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Abstract

Hierarchical models enjoy great popularity due to their ability to handle heterogeneous
groups of observations by leveraging on their underlying common structure. In a Bayesian
nonparametric framework, the hierarchy is introduced at the level of group-specific random
measures, and then translated to the observations’ level via suitable transformations. In
this work, we propose a new strategy to derive closed-form expressions for the marginal
and posterior distributions of each group. Indeed, by directly inserting a suitable set of
latent variables into the generative model for the data, we unravel a common core shared by
the different hierarchical constructions proposed in the Bayesian nonparametric literature.
Specifically, we identify a key identity that underlies these models and highlight its role in
the derivation of quantities of interest.

Keywords : Completely random measure; Dependence structure; Hierarchical process; Mixture
hazard; Normalized random measure; Partial exchangeability.

1 Introduction

In a Bayesian framework, X–valued observations from a homogeneous population are modeled as
an (infinitely extendable) exchangeable sequence, which means that their distribution does not
depend on the order of appearance (de Finetti, 1937). By de Finetti’s representation Theorem,
this is equivalent to stating that the observations (Xn)n≥1 are conditionally independent and
identically distributed (i.i.d.) given a random probability measure P̃ , taking values in the space
of probability measures on X denoted as P. Hence, one has

X1, . . . , Xi | P̃ i.i.d.∼ P̃ , i ≥ 1,

P̃ ∼ Q,

where Q is known as the de Finetti measure and acts as prior distribution for Bayesian inference.
If Q does not degenerate on a subset of P indexed by a finite-dimensional parameter, we
are considering a nonparametric setting, the one of interest to the present paper. The model
choice then reduces to identifying a suitable distribution for the random probability measure P̃ .
Probability measures may be characterized in many different ways, including their probability
mass or density function, cumulative distribution function or survival function, cumulative hazard,
and hazard rate function. Each representation highlights different features of the distribution,
and may be preferred to the others depending on the main target of the analysis. For this reason,
different Bayesian nonparametric models have focused on each of these representations (with
seminal contributions in Ferguson (1973, 1974); Doksum (1974); Dykstra and Laud (1981); Lo
(1984); Hjort (1990); Walker and Muliere (1997)) which share one common feature: the random
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probability measure P̃ is modeled as a suitable transformation of a completely random measure µ̃.
Indeed, completely random measures (Kingman, 1967) are a remarkable class of discrete random
measures that lends itself to modeling both discrete functions, thanks to their almost-sure discrete
nature, and continuous ones, typically through kernel smoothing. Moreover, completely random
measures feature an infinite number of random atoms and random weights, which guarantees
full-modeling flexibility of many quantities of interest; see Lijoi and Prünster (2010) for a review
using completely random measures as unifying concept. We will consider almost surely finite
completely random measures without drift and fixed atoms, which can be conveniently represented
as

µ̃(dx) =
∑
i≥1

Ji δθi(dx),

where (Ji)i≥1 is a sequence of random jumps and (θi)i≥1 is a sequence of i.i.d. atoms (points of
discontinuity), whose common distribution is termed base probability measure. In view of the
upcoming discussion, it is relevant to point out that, when such a measure is diffuse, the atoms
are distinct almost surely.

Recent developments in Bayesian nonparametrics are focused on flexible ways to account
for different forms of heterogeneity across observations; see Cifarelli and Regazzini (1978) and
MacEachern (1999, 2000) for pioneering works and Quintana et al. (2022) for a recent review. A
particularly relevant framework is that of partial exchangeability (de Finetti, 1938), which allows to
model multiple groups of observations sharing similar features with homogeneity (exchangeability)
holding only within each group but not across groups. Typical instances include patients with the
same disease treated in different hospitals, or children of the same age raised in different countries.
In this setting, the distribution in each group can be modeled by means of a group-specific
completely random measure, and since the groups share similar features, it is important to
incorporate borrowing of information across different groups. This objective is naturally met
by the Bayesian paradigm: if dependence among the random measures is introduced a priori,
the posterior distribution for each group will also make use of the information contained in the
other groups. This typically induces a shrinkage effect that makes the estimates more reliable
and disappears as the number of observations diverges.

The previous discussion raises the fundamental question of how to introduce dependence
among random measures, which has been addressed from several different perspectives in the vast
literature on the topic. De Iorio et al. (2004) develop the dependent Dirichlet process framework of
MacEachern (1999, 2000) by imposing an ANOVA-type structure on the atoms, while Dunson and
Park (2008) and Rodríguez and Dunson (2011) model predictor-dependent weights via kernel and
probit transformations. As for the partially exchangeable setting, proposals inducing dependence
across different groups of observations include additive (Müller et al., 2004; Lijoi et al., 2014),
nested (Rodriguez et al., 2008; Camerlenghi et al., 2019a; Lijoi et al., 2023) and hierarchical
structures (Teh et al., 2006; Camerlenghi et al., 2019b, 2021). Further interesting constructions
of dependent completely random measures, based on multivariate Lévy intensities, can be found
in Epifani and Lijoi (2010); Griffin and Leisen (2017); Riva-Palacio and Leisen (2021); Lau and
Cripps (2022). See also the recent review by Quintana et al. (2022) and references therein.

Among these constructions, hierarchical forms of dependence are arguably the most natural
ones for a Bayesian statistician: being used to introduce dependence among the observations
through conditional independence, it is conceptually straightforward to introduce dependence
among the random measures through conditional independence as well. Thanks to de Finetti’s
representation theorem, this leads to an (infinitely extendable) exchangeable sequence of random
measures. A compelling strategy to define conditionally independent completely random measures
consists in assuming a random base measure, which is modeled either through a normalized
completely random measure or directly through a completely random measure. The first approach
has been mainly used to model dependent random discrete probability measures (Teh et al., 2006;
Camerlenghi et al., 2019b), whereas the second has been used to provide the main ingredients
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to model dependent random hazard functions (Camerlenghi et al., 2021), though it is probably
interesting to remark that, in principle, they could both be used to model both quantities.

