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We consider the task of filtering a dynamic parameter evolving as a diffusion process, given data collected
at discrete times from a likelihood which is conjugate to the reversible law of the diffusion, when a generic
dual process on a discrete state space is available. Recently, it was shown that duality with respect to
a death-like process implies that the filtering distributions are finite mixtures, making exact filtering
and smoothing feasible through recursive algorithms with polynomial complexity in the number of
observations. Here we provide general results for the case where the dual is a regular jump continuous-
time Markov chain on a discrete state space, which typically leads to filtering distribution given by
countable mixtures indexed by the dual process state space. We investigate the performance of several
approximation strategies on two hidden Markov models driven by Cox–Ingersoll–Ross and Wright–
Fisher diffusions, which admit duals of birth-and-death type, and compare them with the available
exact strategies based on death-type duals and with bootstrap particle filtering on the diffusion state
space as a general benchmark.
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1 Introduction

Hidden Markov models are widely used statistical models for time series that assume an unobserved
Markov process (Xt)t≥0, or hidden signal, driving the process that generates the observations
(Yti)i=0,...,n, e.g., by specifying the dynamics of one or more parameters of the observation density
fXt(y), called emission distribution. See [11] for a general treatment of hidden Markov models. In
this framework, the first task is to estimate the trajectory of the signal given observations collected
at discrete times 0 = t0 < t1 < · · · < tn = T , which amounts to performing sequential Bayesian
inference by computing the so-called filtering distributions p(xti |yt0 , . . . , yti−1), i.e., the marginal
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distributions of the signal at time ti conditional on observations collected up to time ti−1. Originally
motivated by real-time tracking and navigation systems and pioneered by [46, 47], classical and
widely known explicit results for this problem include: the Kalman–Bucy filter, when both the
signal and the observation process are formulated in a gaussian linear system; the Baum–Welch
filter, when the signal has a finite state-space as the observations are categorical; theWonham filter,
when the signal has a finite state-space and the observations are Gaussian. These scenarios allow
the derivation of so-called finite-dimensional filters, i.e., a sequence of filtering distributions whose
explicit identification is obtained through a parameter update based on the collected observations
and on the time intervals between the collection times. In such case, the resulting computational
cost of the algorithm increases linearly with the number of observations. Other explicit results
include [16, 26, 27, 30, 31, 55, 56]. Outside these classes, explicit solutions are difficult to obtain,
and their derivation typically relies on ad hoc computations. This is especially true when the map
x 7→ fx is non-linear and when the signal transition kernel is known up to a series expansion, often
intractable, as is the case for many widely used stochastic models. When exact solutions are not
available, one must typically make use of approximate strategies, whose state of the art is most
prominently based on extensions of the Kalman and particle filters. See, for example, [6, 15].

A somewhat weaker but useful notion with respect to that of a finite-dimensional filter was formu-
lated in [13], who introduced the concept of computable filter. This extends the former class to a
larger class of filters whose marginal distributions are finite mixtures of elementary kernels, rather
than single kernels. Unlike the former case, such a scenario entails a higher computational cost,
usually polynomial in the number of observations, but avoids the infinite-dimensionality typically
implied by series expansion of the signal transition kernel. See [13, 14] for two examples.

Recently, [53] derived sufficient conditions for computable filtering based on duality. A dual process
is a process Dt which enjoys the identity

E[h(Xt, d)|X0 = x] = E[h(x,Dt)|D0 = d]. (1)

Here the expectation on the left-hand side is taken with respect to the transition law of the signal
Xt, and that on the right hand side with respect to that of Dt, while the class of functions h(x, d)
which satisfy the above identity are called duality functions. See [44] for a review and for the
technical details we have overlooked here. The use of duality is largely established in probability
and statistical physics, see for example [1, 7, 8, 12, 18, 21, 23, 24, 25, 28, 33, 34, 35, 38, 42, 43, 51, 52].
The use of duality for inference was initiated by [53], who showed that for a reversible signal whose
marginal distributions are conjugate to the emission distribution (i.e., the Bayesian update at a
fixed t can be computed in closed-form), computable filtering is guaranteed if the stochastic part of
the dual process evolves on a finite state space. Examples of such scenario were given for non-linear
hidden Markov models involving signals driven by Cox–Ingersoll–Ross (CIR) and K-dimensional
Wright–Fisher (WF) diffusions, for which recursive formulae for the filtering distributions were
derived. Along similar lines, duality was exploited for computable smoothing in [50], whereby the
signal is also conditioned on data collected at later times, and for nonparametric hidden Markov
models driven by Fleming–Viot and Dawson–Watanabe diffusions in [2, 3, 54].
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In this paper, we investigate filtering problems for hidden Markov models when the dual process
takes the more general form of a continuous-time Markov chain on a discrete state space. This is
of interest for example in some population genetic models with selection [7] or interaction [4, 25]
whose known dual processes are of birth-and-death (B&D) type, whose specific filtering problems
are currently under investigation by some of the authors. When the dual process evolves in a
countable state space, the filtering distributions can in general be expected to be countably infinite
mixtures. This leads to inferential procedures which are not computable in the sense specified
above, since the computation of the filtering distribution can no longer be exact. It is thus natural
to wonder how the inferential procedures obtained in such duality-based scenario, possibly aided
by some suitable approximation strategies, would perform.

The paper is organized as follows. In Section 2 we identify sufficient conditions for filtering based
on discrete duals and provide a general description of the filtering operations in this setting. In
Section 3, we apply these results to devise practical algorithms which allow to evaluate in recur-
sive form filtering and smoothing distributions under this formulation. Section 4 and 5 investigate
hidden Markov models driven by a Cox–Ingersoll–Ross diffusion, which admits a dual given by a
one-dimensional B&D process, and by a K-dimensional Wright–Fisher diffusions, which is shown
to admit a dual given by a K-dimensional Moran model. The latter can be seen as a multidimen-
sional B&D process with constant total population size. Section 6 discusses several approximation
strategies used to implement the above algorithms with these dual processes, and compares their
performance with exact filtering based on the results in [53] and with a bootstrap particle filter as
a general benchmark. Finally, we conclude with some brief remarks.

2 Filtering via discrete dual processes

Consider a hidden signal (Xt)t≥0 given by a diffusion process on X ⊂ RK , for K ≥ 1. This
takes here the role of a temporally evolving parameter which is the main target of estimation.
Observations Yti ∈ Y ⊂ RD, D ≥ 1, are collected at discrete times 0 = t0 < t1 < · · · < tn = T

with distribution Yti
ind∼ fx(·), given Xti = x. Knowledge of the signal state x thus makes the

observations conditionally independent. Given an observation Y = y, define the update operator
ϕy acting on densities ξ on X by

ϕy(ξ)(x) :=
fx(y)ξ(x)

µξ(y)
, µξ(y) :=

∫
X
fx(y)ξ(x). (2)

Here and later we assume all densities of interest exist with respect to an appropriate dominating
measure. In (2), ξ acts as a prior distribution on the signal state, which encodes the current
knowledge (or lack thereof) on Xt, whereas µξ(y) is interpreted as the marginal likelihood of a data
point y when Xt has distribution ξ. The update operator thus amounts to an application of Bayes’
theorem for conditioning ξ on a new observation y, leading to the updated density ϕy(ξ). For
example, if ξ is a Beta(a, b) density on [0, 1], and fx is Bern(x), then ϕy(ξ) is Beta(a+ y, b+1− y)
as in a classical Beta-Bernoulli update.
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Define also the propagation operator ψt by

ψt(ξ)(x
′) :=

∫
X
ξ(x)Pt(x

′|x)dx′. (3)

where Pt is the transition density of the signal. Here ψt(ξ) is the probability density at time t
obtained by propagating forward the density ξ of the signal at time 0 by means of the signal
semigroup.

