and (43) with the fact that∥∥∥∥∥∥π(−(i+1))

2 ⊗
∏
j≥i+1

P1,j − π
(−(i+1))
2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

≤∥π1 − π2∥TV

+

∥∥∥∥∥∥π(−(i+1))
1 ⊗

∏
j≥i+1

P1,j − π
(−(i+1))
2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

we finally obtain (40). When i = K the result follows by noticing that

π
(−K)
1 ⊗ P1,K = π1 and π

(−K)
2 ⊗ P2,K = π2

by definition.

Proof of Proposition 2.2. Without loss of generality, let µ ∈ N (π2,M). By Lemma C.4
and the triangle inequality we have

∥µP1 − µP2∥TV ≤M
∥∥∥π(−1)

2 ⊗ P1 − π
(−1)
2 ⊗ P2

∥∥∥
TV

≤M ∥π1 − π2∥TV +M
∥∥∥π(−1)

1 ⊗ P1 − π
(−1)
2 ⊗ P2

∥∥∥
TV

and the result follows by applying K times Lemma C.5.

C.5 Proof of Lemma 2.3

Proof. With an abuse of notation, let π1(x), π2(x) and µ1(x) be densities of π1, π2 and
µ1 with respect to a common dominating measure, such as τ = π1 + π2. Let µ̄ be the
measure on X with density µ̄(x) = min {µ1(x),Mπ2(x)} for x ∈ X . By construction µ̄ is a
sub-probability since

µ̄(X ) =

∫
X
µ̄(x)τ(dx) ≤

∫
X
µ1(x)τ(dx) = 1.

Therefore, we can define a probability distribution µ2 ∈ P(X ) with density

µ2(x) = µ̄(x) + α max {Mπ2(x)− µ1(x), 0} , x ∈ X

where

α =
1−

∫
µ̄(x)τ(dx)∫

X max {Mπ2(x)− µ1(x), 0} τ(dx)
∈ (0, 1).

Notice that µ2(x) ≤Mπ2(x) for every x ∈ X since

µ2(x) =

{
Mπ2(x), if µ1(x) > Mπ2(x) ,

(1− α)µ1(x) + αMπ2(x), if µ1(x) ≤Mπ2(x) .
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Thus µ2 ∈ N (π2,M). By definition of total variation distance and of µ̃, we have

∥µ1 − µ2∥TV =

∫
X
max {µ1(x)− µ2(x), 0} τ(dx) =

∫
X
max {µ1(x)−Mπ2(x), 0} τ(dx)

≤M
∫
X
max {π1(x)− π2(x), 0} τ(dx) =M ∥π1 − π2∥TV .

C.6 Proof of Theorem 2.4

Proof. By Lemma 2.1 the statement is equivalent to

lim
n→∞

sup
µ̃n∈N (π̃n,M)

∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

= sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

(44)

in Q(n)-probability, where P̃n is the kernel of the Gibbs sampler targeting π̃.
Consider ∥µ̃nP̃ tn − π̃n∥TV with µ̃n ∈ N (π̃n,M). By Lemma 2.3, there exists µ̃ ∈

N (π̃,M) such that
∥µ̃n − µ̃∥TV ≤M ∥π̃n − π̃∥TV . (45)

By the triangular inequality we can decompose ∥µ̃nP̃ tn − π̃n∥TV as follows∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

≤
∥∥∥µ̃nP̃ tn − µ̃P̃ tn

∥∥∥
TV

+
∥∥∥µ̃P̃ tn − µ̃P̃ t

∥∥∥
TV

+
∥∥∥µ̃P̃ t − π̃

∥∥∥
TV

+ ∥π̃n − π̃∥TV .
(46)

Combining (45) with the monotonicity of the total variation distance with respect to the
application of transition kernels, we obtain∥∥∥µ̃nP̃ tn − µ̃P̃ tn

∥∥∥
TV

≤ ∥µ̃n − µ̃∥TV ≤M ∥π̃n − π̃∥TV . (47)

For the second term in (46), we want to prove that if µ̃ ∈ N (π̃,M) we have∥∥∥µ̃P̃ tn − µ̃P̃ t
∥∥∥
TV

≤ 2MKt ∥π̃n − π̃∥TV (48)

for every t ≥ 1. Indeed, the case t = 1 holds by Proposition 2.2. Assume now (48) holds
for t− 1, with t ≥ 2. Then by the triangular inequality we have∥∥∥µ̃P̃ tn − µ̃P̃ t

∥∥∥
TV

≤
∥∥∥µ̃P̃nt − µP̃ t−1P̃n

∥∥∥
TV

+
∥∥∥µP̃ t − µP̃ t−1P̃n

∥∥∥
TV

≤
∥∥∥µ̃P̃ t−1

n − µ̃P̃ t−1
∥∥∥
TV

+
∥∥∥µP̃ t−1P̃ − µP̃ t−1P̃n

∥∥∥
TV

.

By induction hypothesis we have∥∥∥µ̃P̃ t−1
n − µ̃P̃ t−1

∥∥∥
TV

≤ 2MK(t− 1) ∥π̃n − π̃∥TV . (49)

Moreover, by Lemma C.2 we have that µ̃P̃ t−1 ∈ N (π̃,M), so that from the case t = 1 we
obtain ∥∥∥µP̃ t−1P̃ − µP̃ t−1P̃n

∥∥∥
TV

≤ 2MK ∥π̃n − π̃∥TV . (50)

Then (48) follows by (49) and (50). Combining (46), (47) and (48), for every µ̃n ∈
N (π̃n,M) there exists µ̃ ∈ N (π̃,M) such that∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

≤ (2MKt+M + 1) ∥π̃n − π̃∥TV +
∥∥∥µ̃P̃ t − π̃n

∥∥∥
TV

.
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Thus

sup
µ̃n∈N (π̃n,M)

∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

≤ (2MKt+M + 1) ∥π̃n − π̃∥TV + sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

.

It follows that, for any ϵ > 0, we have

Q(n)

(
sup

µ̃n∈N (π̃n,M)

∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

− sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

≥ ϵ

)
≤ Q(n)

(
∥π̃n − π̃∥TV ≥ (2MKt+M + 1)−1ϵ

)
→ 0,

(51)

as n→ ∞ by (A1) and (2MKt+M + 1)−1ϵ > 0.
We now prove the reverse inequality of (51) to establish (44). Given µ̃ ∈ N (π̃,M), by

Lemma 2.3, there exists µ̃n ∈ N (π̃n,M) such that ∥µ̃− µ̃n∥TV ≤ M ∥π̃n − π̃∥TV . Then

we proceed analogously to above, first decomposing
∥∥∥µ̃P̃ t − π̃

∥∥∥
TV

as∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

≤
∥∥∥µ̃P̃ t − µ̃P̃ tn

∥∥∥
TV

+
∥∥∥µ̃P̃ tn − µ̃nP̃

t
n

∥∥∥
TV

+
∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

+ ∥π̃n − π̃∥TV
(52)

and then applying Proposition 2.2 using an argument analogous to above to get∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

≤
∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

+ (2MKt+M + 1) ∥π̃n − π̃∥TV .

It follows

sup
µn∈N (π̃n,M)

∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

≥ sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

− (2MKt+M + 1) ∥π̃n − π̃∥TV .

Fixing ϵ > 0 arbitrary constant we have

Q(n)

(
sup

µ̃n∈N (π̃n,M)

∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

− sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

≤ −ϵ

)

≤ Q(n)

(
∥π̃n − π̃∥TV ≥ ϵ

2MKt+M + 1

)
→ 0,

(53)

as n → ∞ by (A1) and (2MKt +M + 1)−1ϵ > 0. The result follows by combining (51)
and (53).

C.7 Proof of Corollary 2.5

Proof. Thanks to Lemma C.1 we can write

t
(n)
mix(ϵ,M) = inf

{
t ≥ 1 : sup

µn∈N (πn,M)

∥∥µnP tn − πn
∥∥
TV

< ϵ

}
and

t̃mix(ϵ,M) = inf

{
t ≥ 1 : sup

µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

< ϵ

}
.

Assume (A1) and denote t∗ = t̃mix(ϵ,M) < ∞ for brevity. By definition of t∗ we have

δ = supµ̃∈N (π̃,M)

∥∥∥µ̃P̃ t∗ − π̃
∥∥∥
TV

< ϵ. Thus

Q(n)
(
t
(n)
mix(ϵ,M) ≤ t∗

)
= Q(n)

(
sup

µn∈N (πn,M)

∥∥∥µnP t∗n − πn

∥∥∥
TV

< ϵ

)

= Q(n)

(
sup

µn∈N (πn,M)

∥∥∥µnP t∗n − πn

∥∥∥
TV

− sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t∗ − π̃
∥∥∥
TV

< ϵ− δ

)
→ 1,
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as n→ ∞ by Theorem 2.4.
As regards the second part of the statement, let (A1) hold and fix T > 0. Denote

δ = supµ̃∈N (π̃,M)

∥∥∥µ̃P̃T − π̃
∥∥∥
TV

and notice that by assumption δ ≥ ϵ > ϵ. Thus

lim inf
n→∞

Q(n)
(
t
(n)
mix(ϵ,M) < T

)
= lim inf

n→∞
Q(n)

(
sup

µn∈N (πn,M)

∥∥µnPTn − πn
∥∥
TV

< ϵ

)

= lim inf
n→∞

Q(n)

(
δ − sup

µn∈N (πn,M)

∥∥µnPTn − πn
∥∥
TV

≥ δ − ϵ

)
→ 0,

as n→ ∞ by Theorem 2.4.

C.8 Proof of Corollary 2.6

We need a preliminary well known lemma, whose proof we include for self-containedness.

Lemma C.6. Let P be a Gibbs sampler kernel with K = 2 and target π ∈ P(X1 × X2).
Then ∥∥µP t − π

∥∥
TV

≤ M

2
(1−Gap(P ))

t
,

for every µ ∈ N (π,M) and t ≥ 1.

Proof. Let µ ∈ N (π,M) and t ≥ 1. By Corollary 1 in [52] we have∥∥µP t − π
∥∥
TV

=
∥∥∥µ(−1)P̂ t − π(−1)

∥∥∥
TV

, (54)

where P̂ is the Markov transition kernel on X2 defined as

P̂ (x2,dy2) =

∫
X1

π(dy2 | y1)π(dy1 | x2) x2 ∈ X2 .

Note that P̂ is π(−1)-reversible. Also, for every f ∈ L2(π(−1)), i.e. f : X2 → R such that
∥f∥22 = π(−1)(f2) is finite, we have∫

X 2
2

f(x2)f(y2)P̂ (x2,dy2)π(dx2)

=

∫
X 2

2

f(x2)f(y2)

∫
X1

π(dy2 | y1)π(dy1 | x2)π(dx2)

=

∫
X1

[∫
X2

f(y2)π(dy2 | y1)
] [∫

X2

f(x2)π(dx2 | y1)
]
π(dy1)

=

∫
X1

[∫
X2

f(y2)π(dy2 | y1)
]2
π(dy1) ≥ 0,

so that P̂ is also positive semi-definite. Since P̂ is reversible and positive semi-definite, we
have (see e.g. equation (5) in [2]) that∣∣∣∣∣∣P̂ t(f)∣∣∣∣∣∣

2
≤ ||f ||2

(
1−Gap(P̂ )

)t
, (55)

for every f such that π(f) = 0. Choosing f = dµ(−1)

dπ(−1) − 1 and using the reversibility of P̂
(see e.g. Section 2.1 in [33]) we also have∥∥∥µ(−1)P̂ t − π(−1)

∥∥∥
TV

≤ 1

2

∣∣∣∣∣∣µ(−1)P̂ t(f)
∣∣∣∣∣∣
2
, (56)
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where µ(−1)P̂ t(f) =
∫
f(x2)µ

(−1)P̂ t(dx2). With the same choice of f , we have

||f ||22 =

∫ (
dµ(−1)

dπ(−1)
(x2)− 1

)2

π−1(dx2) ≤M2

since µ(−1) ∈ N (π(−1),M). Thus, combining (55) with (56) we obtain∥∥µP t − π
∥∥
TV

≤ M

2

(
1−Gap(P̂ )

)t
.

Finally, for every f : X2 → R with ||f ||2 <∞ it holds∫
X 2

2
[f(y2)− f(x2)]

2
π(dx2)P̂ (x2,dy2)

2Var(−1)
π (f)

=

∫
X 2 [g(y)− g(x)]

2
π(dx)P (x,dy)

2Varπ(f)
,

where g(x) = f(x2). Therefore Gap(P̂ ) ≥ Gap(P ) and we get∥∥µP t − π
∥∥
TV

≤ M

2
(1−Gap(P ))

t
,

as desired.

Proof of Corollary 2.6. By Lemma C.6 we obtain

t̃mix(ϵ,M) ≤ 1 +
log(M/2)− log(ϵ)

− log
(
1−Gap(P̃ )

) ,
and the result follows by the first part of Corollary 2.5.

C.9 Proof of Proposition 3.2

Proof. By Theorem 3.1, assumption (A1) is satisfied with

ϕn(ψ) =
√
n(ψ − ψ∗)− I−1(ψ∗)∆n,ψ∗ ,

and π̃ = N
(
0, I−1(ψ∗)

)
. Since π̃ is the distribution of a multivariate normal with non

singular covariance matrix, then it is easy to show t̃mix(ϵ,M) < ∞ for every (M, ϵ) ∈
[1,∞)× (0, 1), see e.g. Theorem 2 in [1].

C.10 Statement and proof of Corollary C.7

We illustrate the result of Proposition 3.2 on a simple example of model (11) with normal
likelihood and unknown mean and precision, that is

f(y | µ, τ) = N
(
y | µ, τ−1

)
, (57)

where K = 2 and ψ = (µ, τ). Notice that, even if a conjugate prior exists, it is common to
place independent priors on µ and τ , for which the Gibbs sampler defined in (3) becomes
a reasonable option.

Corollary C.7. Consider model (11) with likelihood as in (57). Let Yi
iid∼ Qψ∗ , with Qψ∗

admitting density f(y | ψ∗) and ψ∗ = (µ∗, τ∗) ∈ R × R+. Moreover let p0 be absolutely
continuous in a neighborhood of ψ∗ with a continuous positive density at ψ∗. Consider the
Gibbs sampler defined in (3). Then, for every M ≥ 1 and ϵ > 0 we have

Q
(n)
ψ∗

(
t
(n)
mix(ϵ,M) ≤ 1

)
→ 1,

as n→ ∞.
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For the proof we need a preliminary Lemma, whose proof we include for self-containedness
and because it will be useful to refer to later on.

Lemma C.8. Consider the same setting of Corollary C.7. Then conditions (12) are sat-
isfied.

Proof of Lemma C.8. Define

Ψ = Ψ1 ×Ψ2 = [µ∗ − 1, µ∗ + 1]×
[
τ∗

2
, 2τ∗

]
compact neighborhood of ψ∗ and

un(Y1, . . . , Yn) = 1− 1g1(Y1:n)≤c1 1g2(Y1:n)≤c2 ,

where c1 = 1/2, c2 = (2τ∗)−1 and

g1(Y1:n) =
∣∣Ȳ − µ∗∣∣ , and g2(Y1:n) =

∣∣∣∣∣ 1n
n∑
i=1

(
Yi − Ȳ

)2 − 1

τ∗

∣∣∣∣∣ ,
with Ȳ = 1

n

∑n
i=1 Yi. Since Yi

iid∼ N(µ, τ−1), then g1(Y1:n) and g2(Y1:n) are equal in
distribution, respectively, to

h1(Z1:n, µ, τ) =

∣∣∣∣ 1√
τ
Z̄ + µ− µ∗

∣∣∣∣ , h2(Z1:n, µ, τ) =

∣∣∣∣∣1τ 1

n

n∑
i=1

(
Zi − Z̄

)2 − 1

τ∗

∣∣∣∣∣ ,
where Zi

iid∼ N(0, 1). By the Law of Large numbers we have

Z̄ → 0, and
1

n

n∑
i=1

(
Zi − Z̄

)2 → 1

almost surely as n→ ∞. This implies∫
un(y1, . . . , yn)

n∏
i=1

f(dyi | ψ∗) ≤P (h1(Z1:n, µ
∗, τ∗) > c1)

+ P (h2(Z1:n, µ
∗, τ∗) > c2) → 0,

as n→ ∞. Also, we have

sup
ψ ̸∈Ψ

∫
[1− un(y1, . . . , yn)]

n∏
i=1

f(dyi | ψ) ≤ sup
τ ̸∈Ψ2

P (h2(Z1:n, µ, τ) ≤ c2)

+ sup
µ̸∈Ψ1, τ∈Ψ2

P (h1(Z1:n, µ, τ) ≤ c1) .

Now notice that by the reverse triangle inequality we have

sup
τ ̸∈Ψ2

P (h2(Z1:n, µ, τ) ≤ c2) = sup
τ ̸∈Ψ2

P

(∣∣∣∣∣1τ 1

n

n∑
i=1

(
Zi − Z̄

)2 − 1

τ∗

∣∣∣∣∣ ≤ c2

)

≤ sup
τ ̸∈Ψ2

P

(∣∣∣∣∣ 1n
n∑
i=1

(
Zi − Z̄

)2 − 1

∣∣∣∣∣ ≥ ∣∣∣1− τ

τ∗

∣∣∣− c2τ

)
→ 0,

by definition of Ψ2, as n→ ∞. Finally, again by reverse triangle inequality, we have

sup
µ̸∈Ψ1, τ∈Ψ2

P (h1(Z1:n, µ, τ) ≤ c1) ≤ sup
µ̸∈Ψ1, τ∈Ψ2

P
(
|Z̄| ≥

√
τ (|µ− µ∗| − c1)

)
→ 0,

as n→ ∞.
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Proof of Corollary C.7. In this case ψ = (µ, τ) and

f(y | ψ) =
√

τ

2π
e−

τ
2 (y−µ)

2

.

By Lemma C.8 conditions (12) are satisfied. Also, the map ψ → f(y | ψ) is one-to-one, the
map ψ →

√
f(y | ψ) is continuously differentiable, and the Fisher information matrix is

I(ψ) =
[
τ
2 0
0 1

2τ

]
,

which is non singular and continuous as a function of ψ. Thus the conditions of Theorem
3.1 and Proposition 3.2 are satisfied. Finally, since we are considering a two-blocks Gibbs
sampler, by Corollary 2.6 we have

T (ψ∗, ϵ,M) = 1 +
log(M/2)− log(ϵ)

− log
(
1−Gap(P̃ )

) ,
where P̃ is the Gibbs sampler targeting a bivariate normal distribution with covariance
matrix given by I−1(ψ∗). Since the latter is diagonal, the Gibbs sampler coincides with
independent sampling, so that Gap(P̃ ) = 1.