These two classes of hierarchical models entail different dependence assumptions on the
random measures; however, they also present significant conceptual and mathematical similarities.
In this paper, we investigate these similarities and propose a unifying framework that sheds
light on their common structure and on intriguing analogies in their posterior and predictive
representations. Indeed, even if dealing with hierarchical models may appear more challenging
than treating simpler exchangeable ones, they both rely on the same identity, which can be
applied recursively to reduce the analysis of the multi-group framework to the easier single-group
scenario. Specifically, consider a completely random measure µ̃ with a diffuse base probability
measure, i.e. whose atoms are distinct almost surely. For any non-negative measurable function
f , and mutually disjoint balls Bε(x∗j ) = {x : d(x, x∗j ) < ε }, one can explicitly characterize the
limiting behavior of

E

exp{−∫
X
f(x) µ̃(dx)

} k∏
j=1

µ̃(Bε(x
∗
j ))

nj

 , (1)

as ε→ 0, as recalled in (14) of Section 5. From this identity, one can derive the law of the random
partition of the exchangeable observations according to their ties, which in turn determines both
the predictive and posterior distributions, as shown in James et al. (2006, 2009).

At first sight, it seems difficult to extend this strategy to the multi-group hierarchical
framework. Indeed, the base probability measure of each exchangeable completely random
measure is modeled as an almost-surely discrete random measure itself. This implies that
the atoms of such measures display ties with positive probability and thus do not fit into the
above framework. Camerlenghi et al. (2019b, 2021) work around this issue by exploiting the
celebrated Faà di Bruno’s formula, expressing higher order derivatives of compositions of functions:
eventually, the inherent combinatorial structure induced by this formula turns out to be effectively
represented by introducing suitable latent variables. Leveraging on this observation, here we
propose an alternative approach that bypasses the Faà di Bruno formula by directly inserting the
latent variables into the data generative model. From an analytical point of view, this strategy
substantially mitigates the combinatorial burden connected to the Faà di Bruno’s formula, at
the negligible cost of an augmented Lévy intensity measure. In addition, the description of the
induced random partition structure becomes more transparent, as it can be considered a mere
consequence of the ties within sequences of latent (unobserved) variables.

The intuition behind our proposal is the following: by adding a diffuse independent mark to
each atom of the exchangeable random measure, one derives a completely random measure on
the joint space of the atoms and the marks with the compelling property of not displaying ties
almost surely. One can, then, use (1) on the augmented random measure and possibly remove
the auxiliary latent marks through marginalization. Remarkably, this strategy leads to posterior
and predictive representations for both classes of hierarchical models, thanks to a fundamental
identity that extends (1) to hierarchical random measures. In Basu and Tiwari (1982), which
stands out as an insightful contribution to the foundations of the Dirichlet process, the authors
state a crucial desirable property for nonparametric models: “If a prior is selected from this class,
then the posterior distribution given a sample of observations from P is manageable analytically,
and it belongs to the class, i.e. the class is closed under ‘Bayesian operation’.” Our paper shows
that the two considered classes of hierarchical nonparametric priors meet this desideratum by
developing the necessary analytical tools and suitably extending the notion of closure to fit the
more complex partially exchangeable framework.

The paper is structured as follows. Section 2 recalls the definition of completely random
measure (CRM), along with two transformations that are important for the following developments,
namely, normalization of CRMs to model discrete random probability measures and kernel mixtures

3



of CRMs to model random hazards. Section 3 introduces dependence between CRMs through two
related hierarchical constructions. Section 4 provides some intuition on the partition structure
and introduces a convenient set of latent variables, representing the marks of the atoms in the
previous discussion. Its formal treatment can be found in Section 5, together with the key
identity for closed-form computations involving CRMs, which is then exploited to derive marginal
distributions. The posterior characterization of CRMs is described in Section 6 for both classes of
hierarchical models. In light of these results, the generalized gamma CRM arises as the natural
conjugate prior, as discussed in Section 7. Section 8 provides further insights on the dependence
structure between hierarchical random measures, together with some intuition on how to enhance
its flexibility.

2 Background on Completely Random Measures

Let (X,X ) be a complete and separable metric space. Denote by M be the space of boundedly
finite measures on (X,X ) equipped with the corresponding Borel σ-algebra M, that is, the
smallest σ-algebra that makes the projections A 7→ µ(A) measurable for every measure µ and
every bounded set A; see Daley and Vere-Jones (2007) for details. A random element µ̃ defined
on some probability space (Ω,F ,P) taking values in (M,M) is termed random measure.

A Completely Random Measure (CRM) µ̃ is a random measure on (X,X ) such that, for any
collection of n ≥ 1 bounded and pairwise disjoint sets A1, . . . , An ∈ X , the random variables
µ̃(A1), . . . , µ̃(An) are mutually independent (Kingman, 1967). CRMs represent a very natural
and convenient choice of discrete random measures: their key role in Bayesian nonparametrics is
extensively discussed in Lijoi and Prünster (2010).

In this work, we consider CRMs without fixed points of discontinuity and without deterministic
drift: a CRM belonging to this class can be represented as a linear functional of a Poisson Random
Measure (PRM) Ñ on R+ × X as

µ̃(dx)
d
=

∫
R+

s Ñ(ds, dx). (2)

Therefore, its realizations are almost surely discrete, and its law is characterized by the Laplace
functional transform at any non-negative measurable function f : X 7→ R+, namely

E
[
exp

{
−
∫
X
f(x) µ̃(dx)

}]
= exp

{
−
∫
R+×X

(1− e−s f(x)) ν(ds, dx)

}
, (3)

where ν is the Lévy intensity measure uniquely identifying µ̃. Note that ν is the mean intensity
measure of the PRM Ñ in (2), and must satisfy the condition∫

R+×X
min(s, 1) ν(ds, dx) <∞.

This characterization motivates the notation µ̃ ∼ CRM(ν). The Lévy intensity measure ν can be
always disintegrated as

ν(ds, dx) = ρ(ds|x)α(dx), (4)

where ρ : B(R+)× X 7→ R+ is a transition kernel and α is a diffuse σ-finite measure on (X,X ).
Lévy intensities, and the corresponding CRMs, are termed homogeneous if ρ(·|x) = ρ(·) is a
measure not depending on x ∈ X, and non-homogeneous otherwise. An exhaustive account on
CRMs can be found in Kingman (1993).