We will make three assumptions, the first two of which are the same as in [53].

Assumption 1 (Reversibility). The signal Xt is reversible with respect to the density
π, i.e., π(x)Pt(x

′|x) = π(x′)Pt(x|x′).

See the discussion in [53] on the possibility of relaxing the above assumption. For K ∈ Z+, define
now the space of multi-indicesM = ZK

+ to be

M = {m = (m1, . . . ,mK) : mj ∈ Z+, for j = 1, . . . ,K},

whose origin is denoted 0 = (0, . . . , 0).

Assumption 2 (Conjugacy). For Θ ⊂ Rl, l ∈ Z+, let h : X ×M× Θ → R+ be such
that supx∈X h(x,m, θ) < ∞ for all m ∈ M, θ ∈ Θ and h(x,0, θ′) = 1 for some θ′ ∈ Θ.
Then fx(·) is conjugate to distributions in the family

F = {g(x,m, θ) = h(x,m, θ)π(x), m ∈M, θ ∈ Θ},

i.e., there exist functions t : Y×M→M and T : Y×Θ→ Θ such that ifXt ∼ g(x,m, θ)
and Yt|Xt = x ∼ fx, we have Xt|Yy = y ∼ g(x, t(y,m), T (y, θ)).

Here g(x,m, θ) takes the role of “current” prior distribution, i.e., the prior information on the
signal state, possibly based on past observations through previous conditioning and propagations,
and g(x, t(y,m), T (y, θ)) takes the role of the posterior, i.e., g(x,m, θ) conditional on a data point y
observed from fx forXt = x. The functions t(y,m), T (y, θ) provide the transformations that update
the parameters based on y. In absence of data, the condition h(x,0, θ′) = 1 reduces g(x,m, θ) to
π(x).

The third assumption weakens Assumption 3 in [53] by assuming the dual process has finite activity
on a discrete state space, and possibly has a deterministic companion.

Assumption 3 (Duality). Given a deterministic process Θt ∈ Θ and a regular jump
continuous-time Markov chain Mt on ZK

+ with transition probabilities

pm,n(t; θ) := P(Mt = n|M0 = m,Θ0 = θ), (4)

equation (1) holds with Dt = (Mt,Θt) and h as in Assumption 2.
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The following result provides a full description of the propagation and update steps which allow to
compute the filtering distribution.

Proposition 2.1. Let Assumptions 1-3 hold, and let
∑

m∈Mwmg(x,m, θ) be a countable mixture
with

∑
m∈Mwm = 1. Then, for ψt as in (3) we have

ψt

( ∑
m∈M

wmg(x,m, θ)

)
=

∑
n∈M

w′n(t)g(x,n,Θt), (5)

where
w′n(t) =

∑
m∈M

wnpm,n(t; θ), (6)

and pm,n(t; θ) are as in (4). Furthermore, for ϕy as in (2), we have

ϕy

( ∑
m∈M

wmg(x,m, θ)

)
=

∑
m∈M

ŵn,θ(y)g(x, t(y,m), T (y, θ)) (7)

where ŵm,θ(y) ∝ wmµm,θ(y) and

µm,θ(y) :=

∫
X
fx(y)g(x,m, θ)dx. (8)

Proof. First observe that ψt(g(x,m, θ)) =
∑

n∈M pm,n(t; θ)g(x,n,Θt), which follows similarly to
Proposition 2.2 in [53]. Then the claim follows by linearity using the fact that

ψt

(∑
i≥1

wiξi

)
=

∑
i≥1

wiψt(ξi)

so that

ψt

( ∑
m∈M

wmg(x,m, θ)

)
=

∑
m∈M

wmψt(g(x,m, θ))

=
∑

m∈M
wm

∑
n∈M

pm,n(t; θ)g(x,n,Θt) =
∑
n∈M

∑
m∈M

wmpm,n(t; θ)g(x,n,Θt)

Using now the fact that

ϕy

(∑
i≥1

wiξi

)
=

∑
i≥1

wiµξi(y)∑
j wjµξj (y)

ϕy(ξi), (9)

we also find that

ϕy

( ∑
m∈M

wmg(x,m, θ)

)
=

∑
m∈M

wmµm,θ(y)∑
n∈Mwnµn,θ(y)

g(x, t(y,m), T (y, θ))

where

µm,θ(y) =

∫
X
fx(y)g(x,m, θ)dx =

∫
X
fx(y)h(x,m, θ)π(x)dx.
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The expression (5), together with (6), provides a general recipe on how to compute the forward
propagation of the current marginal distribution of the signal g(x,m, θ), based on the transition
probabilities of the dual continuous-time Markov chain. Since the update operator (2) can be easily
applied to the resulting distribution, Proposition 2.1 then shows that under these assumptions all
filtering distributions are countable mixtures of elementary kernels indexed by the state space of
the dual process, with mixture weights proportional to the dual process transition probabilities
pm,n(t; θ). When these transition probabilities happen to give positive mass only to points {n ∈
M : n ≤ m}, as is the case for a pure-death process, then the right-hand side of (5) reduces to a
finite sum, and one can construct an exact filter with a computational cost that is polynomial in
the number of observations, as shown in [53].

The above approach can be seen as an alternative to deriving the filtering distribution of the signal
by leveraging on a spectral expansion of the transition function Pt in (3), which typically requires
ad hoc computations and does not lend itself easily to explicit update operations through (2). Note
also that expressions like (5) can be used, by taking appropriate limits of pm,n(t; θ) as t → 0, to
identify the transition kernel of the signal Pt itself, see, e.g., [7, 38, 53].

3 Recursive formulae for filtering and smoothing

In order to translate Proposition 2.1 into practical recursive formulae for filtering and smoothing,
we are going to assume for simplicity of exposition that the time intervals between successive data
collections ti − ti−1 equal ∆ for all i. For ease of reading, we will therefore use the symbol P∆

instead of Pti−ti−1 for the signal transition function over the interval ∆ = ti − ti−1. We will also
use the established notation whereby i|0 : i− 1 indicates that the argument refers to time ti = i∆,
and we are conditioning on the data collected at times from 0 to ti−1 = (i− 1)∆.