C.11 Proof of Lemma 4.1

Proof. Denote by
(
θ(t), ψ(t)

)
t≥1

the Markov chain with kernel PJ defined in (15). The

Markovianity of the induced sequence
(
T (t), ψ(t)

)
t≥1

follows by the one of
(
ψ(t)

)
t≥1

, which

is well known [15, 52]. We now show that
(
T (t), ψ(t)

)
t≥1

admits P̂J as kernel. The condi-

tional distribution of
(
T (t), ψ(t)

)
given

(
T (t−1), ψ(t−1)

)
is given by

L
(
dT (t),dψ(t) | T (t−1), ψ(t−1)

)
= L

(
dT (t) | T (t−1), ψ(t−1)

)
L
(
dψ(t) | T (t), ψ(t−1),T (t−1)

)
= π̂J

(
dT (t) | ψ(t−1)

)
L
(
dψ(t) | T (t), ψ(t−1)

)
,

where the last equality follows by (15) and the definition of π̂J . By the exponential family
assumption in (14), T is a set of sufficient statistics for ψ, so that

πJ (dψ | θ) = L (dψ | θ, Y1:J) = L (dψ | T (θ), Y1:J) = π̂J (dψ | T (θ)) . (58)

Combining (15) and (58) we have

L
(
dψ(t) | T (t), ψ(t−1)

)
=

∫
πJ

(
dψ(t) | θ

)
πJ

(
dθ | T (t), ψ(t−1)

)
=

∫
π̂J

(
dψ(t) | T (θ)

)
πJ

(
dθ | T (t), ψ(t−1)

)
= π̂J

(
dψ(t) | T (t)

)
(59)

since T (θ) = T (t) almost surely under πJ
(
dθ | T (t), ψ(t−1)

)
. Thus we can conclude

L
(
dT (t),dψ(t) | T (t−1), ψ(t−1)

)
= π̂J

(
dT (t) | ψ(t−1)

)
π̂J

(
dψ(t) | T (t)

)
= P̂J

((
T (t−1), ψ(t−1)

)
,
(
dT (t),dψ(t)

))
,

as desired. From the above one can easily deduce that
(
θ(t), ψ(t)

)
t≥1

and
(
T (t), ψ(t)

)
t≥1

are co-deinitializing as in [52] and thus, by Corollary 2 therein, for every µ ∈ P
(
RℓJ × RD

)
we have ∥∥µP tJ − πJ

∥∥
TV

=
∥∥∥νP̂ tJ − π̂J

∥∥∥
TV

, (60)
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where ν ∈ P
(
RS × RD

)
is the push forward of µ under (θ, ψ) 7→ (T (θ), ψ). More-

over, by (5) we have that ν ∈ N (π̂J ,M) whenever µ ∈ N (πJ ,M). It follows that

supµ∈N (πJ ,M) t
(J)
mix(ϵ, µ) ≤ supν∈N (π̂J ,M) t̂

(J)
mix(ϵ, ν). For the reverse inequality, fix ν ∈

N (π̂J ,M) and take µ(dθ,dψ) =
∫
πJ (dθ | T , ψ) ν(dT ,dψ). By (5) we have µ ∈ N (πJ ,M)

and thus (60). It follows supν∈N (π̂J ,M) t̂
(J)
mix(ϵ, ν) ≤ supµ∈N (πJ ,M) t

(J)
mix(ϵ, µ) as desired.

C.12 Proof of Lemma 4.3

Proof. The result follows immediately from Theorem 3.1, whose assumptions are given
exactly by assumption (B1)− (B3), with likelihood g(y | ψ).

C.13 Proof of Lemma 4.4

The proof is divided in two main steps: in Section C.13.1 the result is proved under the
weak metric (Lemma C.11) and it is extended to the total variation distance in Section
C.13.2.

First of all we need two technical lemmas, that we prove for completeness.

Lemma C.9. Let S and p be two positive integers. Then there exists a constant C =
C(S, p) such that

|x|p ≤ 1 + C
S∑
s=1

x2ps

for every x ∈ RS.

Proof. Since (1 − |x|p)2 ≥ 0, we have |x|p ≤ 1 + |x|2p. Moreover, by the Multinomial
Theorem, we get

|x|2p =

(
S∑
s=1

x2s

)p
=
∑
k∈P

(
p

k1 . . . kS

) S∏
s=1

x2kss ,

where P =
{
k = (k1, . . . , kS) : ks positive integer,

∑S
s=1 ks = p

}
. Since

S∏
s=1

x2kss ≤
(
max
s

|xs|
)2p

≤
S∑
s=1

x2ps ,

the result follows by choosing C =
∑

k∈P
(

p
k1 ... kS

)
.

Lemma C.10. Under assumption (B3), the random variables ∆J = (∆J,1, . . . ,∆J,D)
defined in (17) are such that for every β > 0 we have

1

Jβ
∆J,d → 0,

Q
(∞)
ψ∗ -almost surely as J → ∞ for every d = 1, . . . , D.

Proof. Recall that

∆J,d =
1√
J

J∑
j=1

[
I−1(ψ∗)∇ log g(Yj | ψ∗)

]
d
=:

1√
J

J∑
j=1

Xj,d

and I−1(ψ∗)∂ψd
log g(Yj | ψ∗) has zero mean and finite variance, by (B3). Therefore, by

Chebychev inequality

P

(∣∣∣∣ 1Jβ∆J,d

∣∣∣∣ > ϵ

)
≤ Var (X1,d)

ϵ2J1+2β
,
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for every ϵ > 0. This implies

∞∑
J=1

P

(∣∣∣∣ 1Jβ∆J,d

∣∣∣∣ > ϵ

)
≤

∞∑
J=1

Var (X1,d)

ϵ2J1+2β
<∞,

and the result follows by Borel-Cantelli Lemma.

C.13.1 Weak convergence

In order to ease the following exposition, denote

ψ(J) := ψ∗ +
ψ̃ +∆J√

J
, J ≥ 1 . (61)

The next lemma proves convergence of T̃ using the weak metric, denoted by ∥·∥W .

Lemma C.11. Define ψ̃ and T̃ as in (17) and (19), respectively. Under assumptions
(B1)− (B4), for every ψ̃ ∈ RD it holds∥∥∥L(dT̃ | Y1:J , ψ̃)−N

(
C(ψ∗)ψ̃, V (ψ∗)

)∥∥∥
W

→ 0, (62)

Q
(∞)
ψ∗ -almost surely as J → ∞.

Proof. For ease of notation, denote

µ = C(ψ∗)ψ̃ and Ξ := V (ψ∗).

By definition of M
(p)
s , we have

E
[
T ps (θj) | Yj , ψ(J)

]
=M (p)

s

(
ψ(J) | Yj

)
.

Conditional on ψ̃, the group specific statistics Ts(θj) are independent across j = 1, . . . , J .
Thus, by Lyapunov version of Central Limit Theorem, in order to obtain (62) it suffices to
show

1√
J

J∑
j=1

[
M (1)

(
ψ(J) | Yj

)
−M (1) (ψ∗ | Yj)

]
− C(ψ∗)∆J → µ (63)

1

J

J∑
j=1

Cov
(
Ts(θj), Ts′(θj) | Yj , ψ(J)

)
→ Ξs,s′ (64)

1

J3/2

J∑
j=1

EYj

[∣∣∣T (θj)−M (1) (ψ∗ | Yj)
∣∣∣3 | Yj , ψ(J)

]
→ 0, (65)

Q
(∞)
ψ∗ -almost surely as J → ∞, with s, s′ = 1, . . . , S. We prove the three above results

sequentially below, which concludes the proof of (62).

Proof of (63). For any s = 1, . . . , S, by (61) and the multivariate Taylor formula it holds

M (1)
s

(
ψ(J) | Yj

)
−M (1)

s (ψ∗ | Yj) =
D∑
d=1

ψ̃d +∆J,d√
J

∂ψd
M (1)
s (ψ∗ | Yj) +R2(Yj),

where

R2(Yj) =

D∑
d,d′=1

(ψ̃d +∆J,d)(ψ̃d′ +∆J,d′)

J

∫ 1

0

(1− t)∂ψd
∂ψd′M

(1)
s

(
ψ∗ + t

ψ̃ +∆J√
J

| Yj

)
dt.

43



Therefore

1√
J

J∑
j=1

[
M (1)
s

(
ψ(J) | Yj

)
−M (1)

s (ψ∗ | Yj)
]
=

=

D∑
d=1

(ψ̃d +∆J,d)
1

J

J∑
j=1

∂ψd
M (1)
s (ψ∗ | Yj) +

1√
J

J∑
j=1

R2(Yj) ,

(66)

where

1√
J

J∑
j=1

R2(Yj) =

D∑
d,d′=1

(ψ̃d +∆J,d)(ψ̃d′ +∆J,d′)

J1/4

1

J5/4

J∑
j=1

∫ 1

0

(1− t)∂ψd
∂ψd′M

(1)
s

(
ψ∗ + t

ψ̃ +∆J√
J

| Yj

)
dt.

(67)

As regards (67), for every d, d′ = 1, . . . , D by Lemma C.10 it holds

(ψ̃d +∆J,d)(ψ̃d′ +∆J,d′)

J1/4
=
ψ̃dψ̃d′

J1/4
+ ψ̃d

∆J,d′

J1/4
+ ψ̃d′

∆J,d

J1/4
+

∆J,d

J1/8

∆J,d′

J1/8
→ 0, (68)

Q
(∞)
ψ∗ -almost surely as J → ∞. Moreover, with the change of variables x = t/J1/4 we have

∣∣∣∣ 1

J5/4

J∑
j=1

∫ 1

0

(1− t)∂ψd
∂ψd′M

(1)
s

(
ψ∗ + t

ψ̃ +∆J√
J

| Yj

)
dt

∣∣∣∣
≤
∫ J1/4

0

1

J

J∑
j=1

∣∣∣∣∣∂ψd
∂ψd′M

(1)
s

(
ψ∗ + x

ψ̃ +∆J

J1/4
| Yj

)∣∣∣∣∣ dx
≤
∫ J1/4

−J1/4

1

J

J∑
j=1

∣∣∣∂ψd
∂ψd′M

(1)
s (ψ∗ + x | Yj)

∣∣∣ dx,
where the last inequality follows from

∣∣∣ ψ̃+∆J

J1/4

∣∣∣ ≤ 1 for J high enough, thanks to Lemma

C.10. Moreover, 1
J1/4 < δ4 for J high enough, so that∣∣∣∣ 1

J5/4

J∑
j=1

∫ 1

0

(1− t)∂ψd
∂ψd′M

(1)
s

(
ψ∗ + t

ψ̃ +∆J√
J

| Yj

)
dt

∣∣∣∣
≤
∫ δ4

δ4

1

J

J∑
j=1

∣∣∣∂ψd
∂ψd′M

(1)
s (ψ∗ + x | Yj)

∣∣∣ dx
=

1

J

J∑
j=1

∫ δ4

δ4

∣∣∣∂ψd
∂ψd′M

(1)
s (ψ∗ + x | Yj)

∣∣∣ dx.
By the Law of Large Numbers and (B4) it holds

1

J

J∑
j=1

∫ δ4

δ4

∣∣∣∂ψd
∂ψd′M

(1)
s (ψ∗ + x | Yj)

∣∣∣ dx
→
∫ δ4

−δ4
E
[∣∣∣∂ψd

∂ψd′M
(1)
s (ψ∗ + x | Yj)

∣∣∣] dx < 2Cδ4. (69)
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By combining (68) and (69), we can conclude∣∣∣∣∣∣ 1√
J

J∑
j=1

R2(Yj)

∣∣∣∣∣∣ → 0,

Q
(∞)
ψ∗ -almost surely as J → ∞. As regards (66), by the Law of Large Numbers we have

1

J

J∑
j=1

∂ψd
M (1)
s (ψ∗ | Yj) → E

[
∂ψd

M (1)
s (ψ∗ | Yj)

]
= Cs,d(ψ

∗),

that is finite thanks to (B4). Therefore, we can conclude that for any s = 1, . . . , S we have

M (1)
s

(
ψ(J) | Yj

)
−M (1)

s (ψ∗ | Yj)−
D∑
d=1

Cs,d(ψ
∗)∆J,d →

D∑
d=1

Cs,d(ψ
∗)ψ̃d,

Q
(∞)
ψ∗ -almost surely as J → ∞ and thus (63) holds.

Proof of (64). For every s, s′ = 1, . . . , S by multivariate Taylor formula it holds

Cov
(
Ts(θj), Ts′(θj) | Yj , ψ(J)

)
= Cov (Ts(θj), Ts′(θj) | Yj , ψ∗) +R1,cov(Yj),

where

R1,cov(Yj) =

D∑
d=1

ψ̃d +∆J,d√
J

∫ 1

0

(1− t)∂ψd
Cov

(
Ts(θj), Ts′(θj) | Yj , ψ∗ + t

ψ̃ +∆J√
J

)
dt.

Notice that

1

J

J∑
j=1

R1,cov(Yj) =

D∑
d=1

ψ̃d +∆J,d

J1/4

∫ 1

0

(1−t) 1

J5/4

J∑
j=1

∂ψd
Cov

(
Ts(θj), Ts′(θj) | Yj , ψ∗ + t

ψ̃ +∆J√
J

)
dt.

With the same arguments of before we have
ψ̃d+∆J,d

J1/4 → 0 and∣∣∣∣∫ 1

0

(1− t)
1

J5/4

J∑
j=1

∂ψd
Cov

(
Ts(θj), Ts′(θj) | Yj , ψ∗ + t

ψ̃ +∆J√
J

)
dt

∣∣∣∣
≤ 1

J

J∑
j=1

∫ δ4

−δ4
|∂ψd

Cov (Ts(θj), Ts′(θj) | Yj , ψ∗ + x)| dx

→
∫ δ4

−δ4
E [|∂ψd

Cov (Ts(θj), Ts′(θj) | Yj , ψ∗ + x)|] dx

Q
(∞)
ψ∗ -almost surely as J → ∞. Notice that by (B4) we have

E [|∂ψd
Cov (Ts(θj), Ts′(θj) | Yj , ψ∗ + x)|]

≤ E
[∣∣∣∂ψd

M
(1)
s,s′ (ψ

∗ + x | Yj)
∣∣∣]+ E

[∣∣∣∂ψd

{
M (1)
s (ψ∗ + x | Yj)M (1)

s′ (ψ∗ + x | Yj)
}∣∣∣]

≤ 2C,

for every x ∈ (−δ4, δ4) . Therefore, we can conclude∣∣∣∣∣∣ 1J
J∑
j=1

R1,cov(Yj)

∣∣∣∣∣∣→ 0,
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Q
(∞)
ψ∗ -almost surely as J → ∞. Thus, by the Law of Large Numbers we have

1

J

J∑
j=1

Cov (Ts(θj), Ts′(θj) | Yj , ψ∗) → E [Cov (Ts(θj), Ts′(θj) | Yj , ψ∗)] ,

Q
(∞)
ψ∗ -almost surely as J → ∞.

Proof of (65). By Lemma C.9 we have

1

J3/2

J∑
j=1

EYj

[∣∣∣T (θj)−M (1) (ψ∗ | Yj)
∣∣∣3 | Yj , ψ(J)

]

≤ 1√
J
+ C

1

J3/2

S∑
s=1

J∑
j=1

M (6)
(
ψ(J) | Yj

)
+ C

1

J3/2

S∑
s=1

J∑
j=1

[
M (1) (ψ∗ | Yj)

]6
.

By Jensen inequality
[
M (1) (ψ∗ | Yj)

]6 ≤M (6) (ψ∗ | Yj) and by the Law of Large Numbers

1

J

S∑
s=1

J∑
j=1

M (6) (ψ∗ | Yj) →
S∑
s=1

E
[
T 6
s (θj) | ψ∗] <∞

Q
(∞)
ψ∗ -almost surely as J → ∞. Thus to prove (65) it suffices to show

1

J3/2

S∑
s=1

J∑
j=1

M (6)
(
ψ(J) | Yj

)
→ 0

Q
(∞)
ψ∗ -almost surely as J → ∞. For every s = 1, . . . , S by multivariate Taylor formula it

holds
M (6)
s

(
ψ(J) | Yj

)
=M (6)

s (ψ∗ | Yj) +R1,6(Yj),

where

R1,6(Yj) =

D∑
d=1

ψ̃d +∆J,d√
J

∫ 1

0

(1− t)∂ψd
M (6)
s

(
ψ∗ + t

ψ̃ +∆J√
J

| Yj

)
dt.

Notice that

1

J

J∑
j=1

R1,6(Yj) =

D∑
d=1

ψ̃d +∆J,d

J1/4

∫ 1

0

(1− t)
1

J5/4

J∑
j=1

∂ψd
M (6)
s

(
ψ∗ + t

ψ̃ +∆J√
J

| Yj

)
dt,

and with the same arguments of before we have
ψ̃d+∆J,d

J1/4 → 0 Q
(∞)
ψ∗ -almost surely as J → ∞

and ∣∣∣∣∫ 1

0

(1− t)
1

J5/4

J∑
j=1

∂ψd
M (6)
s

(
ψ∗ + t

ψ̃ +∆J√
J

| Yj

)
dt

∣∣∣∣
≤ 1

J

J∑
j=1

∫ δ4

−δ4

∣∣∣∂ψd
M (6)
s (ψ∗ + x | Yj)

∣∣∣ dx
→
∫ δ4

−δ4
E
[∣∣∣∂ψd

M (6)
s (ψ∗ + x | Yj)

∣∣∣] dx < 2δ4C,

by (B4). Therefore, we can conclude∣∣∣∣∣∣ 1J
J∑
j=1

R1,6(Yj)

∣∣∣∣∣∣→ 0,
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Q
(∞)
ψ∗ -almost surely as J → ∞. Moreover, by the Law of Large Numbers we have

1

J

J∑
j=1

M (6)
s (ψ∗ | Yj) → E

[
M (6)
s (ψ∗ | Yj)

]
= E

[
T 6
s (θj) | ψ∗] ,

by (B1) and the definition of conditional expectation. Therefore

1

J3/2

J∑
j=1

M (6)
s

(
ψ∗ +

ψ̃d +∆J,d√
J

| Yj

)
→ 0,

from which (65) follows.

C.13.2 Total variation convergence

We extend the weak convergence to total variation using characteristic functions, in par-
ticular exploiting the conditions in Lemma C.15. Here we first state some other technical
lemmas that will be required later on.