In the following, homogeneous CRMs are considered for their simplicity and tractability.
Intuitively, this is equivalent to the independence between atoms and jumps of the corresponding
random measure. Moreover, the measure α appearing in (4) is assumed to be finite, which ensures
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that the random measure is finite almost surely. This implies that the total mass of α can be
included into the transition kernel ρ, and the Lévy intensity measure is uniquely disintegrated as

ν(ds, dx) = ρ(ds)P0(dx),

with P0 a diffuse probability measure on (X,X ) termed base probability measure; later on, it
will be sometimes useful to rely on this representation rather than on (4). The infinite activity
property of the Lévy intensity measure is also assumed, namely ρ(R+) = ∞, which implies that
the corresponding random measure has an infinite number of jumps on any bounded set, and
thus ensures it is non-zero almost surely. Further details can be found in Regazzini et al. (2003).

In Bayesian Nonparametrics, (completely) random measures can be effectively used as the
basic building block for the construction of discrete nonparametric priors. This work focuses on
random probability measures and random hazards obtained from two suitable transformations of
random measures: normalization and kernel mixtures.

Normalized random measures. An almost surely discrete random probability measure p̃ can
be defined via normalization of a random measure µ̃ as

p̃(dx) :=
µ̃(dx)

µ̃(X)
, (5)

provided that 0 < µ̃(X) <∞ almost surely. In case µ̃ is a homogeneous CRM, these conditions
are guaranteed by the finiteness of α and the infinite activity property, as proved in Regazzini et al.
(2003), where this normalization procedure has first been introduced. A posterior characterization
of normalized CRMs has been derived in James et al. (2009) for the exchangeable setting. Popular
special instances include the Dirichlet process (Ferguson, 1973), which arises from normalization of
gamma CRMs (Ferguson, 1974), the normalized σ–stable process (Kingman, 1975), the normalized
inverse Gaussian process (Lijoi et al., 2005) and the normalized generalized gamma process (Lijoi
et al., 2007). Their use in mixture models is reviewed in Barrios et al. (2013). Henceforth,
whenever µ̃ ∼ CRM(ν), its normalization p̃ in (5) is denoted by p̃ ∼ NCRM(ν).

Random mixture hazards. In survival analysis, the time to failure is usually modeled by
a random variable T , taking values on R+, whose probability distribution is here assumed to
be absolutely continuous with respect to the Lebesgue measure. The hazard rate function of T
represents the instantaneous risk of failure, and is defined as

h(t) :=
f(t)

S(t)
, t ∈ R,

where f is the density function of T and S is its survival function. A random hazard rate h̃ can
be defined mixing a non-negative kernel k over a random measure µ̃ as

h̃(t) :=

∫
X
k(t;x) µ̃(dx). (6)

Such mixture structure was introduced in the pioneering papers Dykstra and Laud (1981) and
Lo and Weng (1989), and developed in full generality by James (2005), where the posterior
characterization is derived for exchangeable data.

The random survival function associated to this random hazard rate is

S̃(t) = exp

{
−
∫ t

0

∫
X
k(s;x) µ̃(dx) ds

}
, (7)
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which is a proper survival function whenever limt→∞ S̃(t) = 0 almost surely. In case µ̃ is a
homogeneous CRM, this condition is guaranteed by infinite activity and requiring∫

R+

k(s;x) ds = ∞, P0 − a.s.

The most popular kernel was proposed in Dykstra and Laud (1981), where the authors assume
X = R+ and define k(t;x) = β(x)1t≥x, for β positive and right-continuous function. Such
kernel satisfies the condition above and represents the reference model for increasing hazard rates.
Further methodological, computational and asymptotic investigations with different kernels and
choices of CRMs can be found, e.g., in Ishwaran and James (2004); Nieto-Barajas and Walker
(2004); Peccati and Prünster (2008); De Blasi et al. (2009); Donnet et al. (2017); Catalano et al.
(2020).

3 Hierarchical random measures

Hierarchical structures represent a natural way to construct vectors of dependent random measures.
Indeed, dependence in a vector of random measures µ̃ can be induced through the following
hierarchical scheme:

µ̃ = (µ̃1, . . . , µ̃D) | µ̃0
i.i.d.∼ G̃,

µ̃0 ∼ G0,
(8)

where G̃ is the (random) conditional distribution of each µ̃d, for d = 1, . . . , D, given the random
measure µ̃0, which represents the root of the hierarchy and is distributed according to G0.

Completely random measures are particularly well-suited to this hierarchical structure, as the
random measure µ̃0 at the root of the hierarchy can be easily incorporated into the Lévy intensity
measure characterizing the distribution G̃ of the vector at the lower level of the hierarchy. We
distinguish two different hierarchical constructions that are commonly used to model dependent
random probabilities and dependent hazards, respectively.

A vector of dependent discrete random probability measures can be defined through the
hierarchical structure

p̃ = (p̃1, . . . , p̃D) | p̃0
i.i.d.∼ NCRM(ν̃),

p̃0 ∼ NCRM(ν0),
(9)

where p̃1, . . . , p̃D are conditionally independent normalized CRMs with random Lévy intensity
measure

ν̃(ds, dx) = ρ(ds) p̃0(dx),

and p̃0 is a normalized CRM with Lévy intensity measure ν0(ds, dx) = ρ0(ds)P0(dx). This
hierarchical nonparametric construction was first introduced in Teh et al. (2006) for the special
case of hierarchical Dirichlet processes, and extensively studied in Camerlenghi et al. (2019b) for
the more general class of processes considered here. Further investigations beyond the Dirichlet
setup can be found, e.g., in Teh and Jordan (2010); Camerlenghi et al. (2017, 2018); Catalano
et al. (2022).

In the case of random mixture hazard models, normalization of random measures is not
needed to define the nonparametric prior, since it results from the combination of dependent
non-normalized random measures with suitable kernels. The hierarchical structure defining the
vector of underlying dependent random measures is

µ̃ = (µ̃1, . . . , µ̃D) | µ̃0
i.i.d.∼ CRM(ν̃),

µ̃0 ∼ CRM(ν0),
(10)
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where µ̃1, . . . , µ̃D are conditionally independent CRMs with random Lévy intensity measure

ν̃(ds, dx) = ρ(ds) µ̃0(dx),

and µ̃0 is a CRM with Lévy intensity measure ν0(ds, dx) = ρ0(ds)P0(dx). This class of mixture
hazard rates based on a hierarchical dependence structure of the underlying random measures was
introduced in Camerlenghi et al. (2021). An alternative approach to define dependent mixture
hazards can be found in Lijoi and Nipoti (2014).