Define the filtering density

νi|0:i(xi) := p(xi|y0:i) ∝
∫
X i

p(x0:i, y0:i)dx0:i−1, (10)

i.e., the law of the signal at time ti given data up to time ti, obtained by integrating out the past
trajectory. Define also the predictive density

νi+1|0:i(xi) := p(xi+1|y0:i) =
∫
X
p(xi|y0:i)P∆(xi+1|xi)dxi, (11)

i.e, the marginal density of the signal at time ti+1, given data up to time ti. This can be expressed
recursively as a function of the previous filtering density p(xi|y0:i), as displayed. Finally, define the
marginal smoothing density

νi|0:n(xi) := p(xi|y0:n) ∝
∫
Xn

p(x0:n, y0:n)dx0:i−1dxi+1:n, (12)
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where the signal is evaluated at time ti conditional on all available data. The first two distributions
above are natural objects of inferential interest, whereas the latter is typically used to improve
previous estimates once additional data become available. Finally, for Θ∆ as in Assumption 3 and
t(·, ·), T (·, ·) as in Assumption 2, define for i = 0, . . . , n the quantities

ϑi|0:i :=T (yi, ϑi|0:i−1), ϑi|0:i−1 := Θ∆(ϑi−1|0:i−1), ϑ0|0:−1 := θ0. (13)

Here, ϑi|0:i−1 denotes the state of the deterministic component of the dual process at time i, after
the propagation from time i− 1 and before updating with the datum collected at time i, and ϑi|0:i
the state after such update.

The following Corollary of Proposition 2.1 extends a result of [53] (see also Theorem 1 in [50] for
an easier comparison in a similar notation).

Corollary 3.1. Let Assumptions 1-3 hold, and assume that

νi−1|0:i−1(x) =
∑

m∈M
w

(i−1)
m g(x,m, ϑi−1|0:i−1).

Then (11) can be written, through (3), as

νi|0:i−1(x) =ψ∆(νi−1|0:i−1(x)) =
∑

m∈M
w

(i−1)′
m g(x,m, ϑi|0:i−1),

w
(i−1)′
m =

∑
n∈M

w
(i−1)
n pn,m(∆;ϑi−1|0:i−1), m ∈M,

(14)

with pn,m(∆;ϑi|0:i) as in (4). Furthermore, given the observation yi, (10) can be written, through
(2), as

νi|0:i(x) =ϕyi(νi|0:i−1(x)) =
∑

m∈M
w

(i)
m g(x,m, ϑi|0:i),

w
(i)
m ∝µn,ϑi|0:i−1

(yi)w
(i−1)′
n , m = t(yi,n),n ∈M,

(15)

with µm,θ as in (8).

Algorithm 1 outlines the pseudo-code for implementing the update and propagation steps of Corol-
lary 3.1. How to use these results efficiently can depend on the model at hand. When the transition
probabilities pm,n(t; θ) are available in closed form, their use could lead to the best performance,
but can also at times face numerical instability issues (as is the case pointed out in Section 4 below).
When the transition probabilities pm,n(t; θ) are not available in closed form, one can approximate
them by simulating N replicates of the dual component Mt, and then regroup probability masses
according to the arrival states as done in (14). In our framework, the dual process is typically easier
to simulate than the original process, given its discrete state space. For instance, pure-death or

7



Algorithm 1: Filtering

Input: Y0:n, t0:n
Result: ϑi|0:i, Mi|0:i and Wi = {w(i)

m ,m ∈Mi|0:i}
Initialise

Set ϑ0|0 = T (Y0, θ0) with T as in Assumption 2
Set M0|0 = {t(Y0,0)} = {m∗} and W0 = {1} with t as in Assumption 2
Compute ϑ1|0 from ϑ0|0 as in (13)
Set M∗ = B(M0|0) and W

∗ = {pm∗,n(∆, ϑ0|0),n ∈M∗} with pm,n as in (4)

for i from 1 to n do
Update

Set ϑi|0:i = T (Yi, ϑi|0:i−1)

Set Wi =

{
w∗

mµm,ϑi|0:i−1
(Yi)∑

n∈M∗ w∗
nµn,ϑi

(Yi)
,m ∈M∗

}
with µm,θ defined as in (8)

Set Mi|0:i = {t(Yi,m),m ∈M∗} and update the labels in Wi

Copy ϑi|0:i, Mi|0:i and Wi to be reported as the output

Propagation
Compute ϑi+1|0:i from ϑi|0:i

Set M∗ = B(Mi|0:i) and W
∗ =

{ ∑
m∈Mi|0:i

w(i)
m pm,n(∆, ϑi|0:i),n ∈M∗

}
end

Note: Mi|0:i = {m ∈M : w
(i)
m > 0} ⊂ M is the support of the weights of νi|0:i; B(m) denotes

the states reached by the dual process from m, and B(M) those reached from all m ∈M.

B&D processes are easily simulated using a Gillespie algorithm [36], whereby one alternates sam-
pling waiting times and jump transitions for the embedded chain. Depending on the dual process,
there might also be more efficient simulation strategies.

A different type of approximation of the propagation step (14) in Corollary 3.1 can be based on
pruning the transition probabilities or the arrival weights under a given threshold, followed by a
renormalisation of the weights. Both this approximation strategy and that outlined above assign
positive weights only to a finite subset ofM, hence they overcome the infinite dimensionality of the
dual process state space. [50] showed that the latter strategy allows to control the approximation
error while retaining almost entirely the distributional information, thus affecting the inference
negligibly. In the next sections we will investigate such strategies for two hidden Markov models
driven by Cox–Ingersoll–Ross and K-dimensional Wright–Fisher diffusions.

Now, in order to describe the marginal smoothing densities (12), we need an additional assumption
and some further notation.

Assumption 4 For h as in Assumption 3, there exist functions d : M2 → M and
e : Θ2 → Θ such that for all x ∈ X , m,m′ ∈M, θ, θ′ ∈ Θ

h(x,m, θ)h(x,m′, θ′) = Cm,m′,θ,θ′h(x, d(m,m′), e(θ, θ′)), (16)
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where Cm,m′,θ,θ′ is constant in x.

Denote by
←
ϑ i,
←
ϑ
′
i the quantities defined in (13) computed backwards. Equivalently, these are

computed as in (13) with data in reverse order, i.e. using yn:0 in place of y0:n, namely

←
ϑ i|i+1:T =Θ∆(

←
ϑ i+1|i+1:T ),

←
ϑ i|i:T = T (yi,

←
ϑ i|i+1:T ),

←
ϑT |T = T (yT , θ0)

The following result extends Proposition 3 and Theorem 4 of [50]:

Proposition 3.2. Let Assumptions 1-4 hold, and let ν0 = π. Then, for 0 ≤ i ≤ n− 1, we have

p(xi|y0:n) =
∑

m∈M, n∈M
w

(i)
m,ng(xi, d(m,n), e(

←
ϑ i|i+1:n, ϑi|0:i)),

with
w

(i)
m,n ∝←−w (i+1)

m w
(i)
n C

m,n,
←
ϑ i|i+1:n,ϑi|0:i

,

←
ω
(i+1)

m =
∑
n∈M

←
ω
(i+2)

n µ
n,
←
ϑ i+1|i+2:n

(yi+1)pt(yi+1,n),m(∆;
←
ϑ i+1|i+1:n)

w
(i)
n as in (15) and C

m,n,
←
ϑ i|i+1:n,ϑi|0:i

as in (16).