Lemma C.12. Let X be a RS-valued random vector with zero mean and characteristic
function φX(u). Then for every u ∈ RS

φX(u) =1− 1

2
E
[
(u⊤X)2

]
+
θ

6
E
[
|u⊤X|3

]
,

for some θ = θ(u) ∈ C such that |θ| ≤ 1.

Proof. Taylor formula for the complex exponential reads

eix = 1 + ix− x2

2
+
x3

6
eiz,

where z ∈ C is such that 0 ≤ |z| ≤ |x|. By x = u⊤X, we have

φX(u) = 1 + iE
[
u⊤X

]
− 1

2
E
[(
u⊤X

)2]
+
θ

6
E
[∣∣u⊤X∣∣3] ,

with θ = eiz, recalling that |eiz| ≤ 1 for any z. The result follows from E
[
u⊤X

]
= 0.

Lemma C.13. Let X ∈ RS and Y ∈ RS be independent random vectors with the same
distribution. Then

φX−Y (u) = |φX(u)|2 .

Proof. By independence we can write

φX−Y (u) = E
[
eiu

⊤X
]
E
[
e−iu

⊤X
]
,

where
E
[
eiu

⊤X
]
= E

[
cosu⊤X

]
+ iE

[
sinu⊤X

]
= a+ ib,

for suitable a and b. Since cosx is even and sinx is odd, we can write

|φX−Y (u)| = |(a+ ib)(a− ib)| = a2 + b2 = |φX(u)|2

Since X−Y has a symmetric density by construction |φX−Y (u)| = φX−Y (u) and the result
follows.
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Corollary C.14. Let X be a RS-valued random vector with characteristic function φX(u).
Then

|φX(u)|2 ≤ e−u
⊤Var(X)u+

2|u|3
3 [1+C

∑S
s=1 E[X

6
i ]],

for u ∈ RS, where C is a finite constant independent of u.

Proof. Let Y be an independent copy of X. By Lemma C.13, it holds

|φX(u)|2 = φX−Y (u),

where φX−Y (u) is a real function, since it is the characteristic function of a random variable
with symmetric density. Therefore, by Lemma C.12 it holds

φX−Y (u) = 1− 1

2
E
[
(u⊤Z)2

]
+
θ

6
E
[
|u⊤Z|3

]
,

where Z = X − Y and θ = θ(u) ∈ R. Recalling that ex ≥ 1 + x for every x, we have

φX−Y (u) ≤ e−
1
2E[(u

⊤Z)2]+ θ
6E[|u

⊤Z|3].

By Lemma 8.8 in [8] it holds

E
[
(u⊤Z)2

]
= 2E

[
(u⊤X)2

]
= 2u⊤Var(X)u

and
E
[
(u⊤Z)3

]
≤ 4E

[
(u⊤X)3

]
≤ 4|u|3E

[
|X|3

]
.

Moreover by Lemma C.9 we have

E
[
|X|3

]
≤ 1 + C

S∑
s=1

E
[
X6
i

]
.

Therefore

φX−Y (u) ≤ e−u
⊤Var(X)u+

2|u|3θ
3 [1+C

∑S
s=1 E[X

6
i ]]

and the result follows from |θ| ≤ 1.

The following lemma is a minor variation of commonly used techniques to prove total
variation Central Limit Theorems.

Lemma C.15. Let (XJ)J≥1 and X be RS-valued random variables with characteristic
functions (φJ)J≥1 and φ, respectively. Denote by L1(RS) the space of complex-valued
integrable functions with domain RS. If

(a) XJ converges weakly to X as J → ∞
(b) φ belongs to L1(RS), i.e.

∫
RS |φ (t)| dt <∞

(c) limA→∞ lim supJ→∞
∫
|t|≥A |φJ (t)| dt = 0.

then XJ converges to X in total variation as J → ∞.

Proof. First we prove that limJ→∞ ∥φJ − φ∥L1 = 0. By the triangle inequality, for every
A > 0 we have

∥φJ − φ∥L1 ≤
∫
|t|<A

|φJ(t)− φ(t)|dt+
∫
|t|≥A

|φJ(t)|dt+
∫
|t|≥A

|φ(t)|dt . (70)

Since weak convergence implies pointwise convergence of characteristic functions, assump-
tion (a) implies that φJ(t) → φ(t) as J → ∞ for every t ∈ RS . Thus by the Dominated
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Convergence Theorem and |φJ(t) − φ(t)| ≤ |φJ(t)| + |φ(t)| = 2 , we have
∫
|t|<A |φJ(t) −

φ(t)|dt→ 0 as J → ∞ for every A > 0. It follows by (70) that

0 ≤ lim sup
J→∞

∥φJ − φ∥L1 ≤
∫
|t|≥A

|φ(t)|dt+ lim sup
J→∞

∫
|t|≥A

|φJ(t)|dt , (71)

for every A > 0. By assumption (b) limA→∞
∫
|t|≥A |φ(t)|dt = 0. Combining with as-

sumption (c), taking the limit A → ∞ we obtain lim supJ→∞ ∥φJ − φ∥L1 ≤ 0 and thus
limJ→∞ ∥φJ − φ∥L1 = 0.

Then, note that φ ∈ L1(RS) and ∥φJ − φ∥L1 → 0 as J → ∞ imply φJ ∈ L1(RS)
eventually as J → ∞, since by the triangle inequality

∥φJ∥L1 ≤ ∥φJ − φ∥L1 + ∥φ∥L1 <∞

for J large enough. Thus, by the Inversion formula, for J large enough XJ and X ad-
mit density functions w.r.t. the Lebesgue measure, which can be written as fXJ

(t) =
1

(2π)S

∫
RS e

−it⊤tφJ(t) dt and fX(t) = 1
(2π)S

∫
RS e

−it⊤tφ(t) dt. Thus

|fXJ
(t)− fX(t)| =

∣∣∣∣ 1

(2π)S

∫
RS

e−it
⊤tφJ(t) dt−

1

(2π)S

∫
RS

e−it
⊤tφ(t) dt

∣∣∣∣
≤
∫
RS

∣∣∣e−it⊤t(φJ(t)− φ(t))
∣∣∣ dt ≤ ∥φJ − φ∥L1 → 0

as J → ∞ for every t ∈ RS . By Scheffé Theorem, total variation convergence is implied
by pointwise convergence of the densities.

Proof of Lemma 4.4. Fix ψ̃ ∈ RD and denote µ = C(ψ∗)ψ̃ and Ξ = V (ψ∗). We will prove

conditions (a), (b) and (c) of Lemma C.15 to show that L(dT̃ | Y1:J , ψ̃)
TV→ N (µ,Ξ) for

Q
(∞)
ψ∗ -almost every Y as J → ∞.
Condition (a) is shown in Proposition C.11. Regarding condition (b), the characteristic

function of the limiting distribution N (µ,Ξ) is φ(t) = eiµ
⊤t− 1

2 t
⊤Ξt, which is integrable

since Ξ is positive definite by (B4).
We now turn to condition (c). Let

φ̃(t | Y1:J , ψ) = E
[
eit

⊤T̃ | Y1:J , ψ
]

t ∈ RS

be the characteristic function of L
(
dT̃ | Y1:J , ψ

)
. Using the definition of T̃ in (19), and

the fact that Ts(θj) are conditionally independent given ψ̃, we can write φ̃ as

φ̃(t | Y1:J , ψ̃) = e−it
⊤αJ

J∏
j=1

φ

(
t√
J

| Yj , ψ(J)

)
,

where αJ = C(ψ∗)∆J + 1√
J

∑J
j=1M

(1)(ψ∗ | Yj), φ (t | Yj , ψ) = E
[
eit

⊤T (θj) | Yj , ψ
]
as in

the definition of (B5) and ψ(J) as in (61). Since αJ ∈ RS we have |e−it⊤αJ | = 1 and thus

|φ̃(t | Y1:J , ψ)| =

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ
)∣∣∣∣∣∣ . (72)

For every ϵ > 0, by (72) and the subadditivity of lim sup we have

lim
A→∞

lim sup
J→∞

∫
|t|>A

∣∣∣φ̃(t | Y1:J , ψ̃)∣∣∣ dt ≤
lim
A→∞

lim sup
J→∞

∫
A<|t|<ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)

)∣∣∣∣∣∣ dt+ lim sup
J→∞

∫
|t|>ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)

)∣∣∣∣∣∣ dt.
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Lemma C.16 shows that the second lim sup in the last line is equal to 0 for every ϵ > 0,
while Lemma C.17 shows that the limA→∞ lim supJ→∞ term goes to 0 when ϵ is chosen as
in (73). Thus condition (c) follows by taking ϵ as in (73) in the above inequality.

Lemma C.16. Under the same setting and notation as in the proof of Lemma 4.4, for
every ϵ > 0 we have

lim sup
J→∞

∫
|t|>ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)

)∣∣∣∣∣∣ dt = 0

Q
(∞)
ψ∗ -almost surely.

Proof. Consider the change of variables x = t/
√
J . Then

∫
|t|>ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)

)∣∣∣∣∣∣ dt = JS/2
∫
|x|>ϵ

∣∣∣∣∣∣
J∏
j=1

φ
(
x | Yj , ψ(J)

)∣∣∣∣∣∣ dx.
Let k and Bδ5 be as in (B5) and k′ and Bδ6 be as in (B6). Take J high enough so that
J ≥ 2k as well as ψ(J) ∈ B := Bδ5 ∩Bδ6 , so that

∫
|x|>ϵ

∣∣∣∣∣∣
J∏
j=1

φ
(
x | Yj , ψ(J)

)∣∣∣∣∣∣ dx ≤ sup
ψ∈B

∫
|x|>ϵ

∣∣∣∣∣∣
2k∏
j=1

φ (x | Yj , ψ)

∣∣∣∣∣∣
∣∣∣∣∣∣

J∏
j=2k+1

φ (x | Yj , ψ)

∣∣∣∣∣∣ dx .
For every a ∈ R+ denote its integer part as ⌊a⌋. By (B6), for every ψ ∈ B we have∣∣∣∣∣∣

J∏
j=2k+1

φ (x | Yj , ψ)

∣∣∣∣∣∣ ≤
⌊ J−2k

k′ ⌋∏
s=1

As ≤ ϕ(ϵ)⌊
J−2k

k′ ⌋, with As =

∣∣∣∣∣∣
2k+1+sk′∏

j=2k+1+(s−1)k′

φ (x | Yj , ψ)

∣∣∣∣∣∣
almost surely, where we exploited the fact that each As is distributed as φ(k′) (t | Y1:k′ , ψ)
in (B6). Therefore

∫
|x|>ϵ

∣∣∣∣∣∣
J∏
j=1

φ
(
x | Yj , ψ(J)

)∣∣∣∣∣∣ dx ≤ ϕ(ϵ)⌊
J−2k

k′ ⌋ sup
ψ∈B

∫
|x|>ϵ

∣∣∣∣∣∣
2k∏
j=1

φ (x | Yj , ψ)

∣∣∣∣∣∣ dx.
almost surely. By Hölder Inequality and (B5), we have

c = sup
ψ∈B

∫
|x|>ϵ

∣∣∣∣∣∣
2k∏
j=1

φ (x | Yj , ψ)

∣∣∣∣∣∣ dx ≤ sup
ψ∈B

∫
RS

∣∣∣∣∣∣
2k∏
j=1

φ (x | Yj , ψ)

∣∣∣∣∣∣ dx ≤


√√√√√sup
ψ∈B

∫
RS

∣∣∣∣∣∣
k∏
j=1

φ (x | Yj , ψ)

∣∣∣∣∣∣
2

dx



√√√√√sup
ψ∈B

∫
RS

∣∣∣∣∣∣
2k∏

j=k+1

φ (x | Yj , ψ)

∣∣∣∣∣∣
2

dx

 <∞,

almost surely. Therefore it holds

∫
|t|>ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)

)∣∣∣∣∣∣ dt ≤ JS/2ϕ(ϵ)⌊
J−2k

k′ ⌋c,

that goes to 0 as J → ∞, since ϕ(ϵ) < 1 by (B6).
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Lemma C.17. Under the same setting and notation as in the proof of Lemma 4.4, let
λ > 0 be such that the matrix V (ψ∗) − λI is positive definite. Such λ can be found, since
V (ψ∗) is positive definite by (B4). Then, given

ϵ =
λ

1 + C
∑S
s=1E [Ts(θ1)6 | ψ∗]

(73)

we have

lim
A→∞

lim sup
J→∞

∫
A<|t|<ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)

)∣∣∣∣∣∣ dt = 0

Q
(∞)
ψ∗ -almost surely.

Proof. By Corollary C.14, we have

|φ(u | Yj , ψ)|2 ≤ e−u
⊤Var(T (θj)|Yj ,ψ)u+

2|u|3
3 [1+C

∑S
s=1 E[Ts(θj)

6|Yj ,ψ]],

for every u ∈ RS and ψ ∈ RD. Therefore∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ
)∣∣∣∣∣∣

2

≤ e
−t⊤ 1

J

∑J
j=1 Var(T (θj)|Yj ,ψ)t+

2|t|3

3
√

J
[1+C 1

J

∑J
j=1

∑S
s=1 E[Ts(θj)

6|Yj ,ψ]].

(74)

Notice that in the proof of (65) we have shown through (B4) that

1

J

J∑
j=1

E
[
Ts(θj)

6 | Yj , ψ(J)
]
→ E

[
Ts(θ1)

6 | ψ∗] (75)

Q
(∞)
ψ∗ -almost surely as J → ∞, for every s = 1, . . . , S. Thus, combining (73) and (75), for

every |t| ≤ ϵ
√
J we have∣∣∣∣e 2|t|3

3
√

J
[1+C 1

J

∑J
j=1

∑S
s=1 E[Ts(θj)

6|Yj ,ψ]]
∣∣∣∣2 ≤ eλt

⊤t, (76)

almost surely for J high enough. Finally by (74) and (76)

∫
A<|t|<ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)

)∣∣∣∣∣∣ dt ≤
∫
|t|>A

e−t
⊤Ξ(J)t dt , (77)

with

Ξ(J) =
1

J

J∑
j=1

Var
(
T (θj) | Yj , ψ(J)

)
− λI .

Since Ξ(J) → V (ψ∗) − λI by (64), and V (ψ∗) − λI is positive definite by definition of λ,
by Dominated Convergence Theorem

lim sup
J

∫
A<|t|<ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)

)∣∣∣∣∣∣ dt ≤
∫
|t|>A

e−t
⊤(V (ψ∗)−λI)t dt , (78)

Since the right hand side of (78) is integrable the conclusion follows by taking A→ ∞.
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C.14 Proof of Theorem 4.2

We first need a technical lemma.

Lemma C.18. Let
{
Y (n)

}
n
be a sequence of random elements with state space Y(n), such

that Y (n) ∼ Q(n) with Q(n) ∈ P
(
Y(n)

)
. Let {πn}n be a sequence of Markov kernels from

Y(n) to X = X1 ×X2 and let π ∈ P(X ). If

∥πn,1(·)− π1(·)∥TV → 0 and ∥πn(· | x)− π(· | x)∥TV → 0, for π1-almost every x ∈ X1,

as n → ∞ in Q(n)-probability, where πn,1 and π1 are the marginal distributions on X1 of
πn and π respectively, then

∥πn(·)− π(·)∥TV → 0,

as n→ ∞ in Q(n)-probability

Proof. Let f : X → [0, 1] be a measurable function. By the triangular inequality we have∣∣∣∣∫
X
f(x1, x2)πn(dx1,dx2)−

∫
X
f(x1, x2)π(dx1,dx2)

∣∣∣∣ ≤∣∣∣∣∫
X
f(x1, x2)πn(dx2 | x1)πn,1(dx1)−

∫
X
f(x1, x2)πn(dx2 | x1)π1(dx1)

∣∣∣∣+∣∣∣∣∫
X
f(x1, x2)πn(dx2 | x1)π1(dx1)−

∫
X
f(x1, x2)π(dx2 | x1)π1(dx1)

∣∣∣∣ .
Notice that

sup
f

∣∣∣∣∫
X
f(x1, x2)πn(dx2 | x1)πn,1(dx1)−

∫
X
f(x1, x2)πn(dx2 | x1)π1(dx1)

∣∣∣∣
≤ ∥πn,1(·)− π1(·)∥TV → 0,

as n→ ∞ in Q(n)-probability, by assumption. Moreover we have

sup
f

∣∣∣∣∫
X
f(x1, x2)πn(dx2 | x1)π1(dx1)−

∫
X
f(x1, x2)π(dx2 | x1)π1(dx1)

∣∣∣∣ ≤∫
X1

sup
f

∣∣∣∣∫
X2

f(x1, x2)πn(dx2 | x1)−
∫
X2

f(x1, x2)π(dx2 | x1)
∣∣∣∣ π1(dx1).

The integrand on the right hand side goes to 0 as n→ ∞ inQ(n)-probability, by assumption.
Therefore, by Dominated Convergence Theorem, we have

sup
f

∣∣∣∣∫
X
f(x1, x2)πn(dx2 | x1)π1(dx1)−

∫
X
f(x1, x2)π(dx2 | x1)π1(dx1)

∣∣∣∣→ 0,

as n→ ∞ in Q(n)-probability, as desired.

Proof of Theorem 4.2. Lemma 4.3 shows that ψ̃ converges to a Normal distribution with
zero mean and non-singular covariance matrix I−1(ψ∗). Similarly, Lemma 4.4 shows that,
conditional to every ψ̃, T̃ converges to a Normal distribution with mean and variance
(denoted by E∞[·] and Var∞(·) ) given by

E∞[T̃ | ψ̃] = C(ψ∗)ψ̃, Var∞

(
T̃ | ψ̃

)
= V (ψ∗).

Therefore, by Lemma C.18, we conclude that
(
T̃ , ψ̃

)
converges in total variation to a

(S + D)-dimensional Gaussian distribution π̃ with zero mean and covariance matrix Σ
given by

Σ =

[
ΣT̃ Σ⊤

ψ̃T̃

Σψ̃T̃ Σψ̃

]
,
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where Σψ̃ = I−1(ψ∗) ∈ RD×D and ΣT̃ ∈ RS×S are the limiting variances of ψ̃ and T̃ ,

while Σψ̃T̃ ∈ RD×S is the limiting covariance. Thus, thanks to standard properties of the
multivariate Gaussian distribution, the determinant of Σ can be computed as

det(Σ) = det(Σψ̃)det
(
ΣT̃ − Σ⊤

ψ̃T̃
Σ−1

ψ̃
Σψ̃T̃

)
= det(Σψ̃)det

(
Var∞

(
T̃ | ψ̃

))
= det

(
I−1(ψ∗)

)
det (V (ψ∗)) ,

which implies that Σ is non singular. Indeed, det
(
I−1(ψ∗)

)
> 0 by (B3), while det (V (ψ∗)) >

0 by (B4). Therefore, by Theorem 1 in [55], the Gibbs sampler on the limit Gaussian tar-
get has a strictly positive spectral gap. Moreover, since the Gibbs sampler in (15) has two
blocks, by Lemma C.6 we have t̃mix(ϵ,M) <∞ for every M and ϵ: thus the result follows
by Corollary 2.5.