4 Random partitions and latent variables

Consider an array of partially exchangeable sequences with de Finetti measure featuring the
hierarchically dependent specification discussed in the previous section. The almost-sure dis-
creteness of (normalized) CRMs naturally induces a random partition structure, with groups
including elements both within and across such partially exchangeable sequences. We illustrate
this partition structure through the hierarchical prior specification in (9), based on normalized
random measures. However, it characterizes every Bayesian nonparametric model built upon
hierarchical CRMs priors, being a property of the hierarchical structure itself rather than of the
specific model.

Consider the array of D partially exchangeable samples

Xd = (Xd1, . . . , XdNd
) | p̃d

i.i.d.∼ p̃d, d = 1, . . . , D,

p̃ = (p̃1, . . . , p̃D) ∼ QD,
(11)

for integersN1, . . . , ND ≥ 1, where QD is the hierarchical prior in (9). The almost-sure discreteness
and dependence of the random probability measures in p̃ imply that tied values occur with positive
probability both within and across samples, that is P(Xℓi = Xκj) > 0 for any ℓ and κ. Therefore,
a random partition of the observations is naturally induced, whereby two elements are in the same
partition group if and only if they have the same value. Denote by X∗

1 , . . . , X
∗
k the k distinct

values assumed in the D partially exchangeable samples, with respective multiplicities n1, . . . , nk.
As a consequence, elements belonging to the same partition group may or may not belong

to the same sample, which means that there is no structural relationship between the random
partition induced by tied values and the natural one determined by the D samples. Let ndj be
the number of elements in sample d belonging to group j,

ndj =

Nd∑
i=1

(Xdi = X∗
j ), d = 1, . . . , D, j = 1, . . . , k.

However, given the two-fold nature of the partition structure, observed values are not enough to
fully characterize its complexity. It is therefore convenient to introduce corresponding sequences
of latent variables

Zd = (Zd1, . . . , ZdNd
), d = 1, . . . , D,

taking values on a complete and separable metric space (T, T ), which themselves admit ties
with positive probability. These latent variables are formally introduced in the next section for
both normalized random measures and random mixture hazards models, and allow to describe a
finer partition structure, featuring ties within each sample (but not across samples); this greatly
simplifies the learning scheme. In particular, for each sample d and each group j, consider the ndj
elements in Xd for which Xdi = X∗

j holds. The corresponding elements in Zd may themselves show
ties: denote by Z∗

dj1, . . . , Z
∗
djrdj

their rdj distinct values, with multiplicities qdj1 + · · ·+ qdjrdj = ndj .
Notice that, whenever Zdi = Zdi′ then Xdi = Xdi′ , i.e. a tie among values in Zd implies a tie
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among the corresponding elements in Xd, while the converse is not necessarily true. Moreover,
let rj be the partial sum of elements in (rdj)dj with respect to d, and let r be their total sum.

An intuitive description of the partition structure introduced in this section is provided by
the well-known Chinese restaurant franchise metaphor, first presented in Teh et al. (2006) for the
hierarchical Dirichlet process. According to this scheme, a franchise consists of D restaurants
sharing the same menu, which includes an infinite number of dishes; each restaurant has infinitely
many tables and the customers seated at the same table eat the same dish. Customers arriving
at each restaurant may choose to either sit at a table with other customers, thus eating the dish
already served at that table, or sit at an empty table, either eating a dish already served at other
tables in the franchise or eating a new dish from the menu. Notice that, in contrast to the simple
Chinese restaurant metaphor, the same dish can be served at different tables within the same
restaurant and across different restaurants. Embedding the partition structure described above
in the metaphor, element Xdi represents the dish served in restaurant d to customer i, and the
distinct values X∗

1 , . . . , X
∗
k represent the k distinct dishes served in the franchise, with ndj being

the number of customers eating dish j at restaurant d. Likewise, the latent variable Zdi represents
the table in restaurant d at which customer i is seated, with rdj being the number of tables in
restaurant d at which dish j is served, and qdjh being the number of customers in restaurant d
eating dish j at table h.

The sequences of latent variables introduced above can be explicitly included in the hierarchical
prior specifications by extending the random measures at the lower level of the hierarchies to a
larger space (as clarified in the next section). Specifically, given the root of the hierarchy, the
conditionally independent (normalized) CRMs appearing in (9) and (10), namely p̃1, . . . , p̃D and
µ̃1, . . . , µ̃D, can be extended as random measures on T× X, and characterized, respectively, by
the random Lévy intensity measures

ν̃(ds, dz, dx) = ρ(ds)H(dz) p̃0(dx), ν̃(ds, dz, dx) = ρ(ds)H(dz) µ̃0(dx),

where H is an arbitrary diffuse probability measure on (T, T ). The random measures on (X,X )
introduced in the original definition are easily recovered via marginalization.

An interesting feature of this analytical device is the extension of the (random) discrete
components, defined on X, of the Lévy intensity measures characterizing CRMs at the lower level
of the hierarchies, to diffuse components, defined on T× X, as a consequence of H being diffuse.
Such property turns out to be fundamental for the recursive application of the result in (14) in
presence of hierarchical schemes, as discussed in the following section.

5 The key identity for random measures

The availability of a framework to describe the random partition structure induced by discrete
hierarchical priors is a prerequisite for the determination of marginal and posterior distributions.
In this respect, the possibility to marginalize quantities of interest with respect to the prior
represents the cornerstone of computations with CRMs, and relies on a specific core structure,
which leads to closed-form and tractable expressions.

Let µ̃ be a homogeneous CRM with Lévy intensity measure ν(ds, dx) = ρ(ds)α(dx), where α
is a finite diffuse measure on X; both its Laplace exponent and cumulants, defined respectively by

ψ(u) =

∫
R+

(
1− e−us

)
ρ(ds), τ(m;u) =

∫
R+

sme−usρ(ds), (12)

play a crucial role in the investigation of the distributional properties of µ̃. The core quantity
representing the building block for every computation with CRMs is

exp

{
−
∫
X
f(x)µ̃(dx)

} k∏
j=1

µ̃(Bε(x
∗
j ))

nj (13)
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where Bε(x∗j ) = {x ∈ X : d(x, x∗j ) < ε }, for j = 1, . . . , k, are ε-balls centered at distinct values
x∗1, . . . , x

∗
k ∈ X, with multiplicities n1, . . . , nk ≥ 1 such that

∑k
j=1 nj = n, and f : X 7→ R+ is any

non-negative measurable function. Computing the expectation of the quantity in (13), one can
show that

lim
ε→0

E

exp{−∫
X
f(x)µ̃(dx)