Proof. Note that Bayes’ Theorem and conditional independence allow to write (12) as

νi|0:n(xi) = p(xi|y0:n) ∝ p(yi+1:n|xi)νi|0:i(xi)

where the right-hand side involves the filtering distribution, available from Corollary 3.1, and the so
called cost-to-go function p(yi+1:n|xi) (sometimes called information filter), which is the likelihood
of future observations given the current signal state. Along the same lines as Proposition 3 in [50]
we find that

p(yi+1:n|xi) =
∑

m∈M

←
ω
(i+1)

m h(xi,m,
←
ϑ i|i+1:n)

with
←
ω
(i+1)

m as in the statement. The main claim can now be proved along the same lines as
Theorem 4 in [50].

The main difference between the above result and Theorem 4 in [50] lies in the fact that the support

of the weights {←ω
(i+1)

m ,m ∈M} (which in [50] is denoted by
←
M i|i+1:n) can be countably infinite and

coincide with the whole ofM. Indeed, which points ofM have positive weight are determined by
the transition probabilities of the dual process, which in the present framework is no longer assumed
to make only downward moves inM. Section 6 will deal with this possibly infinite support for a
concrete implementation of the inferential strategy.
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4 Cox–Ingersoll–Ross hidden Markov models

The Cox–Ingersoll–Ross diffusion, also known as the square-root process, is widely used in financial
mathematics for modelling short-term interest rates and stochastic volatility, see [9, 10, 29, 37, 40].
It also belongs to the class of continuous-state branching processes with immigration, arising as
the large-population scaling limit of certain branching Markov chains [49] and as the time-evolving
total mass of a Dawson–Watanabe branching measure-valued diffusion [20].

Let Xt be a CIR diffusion on R+ that solves the one-dimensional SDE

dXt =
(
δσ2 − 2γXt

)
dt+ 2σ

√
XtdBt, X0 ≥ 0, (17)

where δ, γ, σ > 0, which is reversible with respect to the Gamma density π = Ga(δ/2, γ/σ2). The
following proposition identifies a B&D process as dual to the CIR diffusion.

Proposition 4.1. Let Xt be as in (17), let Mt be a B&D process on Z+ which jumps from m to
m+ 1 at rate λm = 2σ2(δ/2 +m)(θ − γ/σ2) and to m− 1 at rate µm = 2σ2θm, and let

h(x,m, θ) =
Γ(δ/2)

Γ(δ/2 +m)

( γ

σ2

)−δ/2
θδ/2+mxme−(θ−γ/σ

2)x. (18)

Then (1) holds with Dt =Mt.

Proof. The infinitesimal generator associated to (17) is

Af(x) = (δσ2 − 2γx)f ′(x) + 2σ2xf ′′(x),

for f : R+ → R vanishing at infinity. Letting h(x,m) = h(x,m, θ) denote (18) omitting the
dependence on θ to make notations lighter, a direct computation yields

Ah(·,m)(x) = (δσ2 − 2γx)
(
mxm−1 − xm(θ − γ/σ2)

) Γ(δ/2)

Γ(δ/2 +m)

( γ

σ2

)−δ/2
θδ/2+me−(θ−γ/σ

2)x

+ 2σ2x
(
m(m− 1)xm−2 + xm(θ − γ/σ2)2 − 2mxm−1(θ − γ/σ2)

)
× Γ(δ/2)

Γ(δ/2 +m)

( γ

σ2

)−δ/2
θδ/2+me−(θ−γ/σ

2)x

=
δσ2mθ

δ/2 +m− 1
h(x,m− 1) + 2γ(θ − γ/σ2)δ/2 +m

θ
h(x,m+ 1)

− [2γm+ δσ2(θ − γ/σ2)]h(x,m) + 2σ2m(m− 1)
θ

δ/2 +m− 1
h(x,m− 1)

+ 2σ2(θ − γ/σ2)2 δ/2 +m

θ
h(x,m+ 1)− 4σ2m(θ − γ/σ2)h(x,m)

= 2σ2θmh(x,m− 1) + 2σ2(δ/2 +m)(θ − γ/σ2)h(x,m+ 1)

− [2γm+ σ2(δ + 4m)(θ − γ/σ2)]h(x,m).
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where it can be checked that

2σ2θm+ 2σ2(δ/2 +m)(θ − γ/σ2) = 2γm+ σ2(δ + 4m)(θ − γ/σ2).

Hence the r.h.s. equals

Bg(m) = λm[g(m+ 1)− g(m)] + µm[g(m− 1)− g(m)]

with g(·) := h(x, ·), λm = 2σ2(δ/2 + m)(θ − γ/σ2), and µm = 2σ2θm, which is the infinitesimal
generator of a B&D process with rates λm, µm. The claim now follows from Proposition 1.2 in
[44].

Assign now prior ν0 = Ga(δ/2, γ/σ2) to X0, and assume Poisson observations are collected at

equally spaced intervals of length ∆. Specifically, Y |Xt = x
iid∼ Po(τx), for some τ > 0. By the

well-known conjugacy to Gamma priors, we have that Xt|Y = y ∼ Ga(δ/2+ y, γ/σ2+ τ). Without
loss of generality, we can set τ = 1, which allows to interpret the update of the gamma rate
parameter as the size of the conditioning data set. The filtering algorithm starts by first updating
the prior ν0 to ν0|0 := ϕY0(ν0). If we observe Y0 = (Y0,1, . . . , Y0,k) at time 0, then ν0|0 is the law of

X0|
∑k

j=1 y0,j = m ∼ Ga(δ/2+m, γ/σ2+k). Then ν0|0 is propagated forward for a ∆ time interval,
yielding ν1|0 := ψ∆(ν0|0). In light of Proposition 4.1, an application of (5) to ν0|0 yields the infinite
mixture

ψ∆

(
Ga(δ/2 +m, γ/σ2 + k)

)
=

∑
n≥0

pm,n(∆)Ga(δ/2 + n, γ/σ2 + k), (19)

where pm,n(t) are the transition probabilities of Mt in Proposition 4.1. Hence, the law of the signal
is indexed by Z+, the state space of the dual process. While after the update at time 0 mass one
is assigned to the sum of the observations

∑k
j=1 y0,j = m, after the propagation the mass is spread

over the whole Z+ by the effect of the dual process. We then observe Y1 ∼ fX1 at time 1, which
is used to update ν1|0 to ν1|1 and has the effect of shifting the probability masses of the mixture
weights. For example, the weight pm,n(∆) in (19) is assigned to n ∈ Z+, but after the update based

on Y1 = (Y1,1, . . . , Y1,k′) it will be assigned to n+m′ if
∑k′

j=1 y1,j = m′, on top of being transformed
according to (9). We then propagate forward again and proceed analogously.

When the current distribution of the signal, after the update, is given by a mixture of type∑
m∈Z+

wmGa(δ/2 +m, γ/σ2 + k), it is enough to rearrange the mixture weights after the propa-
gation step as done in (6).

The main difference with qualitatively similar equations found in [50] is now given by the transition
probabilities pm,n(t) in (19), which are those of the B&D process in Proposition 4.1. Before tackling
the problem of how to use the above expressions for inference, we try to provide further intuition of
the extent and implications of such differences. To this end, consider the simplified parameterization
α = δ/2, β = γ/σ2, σ2 = 1/2, τ = 1, whereby one can check that the embedded chain of the B&D
process of Proposition 4.1 has jump probabilities

pm,m+1 =
k(α+m)

k(α+m) +m(β + k)
, pm,m−1 = 1− pm,m+1.