C.15 Proof of Proposition 4.5

Proof. Using the notation E∞[·],Var∞(·) and Cov∞(·, ·) for the limiting mean, variance
and covariance, by Propositions 4.3 and 4.4 we have

E∞[ψ̃] = 0D, Var∞(ψ̃) = I−1(ψ∗)

and
E∞[T̃ | ψ̃] = C(ψ∗)ψ̃, Var∞

(
T̃ | ψ̃

)
= V (ψ∗).

By standard properties of the multivariate Gaussian distribution we have

E∞[T̃ ] = 0S , Cov∞

(
T , ψ̃

)
= C(ψ∗)Var∞(ψ̃) = C(ψ∗)I−1(ψ∗)

and

Var∞(T ) = Var∞

(
T̃ | ψ̃

)
+Cov∞

(
T , ψ̃

)
Var−1

∞ (ψ̃)Cov⊤∞

(
T , ψ̃

)
= V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗),

as desired.

C.16 Proof of Corollary 4.6

We need three preliminary lemmas. The first one is a special version of well-known results
(e.g. [55]).

Lemma C.19. The Gibbs sampler targeting the distribution in Proposition 4.5 can be
written as [

T̃ (t)

ψ̃(t)

]
= B

[
T̃ (t−1)

ψ̃(t−1)

]
+

[
U1

U2

]
,

where

B =

OS×S C(ψ∗)

OD×S I−1(ψ∗)C⊤(ψ∗)
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗)


and [

U1

U2

]
∼ N

(
0S+D,Σ−BΣB⊤)

Proof. By Proposition 4.4 we have

E
[
T̃ (t) | T̃ (t−1), ψ̃(t−1)

]
= C(ψ∗)ψ̃(t−1).
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Moreover, by Proposition 4.5 and standard properties of the multivariate Gaussian distri-
bution, we have

E
[
ψ̃t | T̃ (t−1), ψ̃(t−1)

]
= E

[
I−1(ψ∗)C⊤(ψ∗)

{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
T̃ (t) | T̃ (t−1), ψ̃(t−1)

]
= I−1(ψ∗)C⊤(ψ∗)

{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗)ψ̃(t−1),

as desired.

Lemma C.20. Let

M =

OS×S A

OD×S W

 ,
with A ∈ RS×D and W ∈ RD×D. Then M and W have the same non null eigenvalues.

Proof. Let µ ̸= 0 be an eigenvalue of M , with eigenvector x = [x⊤S , x
⊤
D]

⊤. We have

Mx = µx ⇔
[
AxD
WxD

]
=

[
µxS
µxD

]
,

so that µ is an eigenvalue of W with eigenvector xD. Indeed, xD is different from the null
vector, since µ ̸= 0.

Let λ ̸= 0 be an eigenvalue of W with eigenvector xD. Then

M

[
AxD

λ
xD

]
=

[
AxD
WxD

]
= λ

[
AxD

λ
xD

]
,

so that λ is an eigenvalue of M , with eigenvector[
AxD

λ
xD

]
,

as desired.

Lemma C.21. Let A ∈ RD×S and B ∈ RS×D. Then the matrices AB and BA have the
same non-null eigenvalues.

Proof. Let λ ̸= 0 be an eigenvalue of AB, with eigenvector v ∈ RD. Then

λBv = B(AB)v = (BA)Bv.

Since Bv ̸= 0 we conclude that λ is an eigenvalue of BA with eigenvector Bv.

Proof of Corollary 4.6. With B as in Lemma C.19, by Theorem 1 in [55] the spectral gap
of the Gibbs sampler with operator P̃ is given by

Gap(P̃ ) = min {1− |λi| : λi eigenvalue of B}

Thus, by Lemma C.20, with M := B and

W = I−1(ψ∗)C⊤(ψ∗)
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗),

we have

Gap(P̃ ) = min
{
1− |λi| : λi eigenvalue of I−1(ψ∗)C⊤(ψ∗)

{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗)

}
.
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By Lemma C.21 with

A = I−1(ψ∗)C⊤(ψ∗), B =
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗)

we deduce

Gap(P̃ ) = min
{
1− |λi| : λi eigenvalue of

{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}
.

Notice that {
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

= I −
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
V (ψ∗).

Since λ is an eigenvalue of A if and only if 1− λ is an eigenvalue of I −A, it follows that

Gap(P̃ ) = min
{
1− |1− λi| ; λi eigenvalue of

{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
V (ψ∗)

}
.

Moreover the eigenvalues of the inverse are the inverse of the eigenvalues, so that the rate
of convergence is equal to

Gap(P̃ ) = min

{
1−

∣∣∣∣1− 1

λi

∣∣∣∣ ; λi eigenvalue of V −1(ψ∗)
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}}
.

Since

V −1(ψ∗)
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}
= I + V −1(ψ∗)C(ψ∗)I−1(ψ∗)C⊤(ψ∗),

we have

Gap(P̃ ) = min

{
1−

∣∣∣∣1− 1

1 + λi

∣∣∣∣ ; λi eigenvalue of V −1(ψ∗)C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}
.

Moreover both V −1(ψ∗) and C(ψ∗)I−1(ψ∗)C⊤(ψ∗) are positive semi-definite, so that also
their product is positive semi-definite and has positive eigenvalues. Therefore we conclude

Gap(P̃ ) = min

{
1

1 + λi
; λi eigenvalue of V −1(ψ∗)C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}
and the result follows by Corollary 2.6.

C.17 Proof of Corollary 4.7

We need a preliminary lemma, that we prove for self-containedness.

Lemma C.22. Let p(θ | ψ) be as in (14). Then it holds

E[T (θ) | ψ] = ∂ψA(ψ)

∂ψη(ψ)
, Var(T (θ) | ψ) =

{
∂2ψA(ψ)−

∂2ψη(ψ)∂ψA(ψ)

∂ψη(ψ)

}
[∂ψη(ψ)]

−2
.

Proof. Differentiating the following equality

1 =

∫
p(θ | ψ) dθ, (79)

by the regularity properties of the exponential family we get

0 =

∫
∂ψp(θ | ψ) dθ = ∂ψη(ψ)E[T (θ) | ψ] + ∂ψA(ψ),
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and the formula for the expected value follows. As regards the variance, differentiating
(79) twice, we obtain

0 = ∂2ψη(ψ)E[T (θ) | ψ]−∂2ψA(ψ)+[∂ψη(ψ)]
2
E[T 2(θ) | ψ]−2 [∂ψη(ψ)]

2
E2[T (θ) | ψ]+[∂ψA(ψ)]

2
.

Noticing that
[∂ψη(ψ)]

2
E2[T (θ) | ψ] = [∂ψA(ψ)]

2

and rearranging, we get

∂2ψA(ψ)− ∂2ψη(ψ)E[T (θ) | ψ] = [∂ψη(ψ)]
2
Var(T (θ) | ψ),

from which the result follows.

Proof of Corollary 4.7. By Corollary 4.6, we have

γ(ψ∗) =
1

1 + λ
with λ =

C2(ψ∗)

V (ψ∗)I(ψ∗)
,

where
C(ψ) = EYj

[∂ψE[T (θj) | Yj , ψ]] ,
V (ψ) = EYj

[Var(T (θj) | Yj , ψ)] ,
I(ψ) = −EYj

[
∂2ψ log g(Yj | ψ)

]
,

with g(y | ψ) as in (16). As regards C(ψ), notice that

∂ψE[T (θ) | Y, ψ] =
∫
T (θ)f(Y | θ)∂ψp(θ | ψ) dθ

g(Y | ψ)
−[∫

T (θ)f(Y | θ)p(θ | ψ) dθ
] [∫

f(Y | θ)∂ψp(θ | ψ) dθ
]

g2(Y | ψ)
=∂ψη(ψ)E

[
T 2(θ) | Y, ψ

]
− ∂ψη(ψ)E

2 [T (θ) | Y, ψ]
=∂ψη(ψ)Var (T (θ) | Y, ψ) .

Therefore
C2(ψ∗) = [∂ψη(ψ

∗)]
2
E2
Yj

[Var (T (θj) | Yj , ψ∗)] . (80)

As regards I(ψ), notice that

∂ψ log g(Yj | ψ) =
∫
f(Y | θ)∂ψp(θ | ψ) dθ

g(Y | ψ)
= ∂ψη(ψ)

∫
T (θ)f(Y | θ)p(θ | ψ) dθ

g(Y | ψ)
− ∂ψA(ψ)

and

∂2ψ log g(Yj | ψ) = ∂2ψη(ψ)E [T (θ) | Y, ψ]− ∂2ψA(ψ) + ∂ψη(ψ)

∫
T (θ)f(Y | θ)∂ψp(θ | ψ) dθ

g(Y | ψ)

− ∂ψη(ψ)

[∫
T (θ)f(Y | θ)p(θ | ψ) dθ

] [∫
f(Y | θ)∂ψp(θ | ψ) dθ

]
g2(Y | ψ)

= ∂2ψη(ψ)E [T (θ) | Y, ψ]− ∂2ψA(ψ) + [∂ψη(ψ)]
2
Var (T (θ) | Y, ψ) .

Noticing that, by Lemma C.22, we have

∂2ψη(ψ)E [T (θ) | Y, ψ]− ∂2ψA(ψ) =

{
∂2ψA(ψ)−

∂2ψη(ψ)∂ψA(ψ)

∂ψη(ψ)

}
= [∂ψη(ψ)]

2
Var (T (θ) | ψ) ,
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we get

I(ψ∗) = [∂ψη(ψ
∗)]

2
Var (T (θj) | ψ∗)− [∂ψη(ψ

∗)]
2
EYj [Var (T (θj) | Yj , ψ∗)]

= [∂ψη(ψ
∗)]

2
VarYj (E [T (θj) | Yj , ψ∗]) ,

(81)

by the Law of Total Variance. Combining (80) and (81), it holds

λ =
E2
Yj

[Var (T (θj) | Yj , ψ∗)]

V (ψ∗)VarYj
(E [T (θj) | Yj , ψ∗])

=
EYj [Var (T (θj) | Yj , ψ∗)]

VarYj
(E [T (θj) | Yj , ψ∗])

.

The expression for γ(ψ∗) follows by rearranging and applying the Law of Total Variance.

C.18 Proof of Proposition 5.1

First of all notice that, by Bayes’ Theorem, we have

θj | Yj , µ, τ1
ind.∼ N

(
mj , (mτ0 + τ1)

−1
)
, (82)

where
mj =

mτ0
mτ0 + τ1

Ȳj +
τ1

mτ0 + τ1
µ.

Recall that by (B1) we have

Yj
iid∼ g(· | ψ∗) = N

(
µ∗, (τ∗0 )

−1I + (τ∗1 )
−1H

)
,

so that

Ȳj =
1

m

m∑
i=1

Yj,i
iid∼ N

(
µ∗,

1

τ∗1
+

1

mτ∗0

)
. (83)

Moreover we need some preliminary lemmas.

Lemma C.23. Let X ∼ N(ν, σ2). Then

E[Xp] =

p∑
i=0

(
p

i

)
νiσp−iE[Zp−i],

where Z ∼ N(0, 1) and

E[Zs] =

{
0 if s is odd

2−s/2 s!
(s/2)! if s is even

Proof. The result follows by noticing X = ν + σZ and applying Netwon’s Binomial Theo-
rem.

Lemma C.24. Let A be m×m matrix such that A = aI+bH, with a ̸= b and a ̸= (1−m)b.
Then det(A) = [a+mb]am−1 and A−1 = 1

a I−
b

a(a+mb)H.

Proof. We start by the determinant

det


c d · · · d
d c · · · d
...

...
. . .

...
d d · · · c

 = [c+ (m− 1)d]det


1 1 · · · 1
d c · · · d
...

...
. . .

...
d d · · · c



= [c+ (m− 1)d]


1 1 · · · 1
0 c− d · · · 0
...

...
. . .

...
0 0 · · · c− d

 = [c+ (m− 1)d](c− d)m−1,
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where the first equality comes by adding to the first row all the others, while the second
comes by subtracting the first row (scaled by d) from all the others. In our case c = a+ b
and d = b, that is det(A) = [a +mb]am−1, as desired. With our assumptions we get that
the determinant is different from zero.

As regards the inverse we prove A−1 = xI + yH for suitable x and y. Indeed

(aI + bH) (xI + yH) = axI + ayH+ bxH+ byH2 = axI + (ay + bx+mby)H.

Setting the above equal to I, we obtain x = 1/a and

ay + bx+mby = 0 ⇒ y(a+mb) = − b

a
⇒ y = − b

a(a+mb)

as desired.

Lemma C.25. Consider the marginal likelihood as in (23), with ψ∗ = (µ∗, τ∗1 , τ
∗
0 ). Then

we have

I(ψ∗) =


mτ∗

0 τ
∗
1

τ∗
1 +mτ

∗
0

0 0

0
m2(τ∗

0 )
2

2(τ∗
1 )

2(τ∗
1 +mτ

∗
0 )

2
m

2(τ∗
1 +mτ

∗
0 )

2

0 m
2(τ∗

1 +mτ
∗
0 )

2
m−1
2(τ∗

0 )
2 +

(τ∗
1 )

2

2(τ∗
0 )

2(τ∗
1 +mτ

∗
0 )

2

 (84)

Proof. The log–likelihood l(ψ) = log g(y | ψ) is given by

l(µ, τ0, τ1) = −1

2
log 2π − 1

2
log (det(Σ))− 1

2
(Y1 − µI)tΣ−1(Y1 − µI),

with Σ = τ−1
0 I + τ−1

1 H. By Lemma C.24 with a = τ−1
0 and b = τ−1

1 we have

det(Σ) = [τ−1
0 +mτ−1

1 ](τ−1
0 )m−1, Σ−1 = τ0I −

τ20
τ1 +mτ0

H.

Thus, the log–likelihood becomes

l(µ, τ0, τ1) =− 1

2
log 2π +

m− 1

2
log τ0 −

1

2
log(τ−1

0 +mτ−1
1 )− τ0

2

m∑
i=1

(Y1,i − µ)2

+
τ20

2(τ1 +mτ0)
(Y1 − µI)tH(Y1 − µI).

Rewriting the last expression we get

l(µ, τ0, τ1) =− 1

2
log 2π +

m− 1

2
log τ0 −

1

2
log(τ−1

0 +mτ−1
1 )− τ0

2

m∑
i=1

(Y1,i − µ)2

+
τ20

2(τ1 +mτ0)

(
m∑
i=1

(Y1,i − µ)

)2

.

The required derivatives are given by

∂2l

∂µ2
= − mτ0τ1

τ1 +mτ0
,

∂2l

∂τ21
= −mτ0(2τ1 +mτ0)

2τ21 (τ1 +mτ0)2
+

τ20
(τ1 +mτ0)3

(
m∑
i=1

(Y1,i − µ)

)2

,

∂2l

∂τ20
= −m− 1

2τ20
− τ1(τ1 + 2mτ0)

2τ20 (τ1 +mτ0)2
+

(τ1 +mτ0)
2 − 2mτ0τ1 −m2τ20

(τ1 +mτ0)3

(
m∑
i=1

(Y1,i − µ)

)2

,

∂2l

∂µ∂τ0
=

m∑
i=1

(Y1,i − µ)− 2mτ0τ1 +m2τ20
(τ1 +mτ0)2

m∑
i=1

(Y1,i − µ),

∂2l

∂µ∂τ1
=

τ20
(τ1 +mτ0)2

m∑
i=1

(Y1,i − µ),
∂2l

∂τ0∂τ1
=

m

2(τ1 +mτ0)2
− τ0τ1

(τ1 +mτ0)3

(
m∑
i=1

(Y1,i − µ)

)2

.
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The entries of the Fisher Information matrix reported in (84) can then be computed from
the above expressions by taking expectations with respect to Y1 and exploiting that

E[Y1,i − µ] = 0, E
[
(Y1,i − µ)2

]
= V ar(Y1,i − µ) =

τ0 + τ1
τ0τ1

,

E

( m∑
i=1

(Y1,i − µ)

)2
 = V ar

(
m∑
i=1

(Y1,i − µ)

)
= [1, . . . , 1]V ar(Y1)[1, . . . , 1]

t

= [1, . . . , 1]
(
τ−1
0 I + τ−1

1 H
)
[1, . . . , 1]t

= m

(
mτ0 + τ1
τ0τ1

)
.

Thus we can compute the entries of the Fisher Information matrix as

E
[
∂2l

∂τ20

]
= −m− 1

2τ20
− τ1(τ1 + 2mτ0)

2τ20 (τ1 +mτ0)2
+
m(τ1 +mτ0)

2 − 2m2τ0τ1 −m3τ20
τ0τ1(τ1 +mτ0)2

= −m− 1

2τ20
− τ21

2τ20 (τ1 +mτ0)2
,

E
[
∂2l

∂τ21

]
= −mτ0(2τ1 +mτ0)

2τ21 (τ1 +mτ0)2
+

mτ0
τ1(τ1 +mτ0)2

= − m2τ20
2τ21 (τ1 +mτ0)2

,

E
[
∂2l

∂µ∂τ0

]
= 0, E

[
∂2l

∂µ∂τ1

]
= 0,

E
[

∂2l

∂τ0∂τ1

]
=

m

2(τ1 +mτ0)2
− m

(τ1 +mτ0)2
= − m

2(τ1 +mτ0)2
,

as desired.

Lemma C.26. Let X ∼ N(ν, σ2). Then

∣∣∣E [ei(aX2+bX)
]∣∣∣ ≤ e

−σ2

2
(2νa+b)2

1+4a2σ4

(1 + 4a2σ4)
1/4

,

for every (a, b) ∈ R2.