} k∏
j=1

µ̃(Bε(x
∗
j ))

nj


k∏
j=1

α(Bε(x
∗
j ))

= exp

{
−
∫
X
ψ(f(x))α(dx)

} k∏
j=1

τ(nj ; f(x
∗
j )),

which can be informally rewritten as

E

exp{− ∫
X
f(x) µ̃(dx)

} k∏
j=1

µ̃(dx∗j )
nj


= exp

{
−
∫
X
ψ(f(x))α(dx)

} k∏
j=1

τ(nj ; f(x
∗
j ))α(dx

∗
j ). (14)

Formally, we can interpret the left-hand side of (14) as the (first) moment measure of an
exponentially tilted n-fold product random measure of the CRM µ̃, restricted to a specific subset
of Xn. Indeed, µ̃(·)nj may be regarded as the restriction of the nj-fold product measure of µ̃ to
the diagonal ∆nj = { (x1, . . . , xnj ) ∈ Xnj : x1 = · · · = xnj }, through the correspondence

µ̃(A)nj = µ̃nj
(
{ (x, . . . , x︸ ︷︷ ︸

nj

) : x ∈ A }
)
= µ̃nj

(
(A× · · · ×A︸ ︷︷ ︸

nj

) ∩∆nj

)
,

which is non-zero due to the almost-sure discreteness of µ̃. Similarly,
∏k
j=1 µ̃(dx

∗
j )
nj may be

identified with the restriction of the n-fold product measure of µ̃ to a particular subspace of Xn.
Specifically, for any 1 ≤ k ≤ n, consider the linear subspaces of Xn of dimension k for which the
n coordinates can be partitioned into k groups with multiplicities n1, . . . , nk, where coordinates
in the same group take on the same value. The moment measure introduced above, restricted to
each of such k-dimensional subspaces, is shown in (14) to be absolutely continuous with respect to
the product measure αk, i.e. the k-fold product of α with itself, with Radon-Nikodym derivative

exp

{
−
∫
X
ψ(f(x))α(dx)

} k∏
j=1

τ(nj ; f(x
∗
j )),

where x∗1, . . . , x∗k ∈ X are the k distinct values assumed by coordinates belonging to the same
group. Note that this density only depends on the groups’ multiplicities n1, . . . , nk and distinct
values x∗1, . . . , x∗k, while the coordinates’ ordering identifies the specific k-dimensional subspace
where the measure in (14) is concentrated. Moreover, such measure can be decomposed into
the product of a constant exponential term and k independent measures on X, each absolutely
continuous with respect to the diffuse measure α.

This result is particularly suited to hierarchical structures of random measures. Indeed, if µ̃
is defined through a hierarchical scheme and α is itself a random measure, the same result can be
applied recursively, since the structure in (13) reappears for measure α in the right-hand side
of (14). Note that the equality above holds true only for diffuse choices of the finite measure
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α, making it potentially useless if α is a CRM (thus having almost surely discrete realizations).
However, this issue is successfully addressed by replacing the random measure µ̃ with its extended
counterpart, as formally described hereunder.

Let µ̃ be a homogeneous CRM with random Lévy intensity measure

ν(ds, dz, dx) = ρ(ds)H(dz) µ̃0(dx),

where H is a diffuse probability measure on T and µ̃0 is itself a homogeneous CRM with Lévy
intensity measure ν0(ds, dx) = ρ0(ds)P0(dx), for P0 a diffuse probability measure on X. The core
quantity of interest, playing the role of (13) for hierarchical schemes, is

exp

{
−
∫
T×X

f(x) µ̃(dz, dx)

} k∏
j=1

rj∏
h=1

µ̃(dz∗jh, dx
∗
j )
qjh , (15)

where x∗1, . . . , x∗k ∈ X are distinct values, z∗j1, . . . , z
∗
jrj

∈ T are the rj ≥ 1 distinct values corre-
sponding to the same x∗j with multiplicities qj1, . . . , qjrj ≥ 1 and such that

∑k
j=1 rj = r, and

f : X 7→ R+ is any non-negative measurable function. The expectation of such quantity with
respect to the random measure µ̃ is computed by recursive application of (14), first at the lower
level and then at the root of the hierarchy, obtaining

E

exp{− ∫
T×X

f(x) µ̃(dz, dx)

} k∏
j=1

rj∏
h=1

µ̃(dz∗jh, dx
∗
j )
qjh


= exp

{
−
∫
X
ψ0(ψ(f(x)))P0(dx)

} k∏
j=1

τ0(rj ;ψ(f(x
∗
j )))P0(dx

∗
j )

×
k∏
j=1

rj∏
h=1

τ(qjh; f(x
∗
j ))H(dz∗jh), (16)

where τ0 and ψ0 are defined as in (12) replacing ρ with ρ0. Similarly to the non-hierarchical
case, (16) defines a (first) moment measure of an exponentially tilted n-fold product measure of
the random measure µ̃ with itself, which is here a measure on the space (T × X)n = Tn × Xn.
Specifically, consider the linear subspaces of Tn × Xn of dimension r × k for which the 2n
coordinates can be grouped according to the partition structure encoded into elements (qjh)jh.
This moment measure, restricted to each of such subspaces, is shown in (16) to be absolutely
continuous with respect to the product measure Hr × P k0 , with Radon-Nikodym derivative

exp

{
−
∫
X
ψ0(ψ(f(x)))P0(dx)

} k∏
j=1

τ0(rj ;ψ(f(x
∗
j )))

( rj∏
h=1

τ(qjh; f(x
∗
j ))

)
,

where x∗1, . . . , x∗k ∈ X are the k distinct values assumed by X-valued coordinates belonging to the
same group. Again, this measure can be decomposed into the product of a constant exponential
term, the r-fold product of H with itself, and k independent measures on X, each absolutely
continuous with respect to the diffuse probability measure P0.

The rest of this section is devoted to the analysis of the likelihood functions associated to
normalized random measures and random mixture hazards, assuming partially exchangeable
models with a hierarchical prior specification. In particular, the introduction of latent variables
specific to each model, together with suitable analytical manipulations, recovers the core structure
introduced in (15), which in turn allows one to compute marginal distributions explicitly via the
recursive application of (14).