11



Here m, k are the same as in the left-hand side of (19), so m/k is the sample mean. It is easily
verified that pm,m+1 < pm,m−1 if m/k > α/β and viceversa. Therefore, the dual evolves on Z+

so that it reverts m/k to the prior mean α/β. Indeed, the dual has Negative Binomial ergodic
distribution NBin (α, β/(β + k)), whose mean is kα/β, i.e., such that m/k on average coincides
with α/β.

Recall now that the dual process elicited in [53] for the CIR model is Dt = (Mt,Θt), with Mt a
pure-death process with rates from m to m− 1 equal to 2σ2θ and Θt a deterministic process that
solves dΘt/dt = −2σ2Θt(Θt − γ/σ2), Θ0 = θ. This dual has a single ergodic state given by (0, β)
(note that [53] uses a slightly different parameterization, where the ergodic state (0, β) means that,
in the limit for t→∞, the gamma parameters are the prior parameters). In particular, as t→∞,
this entails the convergence of pm,n(t) in (19) to 1 if n = 0 and 0 elsewhere. Whence the strong
ergodic convergence ψt(g(x,m, θ))→ π as t→∞, whereby the effect of the observed data become
progressively negligible as t increases. One could then argue that in the long run, the filtering
strategy based on the pure-death dual process in [53] completely forgets the collected data. As
a consequence, one could expect filtering with long-spaced observations (relative to the forward
process autocorrelation) to be similar to using independent priors at each data collection point.
On the other hand, the B&D dual can be thought as not forgetting but rather spreading around
the probability mass in such a way as to preserve convergence of the empirical mean to the prior
mean. It is not obvious a priori which of these two scenarios could be more beneficial in terms of
filtering, hence in Section 6.1 we provide numerical experiments for comparing the performance of
strategies based on these different duals.

In view of such experiments, note that the transition probabilities of the above B&D dual are in
principle available in closed form (cf. [5, 17]), but their computation is prone to numerical instability.
Alternatively, we can approximate the transition probabilities pm,n(t) in (19) by drawing N sample
paths of the dual started in m and use the empirical distribution of the arrival points. This can
in principle be done through the Gillespie algorithm [36], which alternates sampling waiting times
and jumps of the embedded chain. A faster strategy can be achieved by writing the B&D rates in
Proposition 4.1 as λm = λm+ β and µm = µm with

λ = 2σ2(θ − γ/σ2), β = σ2δ(θ − γ/σ2), µ = 2σ2θ,

where λ, µ represent the per capita birth and death rate and β is the immigration rate. Then
write Mt = At+Bt where At is the population size of the descendant of autochthonous individuals
(already in the population at t = 0), and Bt the descendants of the immigrants. These rates define
a linear B&D process, whereby [57] suggests simulating At by drawing, given A0 = i,

F ∼ Bin(i, g(t)), At ∼ NBin(F, h(t)) + F, (20)

with h(t) = (λ − µ)/(λ exp{(λ − µ)t} − µ) and g(t) = h(t) exp{(λ − µ)t}, with the convention
NBin(0, p) = δ0. Let now Ns be the number of immigrants up to time s, which follows a simple
Poisson process with rate β, so given Nt the arrival times are uniformly distributed on [0, t]. Once
in the population, the lineage of each immigrating individual follows again a B&D process and can
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be simulated using (20) starting at i = 1. Summing the numerosity of each immigrant family at
time t yields Bt.

5 Wright–Fisher hidden Markov models

The K-dimensional WF diffusion is a widely studied classical model in population genetics (see
[19, 21, 22, 41] and references therein), recently used also in a statistical framework [50, 53]. See
also [12] for connections with statistical physics. It takes values in the simplex

∆K =

{
x ∈ [0, 1]K :

∑
1≤i≤K

xi = 1

}
and, in the population genetics interpretation, it models the temporal evolution of K proportions
of types in an underlying large population. Its infinitesimal generator on C2(∆K) is

A =
1

2

K∑
i,j=1

xi(δij − xj)
∂2

∂xi∂xj
+

1

2

K∑
i=1

(αi − θxi)
∂

∂xi
(21)

for α = (α1, . . . , αK) ∈ RK
+ , θ =

∑K
i=1 αi, and its reversible measure is the Dirichlet distribution

whose density with respect to Lebesgue measure is

πα(x) =
Γ(θ)∏K

i=1 Γ(αi)
xα1−1
1 · · ·xαK−1

K , xK = 1−
K−1∑
i=1

xi.

See for example [21], Chapter 10. The transition density of this model is (cf., e.g., [19], eqn. (1.27))

pt(x,x
′) =

∞∑
m=0

dm(t)
∑

m∈ZK
+ :|m|=m

MN(m;m,x)πα+m(x′), (22)

where MN(m;m,x) =
(

m
m1,...,mK

)∏K
i=1 x

mi
i , and where dm(t) are the transition probabilities of the

block counting process of Kingman’s coalescent on Z+, which has an entrance boundary at∞. Cf.,
e.g., [19], eqn. (1.12).

It is well known that a version of Kingman’s typed coalescent with mutation is dual to the WF
diffusion. This can be seen as a death process on ZK

+ which jumps from m to m− ei at rate

qm,m−ei = mi(θ + |m| − 1)/2. (23)

Here ei is the canonical vector in the i-th direction. See, for example, [23, 24, 39]; see also [53],
Section 3.3. The above death process with transitions dm(t) is indeed the process that counts the
surviving blocks of the typed version without keeping track of which types have been removed.
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Recall now that a Moran model with N individuals of K types is a particle process with overlap-
ping generations whereby at discrete times a uniformly chosen individual is removed and another,
uniformly chosen from the remaining individuals, produces one offspring of its own type, leaving
the total population size constant. See, e.g., [22]. In the presence of mutation, upon reproduction,
the offspring can mutate to type j at parent-independent rate αj . The generator of such process
on the set B(ZK

+ ) of bounded functions on ZK
+ can be written in terms of the multiplicities of types

n ∈ ZK
+ as

Bf(n) = 1

2

∑
1≤i ̸=j≤K

ni(αj + nj)f(n− ei + ej)−
1

2

∑
1≤i ̸=j≤K

ni(αj + nj)f(n), (24)

where an individual of type i is removed at rate ni, the number of individuals of type i, and is
replaced by an individual of type j at rate αj + nj .

The following proposition extends a result in [12] (cf. Section 5) and shows that the above Moran
model is dual to the WF diffusion with generator (21).

Proposition 5.1. Let Xt have generator (21), let Nt ∈ ZK
+ be a Moran model which from n jumps

to n− ei + ej at rate ni(αj + nj)/2, and let

h(x,n) =
Γ(θ + |n|)

Γ(θ)

K∏
i=1

Γ (αi)

Γ (αi + ni)
xni
i , θ =

K∑
i=1

αi.

Then (1) holds with Dt = Nt and h as above.