Proof. By definition of expectation we have

E
[
ei(aX

2+bX)
]
=

∫
R
ei(az

2+bz) 1√
2πσ2

e−
(z−ν)2

2σ2 dz =
e−

ν2

2σ2

√
2πσ2

∫
R
e−

1
2 [z

2( 1
σ2 −2ia)−2z( ν

σ2 +ib)] dz

Notice that

z2
(

1

σ2
− 2ia

)
− 2z

( ν
σ2

+ ib
)
=

(
1− 2iaσ2

σ2

)[
z2 − 2z

ν + ibσ2

1− 2iaσ2
+

(
ν + ibσ2

1− 2iaσ2

)
−
(
ν + ibσ2

1− 2iaσ2

)2
]

=

(
1− 2iaσ2

σ2

)(
z − ν + iσ2b

1− 2iaσ2

)2

− (ν + ibσ2)2

σ2(1− 2iaσ2)
,

so that

1√
2πσ2

∫
R
e−

1
2 [z

2( 1
σ2 −2ia)−2z( ν

σ2 +ib)] dz =
e

(ν+ibσ2)2

2σ2(1−2iaσ2)

√
1− 2iaσ2

.

Finally, we get

E
[
ei(aX

2+bX)
]
= e−

ν2

2σ2
e

(ν+ibσ2)2

2σ2(1−2iaσ2)

√
1− 2iaσ2

. (85)
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With simple computations we obtain

(ν + ibσ2)2

2σ2(1− 2iaσ2)
=

(ν2 + 2iνbσ2 − b2σ4)(1 + 2iaσ2)

2σ2(1 + 4a2σ4)

=
ν2 + 2iνbσ2 − b2σ4 + 2iν2aσ2 − 4νabσ2 − 2iσ6ab2

2σ2(1 + 4a2σ4)

=
ν2 + 2i(νbσ2 + ν2aσ2 − σ6ab2)− 4νabσ4 − σ4b2

2σ2(1 + 4a2σ4)
.

Thus, by (85) we can write

E
[
ei(aX

2+bX)
]
= e−

ν2

2σ2
e

(ν+ibσ2)2

2σ2(1−2iaσ2)

√
1− 2iaσ2

,

that implies

∣∣∣E [ei(aX2+bX)
]∣∣∣ ≤ e

− 4ν2a2σ4+4νabσ4+b2σ4

2σ2(1+4a2σ4)

|
√
1− 2iaσ2|

=
e
−σ2

2
(2νa+b)2

1+4a2σ4

(1 + 4a2σ4)
1/4

,

as desired.

Define

ψ = (µ, τ1) and T = T (θ) =

 J∑
j=1

θj ,

J∑
j=1

(θj − µ∗)2

 . (86)

Next three lemmas show that assumptions (B1) − (B6) are satisfied for (T , ψ) as defined
above.

Lemma C.27. Consider the setting of Proposition 5.1. Then assumptions (B1) − (B3)
are satisfied for (T , ψ) as in (86).

Proof. It is easy to show that assumption (B1) is satisfied, with g(·) as in (23). As regards
(B2), suitable tests can be defined analogously to Lemma C.8.

Finally, by Lemma C.25, the Fisher Information is given by

mτ∗0 τ
∗
1

mτ∗0 + τ∗1

for l = 1 and by [ mτ∗
0 τ

∗
1

mτ∗
0 +τ

∗
1

0

0
m2(τ∗

0 )
2

2(τ∗
1 )

2(τ∗
1 +mτ

∗
0 )

2

]
,

for l = 2, 3. Therefore (B3) is satisfied for any ψ∗.

Lemma C.28. Consider the setting of Proposition 5.1. Then assumption (B4) is satisfied
for (T , ψ) as in (86).

Proof. Since T (θj) = (θj , (θj − µ∗)2) it holds

M (p)
s (µ, τ1 | Yj) = E

[
θspj | µ, τ1

]
, M

(1)
1,2 (µ, τ1 | Yj) = E

[
θj(θ

∗
j − µ∗)2 | µ, τ1

]
.

By Lemma C.23 and (82), we obtain

E
[
θkj | µ, τ1

]
=

k∑
i=0

(
k

i

)(
mτ0

mτ0 + τ1
Ȳj +

τ1
mτ0 + τ1

µ

)i(
1

mτ0 + τ1

)(k−i)/2

E[Zk−i].
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It is a finite sum of infinitely times differentiable terms (with respect to µ and τ1). Moreover,
for every k ≥ 1, thanks to Lemma C.23 and (83), EYj

[
|Ȳj |k | µ, τ1

]
is uniformly bounded

over (µ, τ1) belonging to a bounded set.
Therefore, choosing δ4 < τ∗1 , it is easy to find C <∞ that satisfies assumption (B4).

Lemma C.29. Consider the setting of Proposition 5.1. Then assumptions (B5) and (B6)
are satisfied for (T , ψ) as in (86).

Proof. Assume µ∗ = 0, the general case follows by similar calculations. Recall that the
posterior distribution of θj is given by N(mj , σ

2), with mj as in (82) and

σ2 =
1

mτ0 + τ1
.

By Lemma C.26 we have

∣∣∣E [ei(t1θj+t2θ2j ) | Yj , µ, τ1]∣∣∣2 ≤ e
−σ2 (2mjt2+t1)2

1+4t22σ4

(1 + 4t22σ
4)

1/2
. (87)

Moreover, notice that ∫
R
e
−cσ2 (2mjt2+t1)2

1+4t22σ4
dt1 =

√
π

cσ2

√
1 + 4t22σ

4,

for any c > 0. Since θj are independent, given µ and τ1, by Hölder inequality we write∫
R2

∣∣∣E [ei(t1 ∑3
j=1 θj+t2

∑3
j=1 θ

2
j ) | Y, µ, τ1

]∣∣∣2 dt1dt2 =

∫
R2

3∏
j=1

∣∣∣E [ei(t1θj+t2θ2j ) | Yj , µ, τ1]∣∣∣2 dt1dt2

≤
∫
R2

3∏
j=1

e
−σ2 (2mjt2+t1)2

1+4t22σ4

(1 + 4t22σ
4)

1/2
dt1dt2 =

∫
R

1

(1 + 4t22σ
4)

3/2

∫
R

3∏
j=1

e
−σ2 (2νjt2+t1)2

1+4t22σ4
dt1

 dt2

≤
∫
R

1

(1 + 4t22σ
4)

3/2

3∏
j=1

(∫
R
e
−3σ2 (2νjt2+t1)2

1+4t22σ4
dt1

)1/3

dt2

=

√
π

3σ2

∫
R

1

1 + 4t22σ
4
dt2.

Therefore ∫
R2

∣∣∣φ(3) (t | Y, ψ)
∣∣∣2 dt ≤

√
π

3σ2

∫
R

1

1 + 4t22σ
4
dt2 <∞,

where the right hand side does not depend on the data and it is a continuous function of
µ and τ1. This implies (B5) is satisfied with k = 3.

As regards (B6), by Lemma C.26 if t2 ̸= 0 we have

|φ(1)(t | Yj , µ, τ1)| ≤
1

(1 + 4t22σ
4)

1/4
,

while if t2 = 0 then

|φ(1)(t | Yj , µ, τ1)| ≤ e−
σ2

2 t
2
1 .

Therefore

|φ(1)(t | Yj , µ, τ1)| ≤ max

{
1

(1 + 4t22σ
4)

1/4
, e−

σ2

2 t
2
1

}
,
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so that

sup
|t|>ϵ

|φ(1)(t | Yj , µ, τ1)| ≤ max

{
1

(1 + ϵ2σ4)
1/4

, e−
σ2

8 ϵ
2

}
,

since at least one between t1 and t2 must be larger than ϵ/2. Notice that the right hand
side does not depend on Yj and is strictly smaller than 1 for every triplet (µ, τ1, τ0). Since
σ2 is a continuous function of µ and τ1, assumption (B6) is satisfied by choosing δ6 < τ∗1
and k′ = 1.

Proof of Proposition 5.1. The result for P1 follows directly by Theorem 4.2, whose assump-
tions are satisfied by Lemmas C.27, C.28 and C.29. As regards P2 and P3, they are not
particular cases of Theorem 4.2, since the two operators are different by the one in (15).
However, the result follows by very similar arguments, that we briefly summarize. Since
by construction

L (dψ | θ, Y1:J) = L (dψ | T (θ), Y1:J)

a direct analogue of Lemma 4.1 holds. Moreover, following the proof of Theorem 4.2,
Lemmas 4.3, 4.4 and C.18 hold for T in (86). Finally, Corollary 5.2 proves that the
limiting spectral gaps associated to P2 and P3 are strictly positive: by Lemma C.6 this
implies t̃mix(ϵ,M) < ∞ for P2, being a two-block Gibbs sampler. The same holds for P3,
since in the limit it can be reduced to a two-block Gibbs sampler, as it will be clear by the
proof of Corollary 5.2.

C.19 Proof of Corollary 5.2

We split the proof in two different cases.

C.19.1 Proof of Corollary 5.2 for γ1(ψ
∗)

Proof. By Corollary 4.7, the spectral gap is equal to

γ1(ψ) =
VarYj

(E [θj | ψ, Yj ])
Var (θj | ψ)

.

By (82) and (83) we have

VarYj
(E [θj | ψ, Yj ]) =

(
mτ0

mτ0 + τ1

)2

, Var
(
Ȳj
)
=

mτ0
τ1(mτ0 + τ1)

,

and Var (θj | ψ) = τ−1
1 , that leads to

γ1(ψ
∗) =

mτ∗0
mτ∗0 + τ∗1

,

as desired.

C.19.2 Proof of Corollary 5.2 for γ2(ψ
∗) and γ3(ψ

∗)

We need a technical Lemma.

Lemma C.30. Consider the setting of Proposition 5.1. Then

C(ψ∗) =

[
τ∗
1

mτ∗
0 +τ

∗
1

0

0 − τ∗
1 +2mτ∗

0

τ∗
1 (mτ

∗
0 +τ

∗
1 )

2

]
, V (ψ∗) =

[
1

mτ∗
0 +τ

∗
1

0

0
2τ∗

1 +4mτ∗
0

τ∗
1 (mτ

∗
0 +τ

∗
1 )

2

]
,

with C(ψ∗) and V (ψ∗) as in (38).
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Proof. Recall that, in the context of Proposition 5.1, we define T1(θj) = θj and T2(θj) =
(θj − µ∗)2. By (82) we have

E[T1(θj) | Yj , ψ] =
mτ0

mτ0 + τ1
Ȳj +

τ1
mτ0 + τ1

µ,

E[T2(θj) | Yj , ψ] =
1

mτ0 + τ1
+

(
mτ0

mτ0 + τ1
Ȳj +

τ1
mτ0 + τ1

µ− µ∗
)2

.

Therefore we can compute C(ψ∗) as

EYj
[∂µM1(ψ

∗ | Yj)] =
τ∗1

mτ∗0 + τ∗1
,

EYj
[∂µM2(ψ

∗ | Yj)] = EYj

[
2τ∗1

mτ∗0 + τ∗1

(
mτ∗0

mτ∗0 + τ∗1
Ȳj −

mτ∗0
mτ∗0 + τ∗1

µ∗
)]

= 0,

EYj
[∂τ1M1(ψ

∗ | Yj)] = EYj

[
− mτ∗0
(mτ∗0 + τ∗1 )

2
Ȳj +

mτ∗0
(mτ∗0 + τ∗1 )

2
µ∗
]
= 0,

EYj
[∂τ1M2(ψ

∗ | Yj)] =− 1

(mτ∗0 + τ∗1 )
2
+

EYj

[
2

(
− mτ∗0
(mτ∗0 + τ∗1 )

2
Ȳj +

mτ∗0
(mτ∗0 + τ∗1 )

2
µ∗
)(

mτ∗0
mτ∗0 + τ∗1

Ȳj −
mτ∗0

mτ∗0 + τ∗1
µ∗
)]

=− 1

(mτ∗0 + τ∗1 )
2
− 2

(mτ∗0 )
2

(mτ∗0 + τ∗1 )
3
EYj

[
(Ȳj − µ∗)2

]
=− 1

(mτ∗0 + τ∗1 )
2
− 2

mτ∗0
τ∗1 (mτ

∗
0 + τ∗1 )

2
,

by (83).
We now consider V (ψ∗). Given X ∼ N(µ, σ2), we have

Cov(X,X2) = 2µσ2, Var(X2) = 2σ4 + 4µ2σ2 ,

which can be easily derived by computing the first four moments of X using Lemma C.23,
which are E[X] = µ, E[X2] = µ2+σ2, E[X3] = 3µσ2+µ3 and E[X4] = 3σ4+6µ2σ2+µ4.
By (82) we have

Var(θj | Yj , ψ∗) =
1

mτ∗0 + τ∗1
,

Cov(θj , (θj − µ∗)2 | Yj , ψ∗) = Cov(θj − µ∗, (θj − µ∗)2 | Yj , ψ∗) = 2
mj − µ∗

mτ∗0 + τ∗1
,

Var((θj − µ∗)2 | Yj , ψ∗) =
2

(mτ∗0 + τ∗1 )
2
+

4

mτ∗0 + τ∗1
(mj − µ∗)

2

=
2

(mτ∗0 + τ∗1 )
2
+

4

mτ∗0 + τ∗1

(
mτ∗0

mτ∗0 + τ∗1
(Ȳj − µ∗) + µ∗

)2

.

Therefore, we conclude
EYj

[
Cov(θj , θ

2
j | Yj , ψ∗)

]
= 0

and

EYj

[
Var(θ2j | Yj , ψ∗)

]
=

2

(mτ∗0 + τ∗1 )
2
+

4

mτ∗0 + τ∗1
EYj

[(
mτ∗0

mτ∗0 + τ∗1

)2

(Ȳj − µ∗)2

]

=
2

(mτ∗0 + τ∗1 )
2
+

4m2(τ∗0 )
2

(mτ∗0 + τ∗1 )
3
EYj

[
(Ȳj − µ∗)2

]
=

2

(mτ∗0 + τ∗1 )
2
+

4mτ∗0
τ∗1 (mτ

∗
0 + τ∗1 )

2
,

as desired.
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Lemma C.31. Consider the same assumptions of Proposition 5.1. Then∥∥∥L(dT̃ , dψ̃ | Y1:J)−N (0,Σ)
∥∥∥
TV

→ 0,

as J → ∞, in Q
(∞)
ψ∗ -probability, where (T̃ , ψ̃) are derived by (86) with transformations (17)

and (19) and where

Σ =


2
τ∗
1 +2mτ∗

0

m2(τ∗
0 )

2τ∗
1

0 −2
τ∗
1 (τ

∗
1 +2mτ∗

0 )
m2(τ∗

0 )
2 0

0 1
mτ∗

0
0 1

mτ∗
0

−2
τ∗
1 (τ

∗
1 +2mτ∗

0 )
m2(τ∗

0 )
2 0 2

(τ∗
1 )

2(τ∗
1 +mτ

∗
0 )

2

m2(τ∗
0 )

2 0

0 1
mτ∗

0
0

mτ∗
0 +τ

∗
1

mτ∗
0 τ

∗
1

 (88)

Proof. The result follows by an argument similar to the proof of Proposition 4.5, where

Σ =

V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗) C(ψ∗)I−1(ψ∗)

I−1(ψ∗)C⊤(ψ∗) I−1(ψ∗)


The entries of Σ can be computed through Lemmas C.25 and C.30.

Proof of Corollary 5.2 for γ2(ψ
∗) and γ3(ψ

∗). Recall that P2 is the transition kernel of
the Gibbs sampler that alternates updates from L (dµ,dθ | τ1, Y1:J) and L (dτ1 | θ, µ, Y1:J).
Through the same reasoning of Lemma 4.1, the mixing times of P2 are the same of the Gibbs
sampler targeting L (dµ,dτ1,dT | Y1:J) by alternating updates from L (dµ,dT | τ1, Y1:J)
and L (dτ1 | µ,T , Y1:J). Indeed

L (dτ1 | µ,θ, Y1:J) = L (dτ1 | µ,T (θ), Y1:J) .

Therefore, by Corollary 2.6 γ2(ψ
∗) is the spectral gap of the Gibbs sampler alternating

updates from L̃
(
dµ̃,dT̃1,dT̃2 | τ̃1

)
and L̃

(
dτ̃1 | µ̃, T̃1, T̃2

)
, where L̃(·) is the law identified

in Lemma C.31. By inspection of the matrix (88),
(
µ̃, T̃1

)
is independent from τ̃1 and

T̃2 according to L̃, so that
(
µ̃, T̃1

)
is sampled independently from everything else at each

iteration. Therefore by the same arguments of the proof of Corollary 4.6 we have

γ2(ψ
∗) = 1− Σ2

24

Σ22Σ44
=

(
mτ∗0

mτ∗0 + τ∗1

)2

.

Instead, recall that P3 is the transition kernel of the Gibbs sampler that alternates updates
from L (dθ | τ1, Y1:J), L (dµ | θ, τ1, Y1:J) and L (dτ1 | θ, µ, Y1:J). Reasoning as before, by
Corollary 2.6 γ3(ψ

∗) is the spectral gap of the Gibbs sampler alternating updates from

L̃
(
dT̃ | µ̃, τ̃1

)
, L̃
(
dµ̃ | τ̃1, T̃

)
and L̃

(
dτ̃1 | µ̃, T̃

)
, where L̃(·) is the law identified in Lemma

C.31. By inspection of the matrix (88), the pair (µ̃, T̃1) is independent from (τ̃1, T̃2),
according to L̃. By standard properties of the Gibbs samplers (e.g. Lemma 2 in [42]), the
spectral gap is given by the minimum of the spectral gaps of the Gibbs samplers associated
to the two pairs, i.e.

γ3(ψ
∗) = min

{
1− Σ2

24

Σ22Σ44
, 1− Σ2

13

Σ11Σ33

}
=

(
mτ∗0

mτ∗0 + τ∗1

)2

.

Notice that the result of Lemma C.6 holds even if P3 has three blocks: indeed, by inspec-
tion of the matrix (88), µ̃ and τ̃1 are independent according to L̃, so that the updates

L̃
(
dµ̃ | τ̃1, T̃

)
and L̃

(
dτ̃1 | µ̃, T̃

)
can be equivalently seen as a single one.
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C.20 Proof of Lemma 5.3

Since it will be useful in the following, we denote

c(µ, τ) = min
r∈{0,...,m}

g(yr | µ, τ) ,

with g(yr | µ, τ) defined in (28). Notice that by construction, see e.g. (26), we have
0 < c(µ, τ) ≤ 1. Also, g(yr | µ, τ) is continuous w.r.t. (µ, τ) since it is defined in (28) as the
integral of a bounded function, θ 7→ f(y | θ), with respect to the normal kernel which is
continuous w.r.t. (µ, τ). It follows that also c(µ, τ) is continuous, since it is the minimum
of a finite number of continuous functions. Define

c := inf
(µ,τ)∈B

c(µ, τ) > 0 (89)

where B is the largest of the three balls – namely Bδ4 , Bδ5 and Bδ6 – centered at ψ∗ =
(µ∗, τ∗) defined in (B4), (B5) and (B6), respectively. The positivity of c follows from the
continuity of c(µ, τ) and the compactness of B.