10



Normalized random measures. Consider the array of D partially exchangeable samples

Xd = (Xd1, . . . , XdNd
) | p̃d

i.i.d.∼ p̃d, d = 1, . . . , D,

p̃ = (p̃1, . . . , p̃D) | p̃0
i.i.d.∼ NCRM(ν̃),

p̃0 ∼ NCRM(ν0),

(17)

for integers N1, . . . , ND ≥ 1 and hierarchical prior (9). Introducing the corresponding latent
variables, which represent the tables in the restaurant franchise metaphor, the likelihood function
associated to the augmented sample (Xd,Zd) is

L(µ̃d;Xd,Zd) =

Nd∏
i=1

p̃d(dZdi, dXdi) = µ̃d(T,X)−Nd

k∏
j=1

rdj∏
h=1

µ̃d(dZ
∗
djh, dX

∗
j )
qdjh .

By using a simple analytical manipulation based on the density of a gamma random variable,
this can be rewritten as

L(µ̃d;Xd,Zd) =
1

Γ(Nd)

∫
R+

uNd−1
d exp

{
−
∫
T×X

ud µ̃d(dz, dx)

} k∏
j=1

rdj∏
h=1

µ̃d(dZ
∗
djh, dX

∗
j )
qdjh dud,

where ud is an additional latent variable, thanks to which the core structure in (15) is successfully
recovered in the likelihood. Therefore, the result in (14) can be applied to marginalize the
expression with respect to the lower level of the hierarchical prior, i.e. conditionally on p̃0,
obtaining

P(Xd,Zd | p̃0) =
1

Γ(Nd)

∫
R+

uNd−1
d e−ψ(ud)

k∏
j=1

rdj∏
h=1

τ(qdjh;ud) dud ·
k∏
j=1

p̃0(dX
∗
j )
rdj

rdj∏
h=1

H(dZ∗
djh).

Note that only the random partition induced by ties in the sequence Zd, which is encoded into
groups multiplicities (qdjh)jh, is relevant in the expression above, while their specific values are
sampled independently from the measure H. Since these values are not even observed in the
model, they can be safely ignored, and Zπd can be written instead of Zd to indicate that results
depend on the partition induced by latent variables, rather than on their values.

The same analytical manipulation can be performed recursively for the random probability
measure p̃0, considering the likelihood associated to the D partially exchangeable samples. The
joint marginal distribution of the observations X and the latent variables Z can be effectively
expressed in terms of the random partitions they induce, respectively denoted by Xπ and Zπ,
and of the vectors of their distinct values, denoted by X∗ and Z∗, as

P(Xπ,X∗,Zπ,Z∗) =
D∏
d=1

 1

Γ(Nd)

∫
R+

uNd−1
d e−ψ(ud)

k∏
j=1

rdj∏
h=1

τ(qdjh;ud) dud ·
k∏
j=1

rdj∏
h=1

H(dZ∗
djh)


× 1

Γ(r)

∫
R+

ur−1
0 e−ψ0(u0)

k∏
j=1

τ0(rj ;u0) du0 ·
k∏
j=1

P0(dX
∗
j ).

(18)
In analogy with the comment above, the distinct values in X∗ do not enter the partition function
as well, and are sampled independently from the base probability measure P0. Therefore,
marginalizing out the contribution of the distinct values (X∗,Z∗) in (18), one obtains the partially
exchangeable partition probability function (pEPPF):

P(Xπ,Zπ) =

D∏
d=1

1

Γ(Nd)

∫
R+

uNd−1
d e−ψ(ud)

k∏
j=1

rdj∏
h=1

τ(qdjh;ud) dud

× 1

Γ(r)

∫
R+

ur−1
0 e−ψ0(u0)

k∏
j=1

τ0(rj ;u0) du0.

(19)
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This expression clearly highlights the way random partitions are composed at the two levels of the
hierarchy. At the level of single samples (i.e. restaurant level), the partition function depends on
the number of customers seated at each table, that is on the partition induced by each sequence
Zd. On the other hand, at the root level (i.e. franchise level), the partition function depends on
the number of tables eating each dish, which describes how the finer partition induced by latent
variables Z is related to the coarser partition induced by observations X.

According to the interpretation discussed in the previous section, the joint marginal distribution
in (18) represents a moment measure on the joint space Tn×Xn, restricted to the linear subspace
of dimension r × k which reflects the partition structure induced by observations and latent
variables and encoded into elements (qdjh)djh. Specifically, this restricted measure is absolutely
continuous with respect to the product measure Hr × P k0 , and has constant Radon-Nikodym
derivative expressed by the pEPPF in (19).

The structure of the pEPPF represents the cornerstone of computational developments: indeed,
full conditional distributions derived from it can be exploited to devise marginal Gibbs sampling
schemes, as extensively discussed in Camerlenghi et al. (2019b) (Section 6.1).

Random mixture hazards. Consider the array of D partially exchangeable samples

Td = (Td1, . . . , TdNd
) | p̃d

i.i.d.∼ p̃d, d = 1, . . . , D,

µ̃ = (µ̃1, . . . , µ̃D) | µ̃0
i.i.d.∼ CRM(ν̃),

µ̃0 ∼ CRM(ν0),

(20)

for integers N1, . . . , ND ≥ 1 and hierarchical prior (10). The random probability measure p̃d is
recovered from the expression of the random hazard rate in (6) and is expressed in terms of the
random measures µ̃d as

p̃d(dt) =

∫
X
k(t;x) µ̃d(dx) exp

{
−
∫ t

0

∫
X
k(s;x) µ̃d(dx) ds

}
dt.

The further level of complexity represented by the kernel mixture requires the introduction of
additional latent variables, namely the ones representing the latent samples from the random
measures, i.e. the dishes in the restaurant franchise metaphor, which instead are directly observed
in the previously discussed case of normalized random measures. The augmented random
probability measure takes the more tractable form

p̃d(dt, dx) = k(t;x) µ̃d(dx) exp

{
−
∫ t

0

∫
X
k(s;x) µ̃d(dx) ds

}
dt.