Proof. From (21), since θ =
∑K

i=1 αi, we can write

2A =
∑

1≤i≤K
xi(1− xi)

∂2

∂x2i
−

∑
1≤i ̸=j≤K

xixj
∂2

∂xi∂xj
+

∑
1≤i≤K

(αi(1− xi)− xi
∑

1≤j≤K,j ̸=i

αj)
∂

∂xi

=
∑

1≤i ̸=j≤K
xixj

∂2

∂x2i
−

∑
1≤i ̸=j≤K

xixj
∂2

∂xi∂xj
+

∑
1≤i≤K

αi

∑
1≤j≤K,j ̸=i

xj
∂

∂xi
−

∑
1≤i ̸=j≤K

αj
∂

∂xi
.

Then one can check that

2Ah(x,n) =
∑

1≤i ̸=j≤K
ni(αi + ni − 1)

Γ(θ + |n|)
Γ(θ)

xn−ei+ej

K∏
h=1

Γ (αh)

Γ (αh + nh)

−
∑

1≤i ̸=j≤K
ni(αj + nj)x

nΓ(θ + |n|)
Γ(θ)

K∏
h=1

Γ (αh)

Γ (αh + nh)

=
∑

1≤i ̸=j≤K
ni(αj + nj)h(x,n− ei + ej)−

∑
1≤i ̸=j≤K

ni(αj + nj)h(x,n).
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Hence we have
(Ah(·,n))(x) = (Bh(x, ·))(n)

where the right hand side is (24) applied to h(x,n) as a function of n. The claim now follows from
Proposition 1.2 in [44].

Assign now prior ν0 = πα to X0, and assume categorical observations so that P(Y = j|Xt =
x) = xj . By the well-known conjugacy to Dirichlet priors, we have Xt|Y = y ∼ πα+δy , where
α + δy = (α1, . . . , αj + 1, . . . , αK) if y = j. When multiple categorical observations with vector
of multiplicities m ∈ ZK

+ are collected, we write πα+m. The filtering algorithm then proceeds
by first updating ν0 to ν0|0 := ϕY0(ν0) = πα+m, if Y0 = (Y0,1, . . . , Y0,k) yields multiplicities m,
then propagating ν0|0 to ν1|0 := ψ∆(ν0|0). In light of the previous result, an application of (5) to
ν0|0 = πα+m yields the mixture

ψ∆ (πα+m) =
∑

n:|n|=|m|

pm,n(∆)πα+n, (25)

where pm,n(∆) are the transition probabilities of Nt in Proposition 5.1 over the interval ∆. We
then observe Y1|X1, which is in turn used to update ν1|0 to ν1|1, as so forth. We refer again the
reader to [50], Section 2.4.2, for details on qualitatively similar recursive formulae.

In (25), the overall multiplicity |n| equals the original |m|, as an effect of the population size
preservation provided by the Moran model. The space {n : |n| = |m|} is finite, which shows that
Assumption 3 need not require the presence of a death-like process to have filtering distributions
being finite mixtures. However, it is not obvious a priori how (25) compares in terms of practical
implementation with the different representation obtained in [53], namely

ψ∆ (πα+m) =
∑

n:|n|≤|m|

p̂m,n(∆)πα+n (26)

where p̂m,n(∆) are the transition probabilities of the death process on ZK
+ with rates (23). Similarly

to what has already been discussed for the CIR case, the death process dual has a single ergodic
state given by the origin (0, . . . , 0), which entails the convergence of p̂m,n(t) to 1 if n = (0, . . . , 0)
and 0 elsewhere, implying the strong convergence ψt (πα+m) → πα in (26). This is ultimately
determined by the fact that Kingman’s coalescent removes lineages by coalescence and mutation
until absorption to the empty set.

At first glance, a similar convergence is seemingly precluded to (25). However, we note in the
first sum of (24) that the new particle’s type is either resampled from the survived particles or
drawn from the baseline distribution, in which case the new particle is of type j with (parent-
independent) probability αj/

∑K
i=1 αi. Hence each particle will be resampled from the baseline

distribution in finite time. Together with the fact that
∑K

j=1 πα+δjαj/
∑K

i=1 αi = πα, which follows
from Proposition G.9 in [32], and considering that the number of particles is finite, we can therefore
expect that, as t→∞, we have the convergence ψt (πα+m)→ πα in (25) also for this case.
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The transition probabilities pm,n(t) in (25), induced by the Moran model, are not available in
closed form. This poses a limit on the direct applicability of the presented algorithms for numerical
experiments. The first alternative is then to approximate them by drawing N points from the
discrete distribution on the dual space before the propagation, making use of the Gillespie algorithm
to draw as many paths, and evaluating the empirical distribution of the arrival points. Alternative
approximations are suggested by the fact that an appropriately rescaled version of the Moran model
converges in distribution to a WF diffusion (see, e.g., [22], Lemma 2.39). Indeed, a spatial rescaling
of the Moran model in (24) to get proportions in place of multiplicities of types results in the
generator

C|n|f(x) =
∑

1≤i ̸=j≤K

ni
|n|

αj + nj
|n|

[
f

(
x− ei
|n|

+
ej
|n|

)
− f(x)

]
,

where xi := ni/|n|. A classical argument based on a Taylor expansion for f now leads to write
|n|2C|n|f = Af + O(|n|−1), with A as in (21) and where O(|n|−1) represent a remainder term
which goes to zero with |n|−1. The claim then be based on classical arguments following, e.g., [21],
Theorem 4.8.7. We could therefore use a WF diffusion to approximate the Moran dual transitions
in (25). Since the spatially rescaled Moran model takes values m/|n| with m ∈ M such that
0 ≤ |m| ≤ |n|, to the above end it suffices to discretize the states of the WF diffusion through
binning, e.g., given a state x of the approximating WF diffusion, we take as state of the Moran
model the point [|n|x] := ([|n|x1], . . . , [|n|xK ]), where [|n|xi] is the approximation of |n|xi to the
closest integer in {0, . . . , |n|}. The functionals of interest can thus be evaluated through the same
procedure which uses the original Moran model, i.e., through (25), based on the WF diffusion
transition probabilities. This strategy in principle has the drawback of having to deal with the
intractable terms dm(t) in the transition function expansion (22) of the diffusion, hurdle overcome
by adopting the solution proposed by [45].

It is also known that one could also construct a sequence of WF discrete Markov chains with
non-overlapping generations indexed by the population size which, upon appropriate rescaling,
converge weakly to the desired WF diffusion (see, e.g., [48], Sec. 15.2.F or [22], Sec 4.1). Since two
sequences that converge to the same limit can to some extent be considered close to each other,
one could then consider a WF discrete chain indexed by |n| with a parameterization that would
make it converge to (21), and use it to approximate the Moran transition probabilities. This would
permit a straightforward implementation, given WF discrete chains have multinomial transitions.
In Section 6.2 we compare the performance of all the above mentioned strategies.

6 Numerical experiments

To illustrate how the above results can be used in practice and how they perform in comparison with
other methods, we are going to consider particle approximations of the dual processes for evaluating
their transition probabilities, which in turn are used in (6) in place of the true transition probabilities
to evaluate the predictive distributions for the signal, denoted here p̂(xk+1|y1:k). We compare
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these distributions with the exact predictive distribution obtained through the results in [53] and
those obtained through bootstrap particle filtering which make use of the signal transition function.
Particle filtering can be considered the state of the art for this type of inferential problems, a general
reference being [15]. The notable difference between these two approaches is that bootstrap particle
filtering operates on the original state space of the signal, whereas filtering based on dual processes
index the filtering mixtures using the dual state space, which in the present framework is discrete.