Recall that T (θj) =
(
θj , θ

2
j

)
. Thus we need three lemmas.

Lemma C.32. Consider the setting of Lemma 5.3. Then assumption (B4) is satisfied.

Proof. First of all, consider V (ψ∗), as defined in (38). For every y = 0, . . . ,m, we have
that the posterior distribution of θj admits a density with respect to the Lebesgue measure
of the form

p(θj | y, µ, τ) ∝ f(yr | θj)N(θj | µ, τ),

which implies that

Var(θj | y, ψ∗) > 0, Var(θ2j | y, ψ∗) > 0, |Corr(θj , θ2j | y, ψ∗)| < 1.

Consequently V (ψ∗) is a sum of positive definite matrices and is therefore non singular.
Secondly, let s, p = 1, 2. Then by Bayes’ Theorem it follows

M (p)
s (yr | µ, τ) =

∫
R θ

spf(yr | θ)N(θ | µ, τ−1) dθ∫
R f(yr | θ)N(θ | µ, τ−1) dθ

, r = 0, . . . ,m.

Therefore

|∂µM (p)
1 (yr | µ, τ)| ≤

∣∣∣∣
∫
R θ

pf(yr | θ)∂µN(θ | µ, τ−1) dθ∫
R f(yr | θ)N(θ | µ, τ−1) dθ

∣∣∣∣+∣∣∣∣∣
(∫

R θ
pf(yr | θ)N(θ | µ, τ−1) dθ

) (∫
R f(yr | θ)∂µN(θ | µ, τ−1) dθ

)(∫
R f(yr | θ)N(θ | µ, τ−1) dθ

)2
∣∣∣∣∣ .

By definition of c we have

|∂µM (p)
1 (yr | µ, τ)| ≤

1

c

∫
R
|θ|p

∣∣∂µN(θ | µ, τ−1)
∣∣ dθ+

1

c2

(∫
R
|θ|pN(θ | µ, τ−1) dθ

)(∫
R
|θ|p

∣∣∂µN(θ | µ, τ−1)
∣∣ dθ)

=
τ

c

∫
R
|(θ − µ)θp|N(θ | µ, τ−1) dθ+

τ

c2

(∫
R
|(θ − µ)θ|pN(θ | µ, τ−1) dθ

)(∫
R
|θ|pf

∣∣N(θ | µ, τ−1)
∣∣ dθ) .

The right hand side does not depend on the data, so that

EYj

[
|∂µM (p)

1 (yr | µ, τ)|
]
≤ m

τ

c
E[|(θj−µ)θpj | | µ, τ ]+m

τ

c2
E[|(θj−µ)θpj | | µ, τ ]E[|θj |p | µ, τ ].
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By the specification of model (27), the prior absolute moments are all finite and continuous
function of µ and τ : therefore the right hand side is uniformly bounded for every bounded
neighborhood of (µ∗, τ∗). Using a similar argument for all the other quantities involved, it
is easy to see that assumption (B4) holds for every δ4 < τ∗.

Lemma C.33. Consider the setting of Lemma 5.3. Then assumption (B5) is satisfied
with k = 5.

Proof. Consider the random vector X = (X1, X2) = (
∑5
j=1 θj ,

∑5
j=1 θ

2
j ). First of all we

prove that X admits a density function with respect to the Lebesgue measure on R2,
conditional to (µ, τ). By Lemma C.26 and conditional independence of θj we have

∣∣∣E [ei(t1X1+t2X2) | µ, τ1
]∣∣∣ ≤ e

−5σ2

2
(2µt2+t1)2

1+4t22σ4

(1 + 4t22σ
4)

5/4
,

where we denote σ2 = τ−1, so that we can write∫
R2

|φX(t | µ, τ)|dt =
∫
R2

∣∣∣E [ei(t1X1+t2
∑3

j=1X2) | Y, µ, τ1
]∣∣∣ dt1dt2

≤
∫
R

1

(1 + 4t22σ
4)

5/4

(∫
R
e
−5σ2

2
(2µt2+t1)2

1+4t22σ4
dt1

)
dt2

=

√
2π

5σ2

∫
R

1

(1 + 4t22σ
4)

3/4
dt2 <∞.

(90)

Therefore, by the Inversion Formula we have that X admits a density p(x | µ, τ) with
respect to the Lebesgue measure on R2. Thus, by Bayes’ Theorem we can write

p(x | Y1:5, µ, τ) =
f(Y1:5 | x, µ, τ)p(x | µ, τ)∫

R2 f(Y1:5 | x, µ, τ)p(x | µ, τ) dx
,

where f(Y1:5 | x, µ, τ) =
∫ ∏5

j=1 f(Yj | θj)L(dθ1:5 | x, µ, τ). It is easy to see that f(Y1:5 |
x, µ, τ) ≤ 1 and ∫

R2

f(Y1:5 | x, µ, τ)p(x | µ, τ) dx =

5∏
j=1

g(Yj | µ, τ) ≥ c5,

for every (µ, τ) ∈ Bδ5 , with δ5 to be fixed. We can therefore conclude that

p(x | Y1:5, µ, τ) ≤
p(x | µ, τ)

c5
.

We can now apply the Plancherel identity to get∫
R2

∣∣∣φ(5)(t | Y, µ, τ)
∣∣∣2 dt =

∫
R2

p2(x1, x2 | Y, µ, τ) dx ≤ 1

c10

∫
R2

p2(x1, x2 | µ, τ) dx.

Applying again the Plancherel identity we obtain∫
R2

∣∣∣φ(5)(t | Y, µ, τ)
∣∣∣2 dt ≤ 1

c10

∫
R2

|φX(t | µ, τ)|2 dt ≤ 1

c10

∫
R2

|φX(t | µ, τ)| dt <∞,

by (90) for every τ > 0. Therefore assumption (B5) follows with δ5 < τ∗.

Lemma C.34. Consider the setting of Lemma 5.3. Then assumption (B6) is satisfied
with k′ = 5.

66



Proof. As shown in the proof of Lemma C.33, the vector (
∑5
j=1 θj ,

∑5
j=1 θ

2
j ) admits a den-

sity with respect to the Lebesgue measure on R2, conditional to Y and (µ∗, τ∗). Therefore,
by Lemma 4 in Chapter 15 of [20], |φ(5)(t | Y, µ∗, τ∗)| < 1 for every t = (t1, t2). Moreover,
by Riemann-Lebesgue Lemma we have

|φ(5)(t | Y, µ∗, τ∗)| → 0,

as |t| → ∞. We conclude

sup
|t|≥ϵ

∣∣∣φ(5)(t | Y, µ∗, τ∗)
∣∣∣ < 1.

Let δ6 > 0 to be chosen later and (µ, τ) ∈ Bδ6 . Then by Taylor formula we get

|φ(5)(t | Y, µ, τ)|2 = |φ(5)(t | Y, µ∗, τ∗)|2+(µ∗−µ)∂µ|φ(5)(t | Y, µ̄, τ̄)|2+(τ∗−τ)∂τ |φ(5)(t | Y, µ̄, τ̄)|2,
(91)

where (µ̄, τ̄) ∈ Bδ6 . Notice that

|φ(5)(t | Y, µ, τ)|2 =

∫
R3

cos

t1 5∑
j=1

θj + t2

5∑
j=1

θ2j


5∏
j=1

f(Yj | θj)N(θj | µ, τ−1)∫
R f(Yj | ψj)N(ψj | µ, τ−1)dψj

 dθ1:5

2

+

∫
R5

sin

t1 5∑
j=1

θj + t2

5∑
j=1

θ2j


5∏
j=1

f(Yj | θj)N(θj | µ, τ−1)∫
R f(Yj | ψj)N(ψj | µ, τ−1)dψj

 dθ1:5

2

,

which implies∣∣∣∂µ|φ(5)(t | Y, µ, τ)|2
∣∣∣ ≤2

∣∣∣∣∣∣
∫
R5

cos

t1 5∑
j=1

θj + t2

5∑
j=1

θ2j

 ∂µ


5∏
j=1

f(Yj | θj)N(θj | µ, τ−1)∫
R f(Yj | ψj)N(ψj | µ, τ−1)dψj

 dθ1:5

∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣
∫
R5

sin

t1 5∑
j=1

θj + t2

5∑
j=1

θ2j

 ∂µ


5∏
j=1

f(Yj | θj)N(θj | µ, τ−1)∫
R f(Yj | ψj)N(ψj | µ, τ−1)dψj

 dθ1:5

∣∣∣∣∣∣
and therefore∣∣∣∂µ|φ(5)(t | Y, µ, τ)|2

∣∣∣ ≤ 4

∫
R5

∣∣∣∣∣∣∂µ


5∏
j=1

f(Yj | θj)N(θj | µ, τ−1)∫
R f(Yj | ψj)N(ψj | µ, τ−1)dψj


∣∣∣∣∣∣ dθ1:5

= 4

5∑
j=1

∫
R

∣∣∣∣∂µ{ f(Yj | θj)N(θj | µ, τ−1)∫
R f(Yj | ψj)N(ψj | µ, τ−1)dψj

}∣∣∣∣ dθj .
(92)

Moreover, for every r = 0, . . . ,m, we have∣∣∣∣∂µ{ f(yr | θ)N(θ | µ, τ−1)∫
R f(yr | ψ)N(ψ | µ, τ−1)dψ

}∣∣∣∣ ≤ ∣∣∣∣{ f(yr | θ)∂µN(θ | µ, τ−1)∫
R f(yr | ψ)N(ψ | µ, τ−1)dψ

}∣∣∣∣
+

∣∣∣∣∣
{
f(yr | θ)∂µN(θ | µ, τ−1)

(∫
R f(yr | ψ)∂µN(ψ | µ, τ−1)dψ

)(∫
R f(yr | ψ)N(ψ | µ, τ−1)dψ

)2
}∣∣∣∣∣

≤ |∂µN(θ | µ, τ−1)|
c

+
1

c2
|∂µN(θ | µ, τ−1)|

(∫
R
|∂µN(ψ | µ, τ−1)|dψ

)
= 2τ

|θ − µ|N(θ | µ, τ)
c

+
4τ2

c2
|θ − µ|N(θ | µ, τ−1)

(∫
R
|ψ − µ|N(ψ | µ, τ−1)dψ

)
.

Therefore, by (92) there exists C(δ6) <∞ which does not depend on µ and τ such that∣∣∣∂µ|φ(5)(t | Y, µ, τ)|2
∣∣∣ ≤40τ

∫
R |θ − µ|N(θ | µ, τ−1) dθ

c
+ 80τ2

(∫
R |θ − µ|N(θ | µ, τ−1) dθ

c

)2

≤ C(δ6),
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for every (µ, τ) ∈ Bδ6 Notice that C(δ6) becomes smaller as δ6 decreases. Similarly holds
for ∂τ |φ(3)(t | Y, µ, τ)|2, so that by (91) we have

|φ(5)(t | Y, µ, τ)|2 ≤ |φ(5)(t | Y, µ∗, τ∗)|2 + |µ∗ − µ|C(δ6) + |τ∗ − τ |C(δ6)
≤ |φ(5)(t | Y µ∗, τ∗)|2 + 2δ6C(δ6).

Since sup
|t|≥ϵ

|φ(5)(t | Y, µ∗, τ∗)|2 < 1, by choosing δ6 small enough we have

sup
(µ,τ)∈Bδ6

sup
|t|≥ϵ

|φ(5)(t | Y, µ, τ)|2 ≤ sup
|t|≥ϵ

|φ(5)(t | Y, µ∗, τ∗)|2 + 2δ6C(δ6) < 1,

and (B6) is satisfied.

Proof of Lemma 5.3. Assumption (B4) is satisfied by Lemma C.32, assumption (B5) by
Lemma C.33 and assumption (B6) by Lemma C.34.

C.21 Proof of Proposition 5.4

Proof. Requirements (B1)−(B3) of Theorem 4.2 are satisfied by assumption, while (B4)−
(B6) hold by Lemma 5.3.

C.22 Proof of Corollary 5.5

Proof. The result is a direct consequence of Corollary 4.6.

C.23 Statement and proof of Lemma C.35

Let

f(y | θ) =
(
m

y

)
eyθ

(1 + eθ)m
, (93)

where y = 0, . . . ,m. It means that for each group, conditional to θ,m independent Bernoulli
trials are performed, with probability of success given by eθ/(1+eθ). The following Section
is devoted to the proof of the following lemma.

Lemma C.35. Consider the setting of Proposition 5.4 with likelihood (93). The Fisher
Information Matrix I(µ, τ) is non-singular if and only if m ≥ 2, for every (µ, τ).

First of all we need few preliminary results.

Lemma C.36. Consider the setting of Proposition 5.4 with likelihood (93) and fix (µ, τ).
Let h(y | µ, τ) = log g(y | µ, τ), with g(·) as in (28). Then it holds

EY

[
∂

∂µ
h(Y | µ, τ)

]
= EY

[
∂

∂τ
h(Y | µ, τ)

]
= 0

and

EY

[(
∂

∂µ
h(Y | µ, τ)

)2
]
<∞, EY

[(
∂

∂τ1
h(Y | µ, τ)

)2
]
<∞.

Moreover, for every y = 0, . . . ,m we have

∂

∂µ
g(y |, µ, τ) =

(
m

y

)∫
eyθ
[
y + yeθ −meθ

]
(1 + eθ)m+1

√
τ

2π
e−

τ
2 (θ−µ)

2

dθ

and

∂

∂τ
g(y |, µ, τ) = −

(
m

y

)
1

2τ

∫
(θ − µ)

eyθ
[
y + yeθ −meθ

]
(1 + eθ)m+1

√
τ

2π
e−

τ
2 (θ−µ)

2

dθ.
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Proof. Through Dominated Convergence Theorem it is easy to verify that

∂

∂µ
g(y | µ, τ) =

(
m

y

)∫
eyθ

(1 + eθ)m
∂

∂µ

{√
τ

2π
e−

τ
2 (θ−µ)

2

}
dθ

and
∂

∂τ
g(y | µ, τ) =

(
m

y

)∫
eyθ

(1 + eθ)m
∂

∂τ

{√
τ

2π
e−

τ
2 (θ−µ)

2

}
dθ,

that is integrals and derivatives can be exchanged. Therefore

∂

∂µ
h(y |, µ, τ) = E [θ − µ | y, µ, τ ] , ∂

∂µ
h(y |, µ, τ) = 1

2τ
− 1

2
E
[
(θ − µ)2 | y, µ, τ

]
and the statements on h(y | µ, τ) easily follow. Moreover

∂

∂µ
g(y | µ, τ) =

(
m

y

)∫
eyθ

(1 + eθ)m
(θ − µ)

√
τ

2π
e−

τ
2 (θ−µ)

2

dθ

=

(
m

y

)∫
eyθ
[
y + yeθ −meθ

]
(1 + eθ)m+1

√
τ

2π
e−

τ
2 (θ−µ)

2

dθ

integrating by parts. Similarly

∂

∂τ
g(y | µ, τ) =

(
m

y

)
1

2τ

∫
eyθ

(1 + eθ)m

√
τ

2π
e−

τ
2 (θ−µ)

2

dθ

−
(
m

y

)
1

2

∫
eyθ

(1 + eθ)m
(θ − µ)2

√
τ

2π
e−

τ
2 (θ−µ)

2

dθ

= −
(
m

y

)
1

2τ

∫
(θ − µ)

eyθ
[
y + yeθ −meθ

]
(1 + eθ)m+1

√
τ

2π
e−

τ
2 (θ−µ)

2

dθ.

Lemma C.37. Consider the setting of Proposition 5.4 with likelihood (93) and let y, y′ ∈
{0, 1, . . . ,m} be such that y < y′ and m ≥ 1. Then

E [θ | y, µ, τ ] < E [θ | y′, µ, τ ]

for every (µ, τ1).

Proof. Fix (µ, τ). Consider the function

r(x) =

∫
θ exθ

(1+eθ)m

√
τ1
2π e

− τ
2 (θ−µ)

2

dθ∫
exθ

(1+eθ)m

√
τ
2π e

− τ
2 (θ−µ)2 dθ

.

with x ∈ (0,m). Notice that

r(y) = E [θ | y, µ, τ ] and r(y′) = E [θ | y′, µ, τ ] .

Notice that

d

dx
r(x) =

∫
θ2 exθ

(1+eθ)m

√
τ
2π e

− τ
2 (θ−µ)

2

dθ∫
exθ

(1+eθ)m

√
τ
2π e

− τ
2 (θ−µ)2 dθ

−

∫ θ exθ

(1+eθ)m

√
τ
2π e

− τ
2 (θ−µ)

2

dθ∫
exθ

(1+eθ)m

√
τ
2π e

− τ
2 (θ−µ)2 dθ

2

> 0

for every x ∈ (0,m) by Jensen inequality. Therefore r(x) is strictly increasing and r(y) <
r(y′).
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Lemma C.38. Consider the setting of Proposition 5.4 with likelihood (93). Then the
Fisher Information Matrix I(µ, τ) is non-singular in (µ, τ) if and only if there exists α =
α(µ, τ) ̸= 0 such that

∂

∂µ
g(y | µ, τ) = α

∂

∂τ
g(y | µ, τ)

for every y = 0, . . . ,m.

Proof. Fix a pair (µ, τ). By Lemma C.36 the matrix I(µ, τ) is well-defined. The determi-
nant is given by

EY

[(
∂

∂µ
h(Y | µ, τ)

)2
]
EY

[(
∂

∂τ
h(Y | µ, τ)

)2
]
−E2

[(
∂

∂µ
h(Y | µ, τ)

)(
∂

∂τ
h(Y | µ, τ)

)]
.

By Cauchy–Schwartz inequality, the above formula is always non-negative and it is equal
to 0 if and only if ∂

∂µh(Y | µ, τ) and ∂
∂τ h(Y | µ, τ) are linearly dependent, that is

∂

∂µ
h(y | µ, τ) = α

∂

∂τ
h(y | µ, τ) + β (94)

for every y ∈ {0, 1, . . . ,m} and for constants α and β. By Lemma C.36 it is immediate to
prove β = 0. Moreover, by Lemma C.37, we deduce that α ̸= 0. Multiplying by g(y | µ, τ)
on both sides of (94) we get the final result.

Proof of Lemma C.35. Fix (µ, τ) and let m = 1. Define

α :=

∂
∂µg(0 | µ, τ)
∂
∂τ g(0 | µ, τ)

.