Introducing the latent variables representing the tables in the restaurant franchise metaphor, the
likelihood function associated to the augmented sample (Td,Xd,Zd) is

L(µ̃d;Td,Xd,Zd) =

Nd∏
i=1

k(Tdi;Xdi) µ̃d(dZdi, dXdi) exp

{
−
∫ Tdi

0

∫
T×X

k(s;x) µ̃d(dz, dx) ds

}
dTdi

= Q(Td,Xd) exp

{
−
∫
T×X

Kd(x) µ̃d(dz, dx)

} k∏
j=1

rdj∏
h=1

µ̃d(dZ
∗
djh, dX

∗
j )
qdjh ,

where, in order to ease the notation, the following quantities have been defined:

Q(Td,Xd) =

Nd∏
i=1

k(Tdi;Xdi) dTdi, Kd(x) =

Nd∑
i=1

∫ Tdi

0
k(s;x) ds.
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Again, the structure in (15) is recovered in the likelihood, with the constant term ud for normalized
random measures replaced by the function Kd. Therefore, the result in (14) can be applied
recursively at the lower and root levels of the hierarchical prior, so that the joint marginal
distribution of both the observations T and the latent variables X and Z becomes

P(T,Xπ,X∗,Zπ,Z∗) = Q(T,X) exp

{
−
∫
X
ψ0

(
D∑
d=1

ψ(Kd(X
∗
j ))

)
P0(dx)

}

×
D∏
d=1

k∏
j=1

rdj∏
h=1

τ(qdjh;Kd(X
∗
j ))H(dZ∗

djh) ·
k∏
j=1

τ0

(
rj ;

D∑
d=1

ψ(Kd(X
∗
j ))

)
P0(dX

∗
j ).

(21)

The similarities with the joint distribution derived in (18) are apparent, as the composition of
random partitions at the two levels of the hierarchy follows the same structure. An important
difference is represented by the dependence of the partition function from the specific distinct
values X∗ through the functions K1, . . . ,KD, so that their contribution cannot be marginalized
out, and a proper pEPPF cannot be defined. This dependence on the specific values is reflected
by a non-constant Radon-Nikodym derivative, when (21) is regarded as a moment measure.

The lack of a proper pEPPF also represents a computational drawback in this context, as the
Gibbs resampling step for the latent distinct values X∗ involves both the kernel term Q(T,X)
and the value of the partition function. On the other hand, analytical tractability greatly benefits
from the absence of the integrals with respect to u1, . . . , uD and u0 appearing in the expression
(19) for normalized random measures, which are merely a byproduct of analytical manipulations
and need to be treated as additional latent variables.

6 Posterior characterizations

Another essential result which leverages on the random partition structure is the posterior
characterization of the random measures µ̃1, . . . , µ̃D and µ̃0. Specifically, posterior distributions
of CRMs are recovered via the determination of their conditional Laplace functional transforms:
in these expressions, one identifies the distributions of jumps at fixed locations and the Lévy
intensities of CRMs without fixed jump points. A structural conjugacy property is shown to hold,
that is, a posteriori, the vector of random measures µ̃ retains its hierarchical form, with random
measures at the lower level of the hierarchy being conditionally independent given the random
measure at the root.

In the following, posterior updates of hierarchical CRMs priors are explicitly described for the
partially exchangeable models based on both normalized random measures and random mixture
hazards. For convenience of presentation, the intensities of the jump components ρ and ρ0 at
both levels of the hierarchy are assumed to be absolutely continuous with respect to the Lebesgue
measure on R+, and suitably written as ρ(ds) = ρ(s) ds and ρ0(ds) = ρ0(s) ds, respectively.
Moreover, the results in this section consider the original definitions of random measures at the
lower level of the hierarchies, as introduced in (9) and (10): the adaptation to their extended
versions is straightforward.

Normalized random measures. Consider the partially exchangeable model described in
(17). The posterior distributions of the non-normalized random measures µ̃1, . . . , µ̃D and µ̃0 are
characterized conditionally on the observations X, the latent variables Z, and the additional
latent variables U1, . . . , UD and U0. As already mentioned, such latent variables are a byproduct
of analytical manipulations in the likelihood, and are needed to recover a (conditional) structural
conjugacy.
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Let U1, . . . , UD and U0 be conditionally independent positive random variables with density
functions

fd(u |Xπ
d ,Z

π
d ) ∝ uNd−1 e−ψ(u)

k∏
j=1

rdj∏
h=1

τ(qdjh;u), d = 1, . . . , D,

f0(u |Xπ,Zπ) ∝ ur−1 e−ψ0(u)
k∏
j=1

τ0(rj ;u),

where we recall that Xπ and Zπ denote the random partitions induced by ties in the sequences X
and Z, respectively, which are encoded into groups multiplicities rj ’s (coarser partition) and qdjh’s
(finer partition). At the lower level of the hierarchy, the posterior distribution of each random
measure µ̃d, given the observations Xd, the latent variables Zd and Ud, and the root random
measure µ̃0 is

µ̃d(dx) | Xπ
d ,X

∗
d,Z

π
d , Ud, µ̃0 ∼ µ̃∗d(dx) +

k∑
j=1

rdj∑
h=1

Jdjh δX∗
j
(dx),

where the random elements in the sum are mutually independent, µ̃∗d ∼ CRM(ν∗d) with homoge-
neous Lévy intensity measure

ν∗d(ds, dx) = e−Ud s ν(ds, dx) = e−Ud s ρ(ds) p̃0(dx),

and each Jdjh is a non-negative random variable with density function

fdjh(s) ∝ sqdjh e−Ud s ρ(s), j = 1, . . . , k, h = 1, . . . , rdj .

Therefore, a posteriori and conditionally on µ̃0, each random measure µ̃d is still a CRM, resulting
from the sum of random jumps at fixed points of discontinuity and a CRM without fixed points
of discontinuity. The latter is characterized by the Lévy intensity measure of the prior with an
exponential updating term, while the fixed points of discontinuity correspond to the distinct
values of the observations. Moreover, the random measures µ̃1, . . . , µ̃d preserve their conditional
independence, given µ̃0.

Similarly, the posterior distribution of the random measure µ̃0 at the root of the hierarchy,
given the observations X, the latent variables Z and U0, is

µ̃0(dx) | Xπ,X∗,Zπ, U0 ∼ µ̃∗0(dx) +

k∑
j=1

Ij δX∗
j
(dx),

where the random elements in the sum are mutually independent, µ̃∗0 ∼ CRM(ν∗0) with homoge-
neous Lévy intensity measure

ν∗0(ds, dx) = e−U0 s ν0(ds, dx) = e−U0 s ρ0(ds)P0(dx),

and each Ij is a non-negative random variable with density function

fj(s) ∝ srj e−U0 s ρ0(s), j = 1, . . . , k.

Again, the random measure µ̃0 is still a CRM a posteriori, given by the sum of random jumps at
fixed points of discontinuity, corresponding to the distinct observed values, and an exponentially
updated CRM without fixed points of discontinuity.