We first briefly describe the specific particle approximation on the dual space we are going to use.
To approximate a predictive distribution νi|0:i−1(xi), the classical particle approximation used in
bootstrap particle filtering can be described as follows:

• sample X
(m)
i−1

iid∼ νi−1|0:i−1, m = 1, . . . , N ;

• propagate the particles by sampling X
(m)
i ∼ pt(X(m)

i−1 , ·), with pt the signal transition density;

• estimate νi|0:i−1 with ν̂i|0:i−1 := N−1
∑N

m=1 δX(m)
i

.

For what concerns the use of dual processes, we are going to operate similarly to bootstrap particle
filtering but on the dual space. The filtering distributions considered in this work are mixtures of the
form νi−1|0:i−1(xi−1) =

∑
mwmh(xi−1,m)π(xi−1). An estimate of these can be obtained through

a particle approximation of the discrete mixing measure, that is we draw m(n) iid∼
∑

mwmδm, n =

1, . . . , N , to obtain ν̂i−1|0:i−1(xi−1) := N−1
∑N

n=1 h(xi−1,m
(n))π(xi−1). The natural approximation

of νi|0:i−1(xi) is therefore as follows:

• sample m(n) iid∼
∑

mwmδm;

• propagate the particles by sampling n(n) ∼ pm(n),·(t), with pm(n),·(t) the transition probabili-
ties of the dual process;

• estimate νi|0:i−1(xi) with ν̂i|0:i−1(xi) := N−1
∑N

n=1 h(xi,n
(n))π(xi).

Here some important remarks are in order. The above dual particle approximation is a finite
mixture approximation of a mixture which can be either finite or infinite. Hence the above strategy
can be applied both to filtering given death-like duals but also given general duals on discrete state
spaces. The quality of the dual particle approximation, in general, may differ from that obtained
through the particle filtering approximation since the particles live on a discrete space in the first
case and on a continuous space in the second. This is the object of the following sections, at least for
two specific examples. Finally, the ease of implementation of the two approximations may be very
different because simulating from the original Markov process may be much harder than simulating
from the dual process. An example is the simulation of Kingman’s typed coalescent, immediate as
compared to the simulation from (22), which would be unfeasible without [45].

6.1 Cox–Ingersoll–Ross numerical experiments

The CIR diffusion admits two different duals:
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Figure 1: Comparison of the signal predictive distribution p̂(xk+1|y1:k) obtained through the approximation ap-
proach to the death-process dual and the B&D dual, and through the bootstrap particle filter, with the
exact predictive. The number of particles used for the approximations are 50, 100, 500, 1000, 1500 and are
indicated in the panel labels. The acronyms are BD: Birth-and-Death, PD: Pure-Death, BPF: Bootstrap
Particle Filter.

• the death-like dual given by Dt = (Mt,Θt), with Mt a pure-death process on Z+ with rates
2σ2θm from m to m − 1 and Θt a deterministic process that solves the ODE dΘt/dt =
−2σ2Θt(Θt − γ/σ2), Θ0 = θ. Cf. [53], Section 3.1.

• the B&D dualMt on Z+ with birth rates fromm tom+1 given by λm = 2σ2(δ/2+m)(θ−γ/σ2)
and death rates from m to m− 1 given by µm = 2σ2θm respectively. Cf. Proposition 4.1.

Note that the latter is time-homogeneous, the former is not. In general, temporal homogeneity
is to be preferred since a direct simulation with a Gillespie algorithm in the inhomogeneous case
would require a time-rescaling. However, for this specific case, there is a convenient closed-form
expression for the transition density of the first dual, which can be used to simulate for arbitrary
time transitions (see the third displayed equation at page 2011 in [53]). The second dual, by virtue
of the temporal homogeneity, can be simulated directly using a Gillespie algorithm. This may be
slow if the event rate becomes large, but as suggested in Section 4 we can see it as a linear B&D
process, and a convenient closed-form expression can be used to simulate arbitrary time transitions.

We compare these two particle approximations with an exact computation of the predictive distri-
bution following [53] and to a bootstrap particle filtering approach on the original state space of
the signal, which is easy to implement for arbitrary time transitions thanks to the Gamma-Poisson
expansion of the CIR transition density (see details in [50], Section 5).

Figure 1 shows the comparison of the above-illustrated strategies, with prediction performed for
a forecast time horizon of 0.05. The CIR parameters were specified to δ = 11, σ = 1, γ = 1.1.
The starting distribution for the prediction is a filtering distribution for a dataset whose last
Poisson observation equals 4, so the starting distribution is a mixture of Gamma densities roughly
centred around this point. The density estimates for the bootstrap particle filter were obtained
from a Gamma kernel density estimator with bandwidth estimated by cross-validation. This is
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expected to induce a negligible error because the target distribution is a finite mixture of Gamma
distributions.

The figure suggests that the bootstrap particle filter is slower to converge to the exact predictive
distribution. Instead, with only 50 particles, both dual approximations that use a pure-and a B&D
dual (respectively PD and BD in the Figure legend) are already almost indistinguishable from the
exact predictive distribution. This shows that accurately approximating the mixing measure on the
discrete dual space seems to require fewer particles than approximating the continuous distribution
on the original continuous state space. Shorter and longer time horizons than that used in Figure
1 were also tested and provided qualitatively similar results.

Next, we turn to investigating the error on the filtering distributions, which combines successive
particle approximations. Since the update operation can be performed exactly through (7), particle
filtering using the dual process is conveniently implemented like a bootstrap particle approxima-
tion to a Baum-Welch filter with systematic resampling. We quantify the error on the filtering
distributions by measuring the absolute error on the first moment and the standard deviation of
the filtering distributions (with respect to the exact computation). We also include the error on
the signal retrieval, measured as the absolute difference between the first moment of the filtering
distributions and the value of the hidden signal to be retrieved. The mean filtering error is av-
eraged over the second half of the sequence of observations to avoid possible transient effects at
the beginning of the observation sequence and estimated over 50 different simulated datasets. The
parameter specification is again δ = 11, σ = 1, γ = 1.1, with a single Poisson observation at each
of 200 observation times, and intervals between consecutive observations equal to 0.1. Figure 2
shows that the pure-death particle approximation performs better than the B&D particle approxi-
mation, but the latter performs comparably to the bootstrap particle filter, possibly with a modest
advantage.
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Figure 2: Mean filtering error as a function of the number of particles for the various particle approximation
methods. The error bars represent the confidence interval on the error estimate from the 50 repetitions.
The acronyms are BD: Birth-and-Death, PD: Pure-Death, BPF: Bootstrap Particle Filter.
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6.2 Wright–Fisher numerical experiments

The WF diffusion admits two different duals:

• Kingman’s typed coalescent with mutation dual, given by a pure-death process on ZK
+ with

rates λm,m−ei = mi(|α|+ |m| − 1)/2 from m to m− ei. Cf. [53], Section 3.3.

• a Moran dual process, given a homogeneous B&D process on ZK
+ with rates λm,m−ei+ej =

mi(αj +mj)/2 from m to m− ei + ej . Cf. Proposition 5.1.