Notice that α is well defined, since ∂
∂τ g(0 | µ, τ) ̸= 0 for every (µ, τ). Then by construction

∂

∂µ
g(0 | µ, τ) = α

∂

∂τ
g(0 | µ, τ)

and
∂

∂µ
g(1 | µ, τ) = − ∂

∂µ
g(0 | µ, τ) = −α ∂

∂τ
g(0 | µ, τ) = α

∂

∂τ
g(1 | µ, τ),

so that the Fisher Information matrix is singular by Lemma C.38.
Let m ≥ 2 and fix (µ, τ). Assume by contradiction that I(µ, τ) is singular. By Lemma

C.38 we have that there exists α ̸= 0 such that

∂

∂µ
g(y | µ, τ) = α

∂

∂τ
g(y | µ, τ)

for every y ∈ {0, 1, . . . ,m}. By the second part of Lemma C.36 for y = 0 and y = m it
implies

−m
∫

eθ

(1 + eθ)m+1

√
τ1
2π
e−

τ
2 (θ−µ)

2

dθ = α
m

2τ

∫
(θ − µ)

eθ

(1 + eθ)m+1

√
τ

2π
e−

τ
2 (θ−µ)

2

dθ

and

m

∫
emθ

(1 + eθ)m+1

√
τ

2π
e−

τ
2 (θ−µ)

2

dθ = −αm
2τ

∫
(θ − µ)

emθ

(1 + eθ)m+1

√
τ

2π
e−

τ
2 (θ−µ)

2

dθ.

Since α ̸= 0, we conclude∫
(θ − µ) emθ

(1+eθ)m+1

√
τ
2π e

− τ
2 (θ−µ)

2

dθ∫
emθ

(1+eθ)m+1

√
τ
2π e

− τ
2 (θ−µ)2 dθ

=

∫
(θ − µ) eθ

(1+eθ)m+1

√
τ
2π e

− τ
2 (θ−µ)

2

dθ∫
eθ

(1+eθ)m+1

√
τ
2π e

− τ
2 (θ−µ)2 dθ

,
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that means
E[θ | m,µ, τ ] = E[θ | 1, µ, τ ].

Since m > 1, the above equality directly contradicts Lemma C.37. Therefore the Fisher
Information matrix is non singular.

C.24 Proof of Proposition 5.6

Define a one-to-one transformation of ψ = (µ, τ1, τ0) as

ψ̃ =
√
J (ψ − ψ∗)−∆J , ∆J =

1√
J

J∑
j=1

I−1(ψ∗)∇ log g(Yj | ψ∗), (95)

with g(·) as in (23) and I(ψ∗) as in (84).

Lemma C.39. Consider the assumptions of Proposition 5.6. Then it holds∣∣∣∣∣∣L(dψ̃ | Y1:J)−N
(
0, I−1(ψ∗)

)∣∣∣∣∣∣
TV

→ 0,

as J → ∞ in Q
(∞)
ψ∗ -probability, with I(ψ∗) non singular matrix as in (84).

Proof. The result follows by Theorem 3.1. Indeed, the map ψ → g(y | ψ) clearly satisfies
identifiability and smoothness requirements. Moreover, by Lemma C.25 we have

det (I(ψ∗)) =
m3(m− 1)τ∗0

4τ∗1 (τ
∗
1 +mτ∗0 )

3
,

that is strictly positive for every ψ∗, with m ≥ 2. As regards the testing conditions,
analogously to Lemma C.8 define

Ψ =Ψ1 ×Ψ2 ×Ψ3 = [µ∗ − 1, µ∗ + 1]×
[
τ∗1
2
, 2τ∗1

]
×
[
τ∗0
2
, 2τ∗0

]
compact neighborhood of ψ∗ and

uJ(Y1:J) = 1− 1g1(Y1:J )≤c1 1g2(Y1:J )≤c2 1g3(Y1:J )≤c3 ,

where (c1, c2, c3) are positive constants to be fixed and

g1(Y1:J) =
∣∣Ȳ − µ∗∣∣ , g2(Y1:J) =

∣∣∣∣∣∣ 1J
J∑
j=1

(
Ȳj − Ȳ

)2 − 1

τ∗1
− 1

mτ∗0

∣∣∣∣∣∣ ,
g3(Y1:J) =

∣∣∣∣∣∣ 1J
J∑
j=1

(
Yj,1 − Ŷ1

)(
Yj,2 − Ŷ2

)
− 1

τ∗1

∣∣∣∣∣∣ ,
where

Ȳ =
1

J

J∑
j=1

Ȳj , Ŷi =
1

J

J∑
j=1

Yj,i.

By definition of g(·) in (23), by the Law of Large numbers we have∫
uJ(y1:J)

J∏
j=1

g(dyj | ψ∗)

≤ P (g1(Y1:J) > c1) + P (g2(Y1:J) > c2) + P (g3(Y1:J) > c3) → 0,
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as J → ∞ for every strictly positive constants (c1, c2, c3). Moreover, notice that

sup
ψ ̸∈Ψ

∫
[1− uJ(y1:J)]

J∏
j=1

g(dyj | ψ)

≤ sup
τ1 ̸∈Ψ2

P (g3(Y1:J) ≤ c3) + sup
τ1∈Ψ2, τ0 ̸∈Ψ3

P (g2(Y1:J) ≤ c2) + sup
µ ̸∈Ψ1, τ0∈Ψ3, τ1∈Ψ2

P (g1(Y1:J) > c1) .

With the same reasoning of the proof of Lemma C.8, we can find (c1, c2, c3) such that the
three suprema goes to 0 as J → ∞.

We need another technical Lemma.

Lemma C.40. Consider the setting of Proposition 5.6. Then we have

E
[
(θj − µ)2 | Y, ψ

]
=

1

mτ0 + τ1
+

(
mτ0

mτ0 + τ1

)2

(Ȳj − µ)2,

E
[
(θj − Ȳj)

2 | Y, ψ
]
=

1

mτ0 + τ1
+

(
τ1

mτ0 + τ1

)2

(Ȳj − µ)2

and

Var
(
(θj − µ)2 | Y, ψ

)
=

2

(mτ0 + τ1)2
+ 4

m2τ20
(mτ0 + τ1)3

(Ȳj − µ)2,

Var
(
(θj − Ȳj)

2 | Y, ψ
)
=

2

(mτ0 + τ1)2
+ 4

τ21
(mτ0 + τ1)3

(Ȳj − µ)2

and

Cov
(
(θj − µ)2, (θj − Ȳj)

2 | Y, ψ
)
=

2

(mτ0 + τ1)2
− 4

mτ0τ1
(mτ0 + τ1)3

(Ȳj − µ)2.

Proof. Notice that by (82) we have

(θj − µ) | Yj , ψ ∼ N

(
mτ0

mτ0 + τ1
(Ȳj − µ), (mτ0 + τ1)

−1

)
and

(θj − Ȳj) | Yj , ψ ∼ N

(
τ1

mτ0 + τ1
(µ− Ȳj), (mτ0 + τ1)

−1

)
.

Therefore we have

E
[
(θj − µ)2 | Y, ψ

]
=

1

mτ0 + τ1
+

(
mτ0

mτ0 + τ1

)2

(Ȳj − µ)2,

and similarly for the other case. If X ∼ N(µ, σ2), by Lemma C.23 we have E[X4] =

3σ4 + 6µ2σ2 + µ4. In our case, considering σ = (mτ0 + τ1)
−1/2

and µ = mτ0
mτ0+τ1

(Ȳj − µ),
we have

E
[
(θj − µ)4 | Y, ψ

]
=

3

(mτ0 + τ1)2
+ 6

m2τ20
(mτ0 + τ1)3

(Ȳj − µ)2 +

(
mτ0

mτ0 + τ1

)4

(Ȳj − µ)4

and

E2
[
(θj − µ)2 | Y, ψ

]
=

1

(mτ0 + τ1)2
+ 2

m2τ20
(mτ0 + τ1)3

(Ȳj − µ)2 +

(
mτ0

mτ0 + τ1

)4

(Ȳj − µ)4.

Therefore

Var
(
(θj − µ)2 | Y, ψ

)
=

2

(mτ0 + τ1)2
+ 4

m2τ20
(mτ0 + τ1)3

(Ȳj − µ)2,
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and similarly for the other one. Finally, again by Lemma C.23, if Z ∼ N(0, 1) we have

E[(σZ + µ1)
2
(σZ + µ2)

2
] = 3σ4 + σ2(µ2

1 + 4µ1µ2 + µ2
2) + µ2

1µ
2
2. In our case, considering

σ = (mτ0 + τ1)
−1/2

, µ1 = mτ0
mτ0+τ1

(Ȳj − µ) and µ2 = τ1
mτ0+τ1

(µ− Ȳj), we have

E
[
(θj − µ)2(θj − Ȳj)

2 | Y, ψ
]
=

3

(mτ0 + τ1)2
+

m2τ20
(mτ0 + τ1)3

(Ȳj − µ)2 +
τ21

(mτ0 + τ1)3
(Ȳj − µ)2

− 4
mτ0τ1

(mτ0 + τ1)3
(Ȳj − µ)2 +

m2τ20 τ
2
1

(mτ0 + τ1)4
(Ȳj − µ)4

and

E
[
(θj − µ)2 | Y, ψ

]
E
[
(θj − Ȳj)

2 | Y, ψ
]
=

1

(mτ0 + τ1)2
+

m2τ20
(mτ0 + τ1)3

(Ȳj − µ)2 +
τ21

(mτ0 + τ1)3
(Ȳj − µ)2 +

m2τ20 τ
2
1

(mτ0 + τ1)4
(Ȳj − µ)4.

Therefore

Cov
(
(θj − µ)2, (θj − Ȳj)

2 | Y, ψ
)
=

2

(mτ0 + τ1)2
− 4

mτ0τ1
(mτ0 + τ1)3

(Ȳj − µ)2,

as desired.

Define

C(ψ) =

[
0 1

(mτ0+τ1)2
m

(mτ0+τ1)2

0 1
(mτ0+τ1)2

m
(mτ0+τ1)2

]
, V (ψ) =

[
2

(mτ0+τ1)2
+ 4mτ0(τ1)

−1

(mτ0+τ1)2
− 2

(mτ0+τ1)2

− 2
(mτ0+τ1)2

2
(mτ0+τ1)2

+ 4 τ1(mτ0)
−1

(mτ0+τ1)2

]
.

(96)

Now we define a linear rescaling of T =
(∑J

j=1(θj − Ȳj)
2,
∑J
j=1(θj − µ)2

)
as

T̃ =
1√
J

J∑
j=1

(θj − Ȳj)
2 − 1

mτ∗
0 +τ

∗
1
−
(

τ∗
1

mτ∗
0 +τ

∗
1

)2 (
Ȳj − µ∗)2

(θj − µ)2 − 1
mτ∗

0 +τ
∗
1
−
(

mτ∗
0

mτ∗
0 +τ

∗
1

)2 (
Ȳj − µ∗)2

− C(ψ∗)∆J , (97)

with ∆J as in (95). The next lemma shows the asymptotic distribution of T̃ using the
weak topology.

Lemma C.41. Define ψ̃ and T̃ as in (95) and (97), respectively. For every ψ̃ ∈ RD it
holds ∥∥∥L(dT̃ | Y1:J , ψ̃)−N

(
C(ψ∗)ψ̃, V (ψ∗)

)∥∥∥
W

→ 0,

Q
(∞)
ψ∗ -almost surely as J → ∞.

Proof. The result follows by arguments similar to the proof of Lemma C.11. First of all
notice that C(ψ) defined in (96) is such that

C(ψ) =

[
EYj

[
∂µE[(θj − Ȳj)

2 | Yj , ψ
]

EYj

[
∂τ1E[(θj − Ȳj)

2 | Yj , ψ
]

EYj

[
∂τ0E[(θj − Ȳj)

2 | Yj , ψ
]

EYj

[
∂µE[(θj − µ)2 | Yj , ψ

]
EYj

[
∂τ1E[(θj − µ)2 | Yj , ψ

]
EYj

[
∂τ0E[(θj − µ)2 | Yj , ψ

] ] ,
since by Lemma C.40 we have

EYj

[
∂µE[(θj − Ȳj)

2 | Yj , ψ
]
= EYj

[
∂µE[(θj − µ)2 | Yj , ψ

]
= 0,

EYj

[
∂τ0E[(θj − Ȳj)

2 | Yj , ψ
]
= EYj

[
∂τ0E[(θj − µ)2 | Yj , ψ

]
=

m

(mτ0 + τ1)2
,

EYj

[
∂τ1E[(θj − Ȳj)

2 | Yj , ψ
]
= EYj

[
∂τ1E[(θj − µ∗)2 | Yj , ψ

]
=

1

(mτ0 + τ1)2
.
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By the same reasoning in the proofs of (63) and (64) we get

EYj

[
T̃ | Y1:J , ψ∗ +

ψ̃ +∆J√
J

]
→ C(ψ∗)ψ̃

and ∣∣∣∣∣Cov
(
T̃ | Y1:J , ψ∗ +

ψ̃ +∆J√
J

)
− Cov

(
T̃ | Y1:J , ψ∗

)∣∣∣∣∣ → 0,

Q
(∞)
ψ∗ -almost surely as J → ∞. Then by (83), Lemma C.40 and the Law of Large Numbers

we have

Var

 1√
J

J∑
j=1

(θj − Ȳj)
2 | Y1:J , ψ∗

 =
2

(mτ∗0 + τ∗1 )
2
+ 4

(τ∗1 )
2

(mτ∗0 + τ∗1 )
3

1

J

J∑
j=1

(Ȳj − µ∗)2

→ 2

(mτ∗0 + τ∗1 )
2
+ 4

(mτ∗0 )
−1τ∗0

(mτ∗0 + τ∗1 )
2

and

Var

 1√
J

J∑
j=1

(θj − µ∗)2 | Y1:J , ψ∗

 =
2

(mτ∗0 + τ∗1 )
2
+ 4

(mτ∗0 )
2

(mτ∗0 + τ∗1 )
3

1

J

J∑
j=1

(Ȳj − µ∗)2

→ 2

(mτ∗0 + τ∗1 )
2
+ 4

mτ∗0 (τ
∗
1 )

−1

(mτ∗0 + τ∗1 )
2

and

Cov

 1√
J

J∑
j=1

(θj − Ȳj)
2,

1√
J

J∑
j=1

(θj − µ∗)2 | Y1:J , ψ∗

 =
2

(mτ0 + τ1)2
− 4

mτ0τ1
(mτ0 + τ1)3

1

J

J∑
j=1

(Ȳj − µ)2

→ − 2

(mτ∗0 + τ∗1 )
2
,

Q
(∞)
ψ∗ -almost surely as J → ∞. Finally, by the Law of Large Numbers and calculations

similar to Lemma C.40, we have

E
[
(θj − Ȳj)

12 | YJ , ψ
]
<∞, E

[
(θj − µ)12 | YJ , ψ

]
<∞

for every ψ. Therefore, with the same arguments in the proof of (65) we conclude that

1

J3/2

J∑
j=1

E

[
(θj − Ȳj)

12 | Yj , ψ∗ +
ψ̃ +∆J√

J

]
→ 0,

1

J3/2

J∑
j=1

E

[
(θj − µ∗)12 | Yj , ψ∗ +

ψ̃ +∆J√
J

]
→ 0,

Q
(∞)
ψ∗ -almost surely, as J → ∞. The result then follows by Lyapunov version of Central

Limit Theorem.

We need another technical Lemma.

Lemma C.42. Consider the assumptions of Proposition 5.6. Then it holds

∣∣∣E [eit1(θj−µ)2+it2(θj−Ȳj)
2

| Yj , ψ
]∣∣∣ ≤ e

−
2σ2[νj(t1+t2)−(t1µ+t2Ȳj)]

2

1+4σ4(t1+t2)2

[1 + 4(t1 + t2)2σ4]
1/4

,

with (t1, t2) ∈ R2 and

νj =
mτ0

mτ0 + τ1
µ+

τ1
mτ0 + τ1

Ȳj , σ2 =
1

mτ0 + τ1
.
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Proof. By simple computations we get

t1(θj − µ)2 + t2(θj − Ȳj)
2 = (t1 + t2)θ

2
j − 2θj(t1µ+ t2Ȳj) + t1µ

2 + t2Ȳ
2
j .

Therefore ∣∣∣E [eit1(θj−µ)2+it2(θj−Ȳj)
2
]∣∣∣ ≤ ∣∣∣E [ei((t1+t2)θ2j−2θj(µ+Ȳj))

]∣∣∣ .
Then we can apply Lemma C.26, with

a = t1 + t2, b = −2(t1µ+ t2Ȳj), ν =
mτ0

mτ0 + τ1
µ+

τ1
mτ0 + τ1

Ȳj , σ2 =
1

mτ0 + τ1
.

Consistently with the previous Sections, we denote

φ(t | Yj , ψ) = E
[
eit1(θj−Ȳj)

2+it2(θj−µ)2 | Yj , ψ
]
, φ̃(t | Y1:J , ψ) = E

[
eit

⊤T̃ | Y1:J , ψ
]

for every ψ and t = (t1, t2) ∈ R2. The next lemma proves the same convergence of Lemma
C.41 using the total variation distance.

Lemma C.43. Define ψ̃ and T̃ as in (95) and (97), respectively. For every ψ̃ ∈ RD it
holds ∥∥∥L(dT̃ | Y1:J , ψ̃)−N

(
C(ψ∗)ψ̃, V (ψ∗)

)∥∥∥
TV

→ 0,

Q
(∞)
ψ∗ -almost surely as J → ∞.

Proof. Since the result holds under the weak metric by Lemma C.41, with the same rea-
soning of Lemma C.15 it suffices to prove

lim
A→∞

lim
B→∞

lim sup
J→∞

∫
((t1+t2)2≤A,t21≤B)

c

∣∣∣φ̃(t | Y1:J , ψ(J))
∣∣∣ dt = 0

Q
(∞)
ψ∗ -almost surely as J → ∞, where

ψ(J) = ψ∗ +
ψ̃ +∆J√

J

Analogously, denote also

µ(J) = µ∗ +
µ̃+∆J,1√

J
, τ

(J)
1 = τ∗1 +

τ̃1 +∆J,2√
J

, τ
(J)
0 = τ∗0 +

τ̃0 +∆J,3√
J

.

As in (72) we have

|φ̃(t | Y1:J , ψ)| =

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ
)∣∣∣∣∣∣ .

Therefore, with the change of variables u = t1 + t2 and v = t1, we have∫
((t1+t2)2≤A,t21≤B)

c

∣∣∣φ̃(t | Y1:J , ψ(J))
∣∣∣ dt

=

∫
(u2≤A,v2≤B)c

J∏
j=1

∣∣∣∣φ( (v, u− v)√
J

| Yj , ψ(J)

)∣∣∣∣ dudv
Moreover it is easy to see that{

(u, v) | u2 ≤ A and v2 ≤ B
}c ⊂ {(u, v) | u2 > A

}
∪
{
(u, v) | u2 ≤ A and v2 > B

}
,
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so that∫
(u2≤A,v2≤B)c

J∏
j=1

∣∣∣∣φ( (v, u− v)√
J

| Yj , ψ(J)

)∣∣∣∣ dudv ≤
∫
u2>A

J∏
j=1

∣∣∣∣φ( (v, u− v)√
J

| Yj , ψ(J)

)∣∣∣∣ dudv
+

∫
(u2≤A,v2>B)

J∏
j=1

∣∣∣∣φ( (v, u− v)√
J

| Yj , ψ(J)

)∣∣∣∣ dudv.
(98)

For every ψ, by Lemma C.42 with

νj =
mτ0

mτ0 + τ1
µ+

τ1
mτ0 + τ1

Ȳj , σ2 =
1

mτ0 + τ1

we have
J∏
j=1

∣∣∣∣φ( (v, u− v)√
J

| Yj , ψ
)∣∣∣∣ ≤ e

−
2σ2 1

J

∑J
j=1[u(νj−Ȳj)−v(µ−Ȳj)]

2

1+4σ4u2

[1 + 4u2σ4]
J/4

.

Notice that

1

J

J∑
j=1

[
u(νj − Ȳj)− v(µ− Ȳj)

]2
=

= v2

 1

J

J∑
j=1

(µ− Ȳj)
2

− 2uv

 1

J

J∑
j=1

(νj − Ȳj)(µ− Ȳj)

+ u2

 1

J

J∑
j=1

(νj − Ȳj)
2


=

 1

J

J∑
j=1

(µ− Ȳj)
2

[v − u
1
J

∑J
j=1(νj − Ȳj)(µ− Ȳj)

1
J

∑J
j=1(µ− Ȳj)2

]2

+ u2

 1

J

J∑
j=1

(νj − Ȳj)
2 −

{
1
J

∑J
j=1(νj − Ȳj)(µ− Ȳj)

}2

1
J

∑J
j=1(µ− Ȳj)2

 .
As regards the first element in (98), by integrating with respect to v we get

∫
u2>A

J∏
j=1

∣∣∣∣φ( (v, u− v)√
J

| Yj , ψ(J)

)∣∣∣∣ dudv ≤
∫
u2>A

e
−

2σ2
J

1
J

∑J
j=1[u(νj−Ȳj)−v(µ(J)−Ȳj)]

2

1+4σ4
J
u2

[1 + 4u2σ4
J ]
J/4

dudv

≤
√

π

2σ2
J

1
J

∑J
j=1(µ

(J) − Ȳj)2

∫ ∞

A

e
− 2σ2

J
1+4σ4

J
u2 u

2

[
1
J

∑J
j=1(νj−Ȳj)

2−{ 1
J

∑J
j=1(νj−Ȳj)(µJ−Ȳj)}2

1
J

∑J
j=1

(µ(J)−Ȳj)
2

]

[1 + 4u2σ4
J ]
J/4−1/2

du,

where

σ2
J =

1

mτ
(J)
0 + τ

(J)
1

, νj =
mτ

(J)
0

mτ
(J)
0 + τ

(J)
1

µ(J) +
τ
(J)
1

mτ
(J)
0 + τ

(J)
1

Ȳj .

By the Law of Large Numbers we have

lim inf
1

J

J∑
j=1

(µ(J) − Ȳj)
2 = lim inf

1

J

J∑
j=1

(µ∗ − Ȳj)
2 = c1 > 0

Q
(∞)
ψ∗ -almost surely and similarly

lim inf

 1

J

J∑
j=1

(νj − Ȳj)
2 −

{
1
J

∑J
j=1(νj − Ȳj)(µ

(J) − Ȳj)
}2

1
J

∑J
j=1(µ

(J) − Ȳj)2

 = c2 > 0,
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by Cauchy-Schwartz inequality, Q
(∞)
ψ∗ -almost surely. Moreover, by Lemma C.10

σ2
J ∈

(
1

2

1

mτ∗0 + τ∗1
,

2

mτ∗0 + τ∗1

)
= (σ2

1 , σ
2
2)

Q
(∞)
ψ∗ -almost surely, for J high enough. Therefore

lim
A→∞

lim
B→∞

lim sup
J→∞

∫
u2>A

J∏
j=1

∣∣∣∣φ( (v, u− v)√
J

| Yj , ψ(J)

)∣∣∣∣ dudv
≤ lim
A→∞

√
π

2σ2
1c1

∫ ∞

A

e
− 2c2σ2

1
1+4σ4

2u2 u
2

[1 + 4u2σ4
1 ]
J/4−1/2

du = 0

Q
(∞)
ψ∗ -almost surely. As regards the second addend in (98) we get

lim sup
J→∞

∫
(u2≤A,v2>B)

J∏
j=1

∣∣∣∣φ( (v, u− v)√
J

| Yj , ψ(J)

)∣∣∣∣ dudv
≤
∫
(u2≤A,v2>B)

e
− 2σ2

1
1+σ4

2A2

[
v−u

1
J

∑J
j=1(νj−Ȳj)(µ

(J)−Ȳj)

1
J

∑J
j=1

(µ(J)−Ȳj)
2

]2

dudv,

Q
(∞)
ψ∗ -almost surely. Fix A > 0 and notice that for every u we have

lim
B→∞

∫ ∞

B

e
− 2σ2

1
1+σ4

2A2

[
v−u

1
J

∑J
j=1(νj−Ȳj)(µ

(J)−Ȳj)

1
J

∑J
j=1

(µ(J)−Ȳj)
2

]2

dv = 0.

Moreover ∫
u2≤A

e
− 2σ2

1
1+σ4

2A2

[
v−u

1
J

∑J
j=1(νj−Ȳj)(µ−Ȳj)

1
J

∑J
j=1

(µ−Ȳj)
2

]2

dudv <∞,

so that, by Dominated Convergence Theorem we get

lim
B→∞

∫
(u2≤A,v2>B)

e
− 2σ2

1
1+σ4

2A2

[
v−u

1
J

∑J
j=1(νj−Ȳj)(µ

(J)−Ȳj)

1
J

∑J
j=1

(µ(J)−Ȳj)
2

]2

dudv = 0,

for every A > 0 and the result follows.

Proof of Proposition 5.6. The result follows by arguments similar to the proof of Theorem
4.2, that we briefly summarize. Since by construction

L (dψ | θ, Y1:J) = L (dψ | T , Y1:J)

a direct analogue of Lemma 4.1 holds. Moreover, by Lemmas C.39 and C.43, we can use

Lemma C.18 to prove that L
(
dT̃ ,dψ̃ | Y1:J

)
, as in (95), converges to a Gaussian vector

with non singular covariance matrix. Finally, Lemma C.6 holds for P , being a two-block
Gibbs sampler. Therefore the Gibbs sampler on the limit Gaussian target has a strictly
positive spectral gap: thus the result follows by Corollary 2.5.

C.25 Proof of Corollary 5.7

Let ϕ = (τ1, τ0) and define

I(ϕ∗) =

 m2(τ∗
0 )

2

2(τ∗
1 )

2(τ∗
1 +mτ

∗
0 )

2
m

2(τ∗
1 +mτ

∗
0 )

2

m
2(τ∗

1 +mτ
∗
0 )

2
m−1
2(τ∗

0 )
2 +

(τ∗
1 )

2

2(τ∗
0 )

2(τ∗
1 +mτ

∗
0 )

2

 , C(ϕ∗) =

[
1

(mτ∗
0 +τ

∗
1 )

2
m

(mτ∗
0 +τ

∗
1 )

2

1
(mτ∗

0 +τ
∗
1 )

2
m

(mτ∗
0 +τ

∗
1 )

2

]
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and

V (ϕ∗) =

 2
(mτ∗

0 +τ
∗
1 )

2 + 4
mτ∗

0 (τ
∗
1 )

−1

(mτ∗
0 +τ

∗
1 )

2 − 2
(mτ∗

0 +τ
∗
1 )

2

− 2
(mτ∗

0 +τ
∗
1 )

2
2

(mτ∗
0 +τ

∗
1 )

2 + 4
τ∗
1 (mτ

∗
0 )

−1

(mτ∗
0 +τ

∗
1 )

2

 .
We have a preliminary Lemma.

Lemma C.44. Consider the setting of Proposition 5.6. Then we have

γ(ψ∗) = min

{
1

1 + λi
; λi eigenvalue of V −1 (ϕ∗)C(ϕ∗)I−1(ϕ∗)C⊤(ϕ∗)

}
.

Proof. With the same reasoning of Corollary 4.6, γ(ψ∗) is the spectral gap on the limiting

Gaussian distribution of
(
ψ̃, T̃

)
, given by by Lemmas C.39 and C.43. By inspecting I(ψ∗)

in (84) and C(ψ∗) in (96), we have that µ̃ is asymptotically independent from everything
else, therefore it suffices to study the Gibbs sampler that alternates updates of (τ̃1, τ̃0) and
T̃ . Then the result follows by the same arguments of Corollary 4.6.

Proof of Corollary 5.7. By Lemma C.44 we have to study the eigenvalues of

V −1 (ϕ∗)C(ϕ∗)I−1(ϕ∗)C⊤(ϕ∗). (99)

Notice that

I(ϕ∗) = 1

(mτ∗0 + τ∗1 )
2

m2(τ∗
0 )

2

2(τ∗
1 )

2
m
2

m
2

(m−1)(mτ∗
0 +τ

∗
1 )

2+(τ∗
1 )

2

2(τ∗
0 )

2

 , C(ϕ∗) =
1

(mτ∗0 + τ∗1 )
2

[
1 m
1 m

]
and

V (ϕ∗) =
1

(mτ∗0 + τ∗1 )
2

[
2 + 4

mτ∗
0

τ∗
1

−2

−2 2 + 4
τ∗
1

mτ∗
0

]
Notice that(

(mτ∗0 + τ∗1 )
2V (ϕ∗)

)−1
=

mτ∗0 τ
∗
1

8(mτ∗0 + τ∗1 )
2

[
2 + 4

τ∗
1

mτ∗
0

2

2 2 + 4
mτ∗

0

τ∗
1

]

=
1

4(mτ∗0 + τ∗1 )
2

[
mτ∗0 τ

∗
1 + 2(τ∗1 )

2 mτ∗0 τ
∗
1

mτ∗0 τ
∗
1 mτ∗0 τ

∗
1 + 2(mτ∗0 )

2

]
and

(
(mτ∗0 + τ∗1 )

2I(ϕ∗)
)−1

=
2(τ∗1 )

2

m2(m− 1)(mτ∗0 + τ∗1 )
2

 (m−1)(mτ∗
0 +τ

∗
1 )

2+(τ∗
1 )

2

(τ∗
0 )

2 −m
−m (mτ∗

0 )
2

(τ∗
1 )

2


Therefore

m2(m− 1)(mτ∗0 + τ∗1 )
4

2(τ∗1 )
2

C(ϕ∗)I−1(ϕ∗)C⊤(ϕ∗) =

−m2 +
(m−1)(mτ∗

0 +τ
∗
1 )

2+(τ∗
1 )

2

(τ∗
0 )

2

m3(τ∗
0 )

2

(τ∗
1 )

2 −m

−m2 +
(m−1)(mτ∗

0 +τ
∗
1 )

2+(τ∗
1 )

2

(τ∗
0 )

2

m3(τ∗
0 )

2

(τ∗
1 )

2 −m

[ 1 1
m m

]

=

(
m4(τ∗0 )

2

(τ∗1 )
2

− 2m2 +
(m− 1)(mτ∗0 + τ∗1 )

2 + (τ∗1 )
2

(τ∗0 )
2

)[
1 1
1 1

]
=

(
m4(τ∗0 )

4 − 2m2(τ∗0 )
2(τ∗1 )

2 + (m− 1)(τ∗1 )
2(mτ∗0 + τ∗1 )

2 + (τ∗1 )
4

(τ∗0 )
2(τ∗1 )

2

)[
1 1
1 1

]
and

V −1 (ϕ∗)C(ϕ∗)I−1(ϕ∗)C⊤(ϕ∗) =

(
m4(τ∗0 )

4 − 2m2(τ∗0 )
2(τ∗1 )

2 + (m− 1)(τ∗1 )
2(mτ∗0 + τ∗1 )

2 + (τ∗1 )
4

2m2(m− 1)(τ∗0 )
2(mτ∗0 + τ∗1 )

4

)
[
2mτ∗0 τ

∗
1 + 2(τ∗1 )

2 2mτ∗0 τ
∗
1 + 2(τ∗1 )

2

2mτ∗0 τ
∗
1 + 2(mτ∗0 )

2 2mτ∗0 τ
∗
1 + 2(mτ∗0 )

2

]
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Notice that the matrix on the right hand side admits 0 as an eigenvalue, so that the highest
eigenvalue in absolute value is given by its trace, that is

4mτ∗0 τ
∗
1 + 2(τ∗1 )

2 + 2(mτ∗0 )
2 = 2(mτ∗0 + τ∗1 )

2,

so that the highest eigenvalue of (99) is given by

m4(τ∗0 )
4 − 2m2(τ∗0 )

2(τ∗1 )
2 + (m− 1)(τ∗1 )

2(mτ∗0 + τ∗1 )
2 + (τ∗1 )

4

m2(m− 1)(τ∗0 )
2(mτ∗0 + τ∗1 )

2
.

The result follows by noticing

m4(τ∗0 )
4 − 2m2(τ∗0 )

2(τ∗1 )
2 + (τ∗1 )

4 =
[
m2(τ∗0 )

2 − (τ∗1 )
2
]2

= (mτ∗0 − τ∗1 )
2(mτ∗0 + τ∗1 )

2.

C.26 Proof of Lemma 5.8

Proof. The proof follows the same lines of Lemma 4.1, that we briefly summarize. Since

L
(
dθ,dτβ | β, Y (n)) = L(dθ,dτβ | T (β), Y (n)

)
(100)

holds by definition of T , reasoning as in (59) we can conclude

L
(
dT (t),dθ(t),dτ

(t)
β |T (t−1), θ(t−1), τ

(t−1)
β

)
= π̂n

(
dT (t) | θ(t−1), τ

(t−1)
β

)
π̂n

(
dθ(t),dτ

(t)
β | T (t)

)
,

which proves that the transition kernel of the induced chain
(
T (t), θ(t), τ

(t)
β

)
t≥1

coincides

with P̂n. The second part of the Lemma follows by the same reasoning used in (60).

C.27 Proof of Corollary 5.9

Proof. By Lemma 5.8 we have

t
(n)
mix(ϵ,M) = sup

ν∈N (π̂n,M)

t̂
(n)
mix(ϵ, ν).

The result then follows by Corollary 2.5, whose conditions hold by assumption.

C.28 Proof of Corollary 5.10

Proof. It is easy to show that an analogue of Lemma 5.8 holds, with ψ = (θ, τβ , τϵ) and
T =

(
Tθ, Tτβ , Tτϵ

)
. Thus the result follows with the same reasoning of Corollary 5.9.

C.29 Proof of Theorem 6.1

Denote with µ̃J the push-forward measure of µJ according to transformations (17) and
(19). The next theorem shows that the rescaled version of µJ is a warm start for the
limiting distribution in Proposition 4.5.

Lemma C.45. Let µJ ∈ P
(
RlJ+D

)
be as in (35). Then under assumptions (B1)− (B3)

there exists a positive constant M =M(c) such that

Q
(J)
ψ∗

(
µ̃J ∈ N (N(0,Σ),M)

)
→ 1,

as J → ∞, with Σ as in Proposition 4.5.
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Proof. According to transformations (17), we have

µ̃
(−1)
J = Unif

(√
J
(
ψ̂J − ψ∗

)
−∆J , c

)
.

Denote with Br(x) the closed ball of radius r > 0 and center x ∈ RD. By Theorem 5.39 in
[64] it holds

Q
(J)
ψ∗

((√
J
(
ψ̂J − ψ∗

)
−∆J

)
∈ B1(0)

)
→ 1, (101)

as J → ∞. Define now

M = max
x∈Bc+1(0)

Vol (Bc+1(0))

N(x | 0,ΣD)
, (102)

where Vol(A) is the volume of set A and N(0,ΣD) is the marginal distribution of N(0,Σ)
over the last D components. It is easy to see that M < ∞ and it does not depend on J .
Therefore, by (101), we conclude

Q
(J)
ψ∗

(
µ̃J ∈ N (N(0,Σ),M)

)
≤ Q

(J)
ψ∗

(
max

x∈Bc+1(0)

dµ̃
(−1)
J

dN(0,ΣD)
(x) ≤M

)
≤ Q

(J)
ψ∗

((√
J
(
ψ̂J − ψ∗

)
−∆J

)
∈ B1(0)

)
→ 1,

as J → ∞.

Proof of Theorem 6.1. Let µJ ∈ P
(
RlJ+D

)
be as in (35). Thus, by Lemma C.45 the event

{µ̃J ∈ N (π̃,M)} with M as in (102) holds with probability converging to 1, with respect

to the law Q
(J)
ψ∗ . Then, by Lemma 2.3, there exists ν̃J ∈ N (π̃J ,M) such that

∥ν̃J − µ̃J∥TV ≤M ∥π̃J − π̃∥TV .

Therefore, by the above facts, the triangle inequality and Lemma 4.1 we have∥∥µJP tJ − πJ
∥∥
TV

=
∥∥∥µ̃J P̃ tJ − π̃J

∥∥∥
TV

≤
∥∥∥µ̃J P̃ tJ − ν̃J P̃

t
J

∥∥∥
TV

+
∥∥∥ν̃J P̃ tJ − π̃J

∥∥∥
TV

≤ ∥µ̃J − ν̃J∥TV +
∥∥∥ν̃J P̃ tJ − π̃J

∥∥∥
TV

≤M ∥π̃J − π̃∥TV + sup
ν̃J∈N (π̃J ,M)

∥∥∥ν̃J P̃ tJ − π̃J

∥∥∥
TV

=M ∥π̃J − π̃∥TV + sup
νJ∈N (πJ ,M)

∥∥νJP tJ − πJ
∥∥
TV

.

Thus the result follows by Theorem 4.2.
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