Here both processes are temporally homogeneous and can thus be easily simulated using a Gillespie
algorithm, with the only caveat that the simulation can be inefficient when the infinitesimal rates
are large. Similar to the CIR case, there is a closed-form expression for the transition probabilities
in the first case, which can be used for simulation purposes for arbitrary time transitions (see
Theorem 3.1 in [54]). Unlike the one-dimensional CIR case, handling this expression is challenging
in the multi-dimensional WF case, with significant numerical stability issues raised by the need to
compute the sum of alternated series with terms that can both overflow and underflow. In [50],
these hurdles were addressed using arbitrary precision computation libraries and careful re-use of
previous computations applicable when data is equally spaced. The Gillespie simulation strategy
presents no such restriction and may be significantly faster when the event rates remain low.

As mentioned in Section 5, no closed-form expression is available for the Moran dual and the
Gillespie algorithm approach is the main option, likely resulting in a slow algorithm. Alternatively,
as argued in Section 5, we can approximate the Moran dual process by a finite population Wright–
Fisher chain, with the quality of approximation increasing with the population size. The interest
in this approximation is that the event rate for the latter is lower than for the Moran process.
This is related to the fact that weak convergence of a sequence of WF chains to a WF diffusion
occurs when time is rescaled by a factor of N (cf. [48], Sec. 15.2.F), whereas a Moran model whose
individual updates occur at the times of a Poisson process with rate 1, needs a rescaling by a factor
N2 to obtain a similar convergence. In other words, in order to establish weak convergence to the
diffusion, time must be measured in units of N generations in the WF chain and in units of N2

generations in the Moran model. See discussion in Section 5. For this reason, the resulting Gillespie
simulation is expected to be faster using a WF chain approximation to the Moran model.

The above considerations also suggest another possibility. Since the Moran process converges
weakly to a Wright–Fisher diffusion, the latter could also be used as a possible approximation
instead of a WF chain. In this case, it is possible to sample directly from (22) for arbitrary time
transitions using the algorithm in [45]. Hence we would be using a WF diffusion to approximate
the dual Moran transitions in (25).

A standard bootstrap particle filter performed directly on the Wright–Fisher diffusion state space
also crucially relies on the algorithm of [45] for the prediction step, without which approximate
sampling recipes from the transition density would be needed.

In Figure 3, we compare prediction strategies for a WF diffusion with K = 4 types using:
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• the closed-form transition of the pure death dual (“Exact” in Fig. 3 legend);

• an approximation of the pure death dual using a Gillespie algorithm (“PD”);

• an approximation of the Moran dual using a Gillespie algorithm (“BD Gillespie Moran”);

• a WF chain approximation of the Moran dual using a Gillespie algorithm (“BD Gillespie
WF”);

• a WF diffusion approximation of the Moran dual using [45] (“BD diffusion WF”);

• a bootstrap particle filtering approximation using [45] (“Bootstrap PF”).

In Figure 3, prediction was performed for a forecast time horizon equal to 0.1, with WF param-
eters α = (3, 3, 3, 3). The starting distribution for the prediction is a filtering distribution for
a dataset whose last multinomial observation is equal to (4, 0, 9, 2) (so the starting distribution
is a mixture of Dirichlet distributions roughly centred around (4/15, 0, 9/15, 2/15)). Various val-
ues for parameter α were also tested and provided results qualitatively similar to Figure 1. The
density estimates for the bootstrap particle filter are obtained from a Dirichlet kernel density
estimator with bandwidth estimated by cross-validation (using Julia package KernelEstimators
https://github.com/panlanfeng/KernelEstimator.jl). This is expected to induce a negligible
error because the target distribution is a finite mixture of Dirichlet distributions. Figure 3 shows
that among these particle approximations of p(xk+1|y1:k), the Wright–Fisher diffusion approxima-
tion of the Moran dual seems to converge slowest, followed by the bootstrap particle filter, whereas
the other strategies based on the dual process converge quickly to the exact distribution.
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Figure 3: Convergence of the WF predictive distribution (only the first dimension) with the number of particles
for the various particle approximations. The acronyms are PD: Pure-Death, BD: Birth-and-Death, WF:
Wright-Fisher, PF: Particle Filter.

Figure 4 evaluates the filtering error for a WF process withK = 3 and parametersα = (1.1, 1.1, 1.1),
given 20 categorical observations collected at each time, over 10 collection times spaced by intervals
equal to 1. We consider increasing numbers of particles and use 100 replications to estimate the
error. The figure shows that the particle approximation of the pure death dual process using
the closed-form transition exhibits better performance. The bootstrap particle approximation has
the fastest improvement relative to increasing the number of particles. Overall, the Moran dual
performs better or comparably to bootstrap particle filtering.
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Figure 4: Mean filtering error as a function of the number of particles for the various particle approximation
methods. The error bars represent the confidence interval on the error estimate from the 100 repetitions.
The acronyms are PD: Pure-Death, BD: Birth-and-Death, WF: Wright-Fisher, PF: Particle Filter.

7 Concluding remarks

We have provided conditions for filtering diffusion processes on multidimensional continuous spaces
which avoid computations on the state space of the forward process when a dual process given by
a discrete Markov chain is available. Motivated by certain diffusion models for which only duals
with a countable state space are known (e.g., B&D-like duals for WF diffusions with selection), we
have investigated the performance of filtering based on a B&D dual for the CIR diffusion and based
on a Moran process dual for the WF diffusion. All approximation methods proposed appear to be
valuable strategies, despite resting on different simulation schemes. The optimal strategy is bound
to depend on the application at hand, together with several other details like the interval lengths
between data collection times, and possibly be constrained by which of these tools are available.
For example, the transition function of coupled WF diffusions [4] is not available, whereas a discrete
dual was found in [25]. Overall, approximate filtering using B&D-like duals may perform better
or comparably to bootstrap particle filtering, with the advantage of operating on a discrete state
space. The computational effort for each of these strategies is also bound to depend on a series of
factors the identification of which is beyond the scope of this contribution.

The code to reproduce the analyses illustrated above will be made available in the Supporting Mate-
rial and is based on the package freely available at https://github.com/konkam/DualOptimalFiltering.
jl.
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[39] Griffiths, R.C. and Spanó, D. (2009). Diffusion processes and coalescent trees. In Proba-
bility and Mathematical Genetics: Papers in Honour of Sir John Kingman, ed. N. H. Bingham
and C. M. Goldie. London Mathematical Society Lecture Notes Series, Cambridge University
Press 2010.

[40] Heston, S.L. (1993). A closed-form solution for options with stochastic volatility, with ap-
plications to bond and currency options. Rev. Financial Stud. 6, 327–343.

[41] Huillet, T. (2007). On Wright?Fisher diffusion and its relatives. J. Stat. Mech., P11006.
[42] Huillet, T. and Martinez, S. (2011). Duality and intertwining for discrete Markov kernels:

relations and examples. Adv. Appl. Probab. 43, 437–460.
[43] Hutzenthaler, M. and Wakolbinger, A. (2007). Ergodic behavior of locally regulated

branching populations. Ann. Appl. Probab. 17, 474–501.
[44] Jansen, S. and Kurt, N. (2014). On the notion(s) of duality for Markov processes. Probab.

Surv. 11, 59–120.
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