An interesting feature of this result is that the prior-posterior updating mechanism preserves
the homogeneity of the random measures. Indeed, the density functions of additional latent
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variables U1, . . . , UD and U0, the exponential update of the Lévy intensity and the distributions
of random jumps at the fixed points of discontinuity depend only on the partition structure
induced by the observations and the latent variables, encoded into Xπ and Zπ, while observed
distinct values X∗ only determine the fixed locations of discontinuity points. This property clearly
parallels the factorization property of the marginal distribution into pEPPF and independent
sampling of distinct values, and it represents a fundamental computational advantage when one
needs to sample directly from the posterior distribution of hierarchical CRMs.

Random mixture hazards. Consider the partially exchangeable model described in (20). In
this case, the posterior distributions of random measures µ̃1, . . . , µ̃D and µ̃0 are characterized
conditionally on the observations T and the latent variables X and Z, featuring a proper
structural conjugacy. Specifically, the posterior distribution of each random measure µ̃d, given
the observations Td, the latent variables Xd and Zd, and the root measure µ̃0 is

µ̃d(dx) | Td,X
π
d ,X

∗
d,Z

π
d , µ̃0 ∼ µ̃∗d(dx) +

k∑
j=1

rdj∑
h=1

Jdjh δX∗
j
(dx),

where the random elements in the sum are mutually independent, µ̃∗d ∼ CRM(ν∗d) with non-
homogeneous Lévy intensity measure

ν∗d(ds, dx) = e−Kd(x) s ρ(ds) µ̃0(dx),

and each Jdjh is a non-negative random variable with density function

fdjh(s) ∝ sqdjh e−Kd(X
∗
j ) s ρ(s), j = 1, . . . , k, h = 1, . . . , rdj .

Similarly, the posterior distribution of the random measure µ̃0 at the root of the hierarchy, given
the observations T and the latent variables X and Z, is

µ̃0(dx) | T,Xπ,X∗,Zπ ∼ µ̃∗0(dx) +
k∑
j=1

Ij δX∗
j
(dx),

where the random elements in the sum are mutually independent, µ̃∗0 ∼ CRM(ν∗0) with non-
homogeneous Lévy intensity measure

ν∗0(ds, dx) = exp

{
−

D∑
d=1

ψ(Kd(x)) s

}
ρ0(ds)P0(dx),

and each Ij is a non-negative random variable with density function

fj(s) ∝ srj exp

{
−

D∑
d=1

ψ(Kd(X
∗
j )) s

}
ρ0(s), j = 1, . . . , k.

As already highlighted for marginal distributions, the structural analogies with the posterior
characterization for normalized random measures are apparent, and similar considerations apply.
In particular, here the role of the random variables U1, . . . , UD is played by the non-random
functions K1, . . . ,KD, which summarize the contribution of the observations T to the posterior
update.

However, the analytical and computational advantage represented by the absence of additional
latent variables is partially overturned by the non-homogeneity of the Lévy intensity measures
characterizing, a posteriori, the continuous part of the hierarchical CRMs. The challenges
represented by non-homogeneous CRMs in conditional sampling algorithms are discussed in
Camerlenghi et al. (2021) (Section 6.2), where a novel general-purpose approach is proposed.

15



7 Generalized gamma CRMs as natural conjugate priors

The practical implementation of Bayesian procedures involving hierarchical CRMs priors requires
the specification of their Lévy intensity measures. In particular, a fundamental role is played
by measures ρ and ρ0, which characterize the jump component and deeply affect the induced
partition structure. Indeed, such measures directly impact the distributions of random jumps at
fixed points of discontinuity in the posterior characterizations of hierarchical CRMs, and also
enter the definition of key quantities in (12), which constitute the core structure of the marginal
distributions (18) and (21). The availability of closed-form and tractable expressions represents a
computational advantage for both marginal and conditional algorithms. On the contrary, the
specification of P0 has a far lower impact from both analytical and computational points of view.

A natural choice of ρ and ρ0 for hierarchical constructions is represented by the generalized
gamma hierarchical CRM, corresponding to the specifications

ρ(ds) =
1

Γ(1− σ)
s−σ−1 e−βs ds, ρ0(ds) =

1

Γ(1− σ0)
s−σ0−1 e−β0s ds,

with parameters β, β0 ∈ R+ and σ, σ0 ∈ [0, 1). Notable special cases are obtained setting
σ = σ0 = 0, which corresponds to the gamma hierarchical CRM, and β = β0 = 0, characterizing
the σ–stable hierarchical CRM.

The generalized gamma hierarchical CRM allows for the explicit computation of the integrals
defining the Laplace exponent and its cumulants in (12), namely,

ψ(u) =

∫
R+

(1− e−us) ρ(ds) =
(β + u)σ − βσ

σ

σ=0
= log

(
1 +

u

β

)
,

τ(m;u) =

∫
R+

sm e−us ρ(ds) =
Γ(m− σ)

Γ(1− σ)
(β + u)−m+σ .

These quantities can be directly substituted into the expressions of the marginal distributions,
from which full conditional distributions and predictive urn schemes are easily derived.

Moreover, the generalized gamma choice acts as the (conditionally) conjugate prior with
respect to the posterior characterization of hierarchical CRMs for the partially exchangeable
models discussed in this work. For example, considering the model in (17) based on normalized
random measures, the posterior distribution of each random measure µ̃d at the lower level of the
hierarchy consists of the sum of random jumps at fixed points of discontinuity having gamma
distribution, namely,

Jdjh ∼ Gamma(qdjh − σ, β + Ud),

and a CRM without fixed points of discontinuity, which still has the Lévy intensity measure
of a generalized gamma CRM, with the exponential term resulting in the parameter update
β 7→ β + Ud. The same structure is observed for the root measure µ̃0, and for the model in (20)
based on random mixture hazards, with the usual roles swap of the variables U1, . . . , UD and
the functions K1, . . . ,KD, converting real parameters β and β0 into functional parameters and
making the Lévy intensity non-homogeneous.

8 Eliciting the induced dependence structure

In the previous sections, we have described two different hierarchical models that provide an
intuitive and effective way to introduce dependence among the components of a vector of random
measures. The amount of dependence regulates the borrowing of information across groups, that
is, how much inference and prediction for each group are influenced by the observations in other
groups. In an ideal setting where infinite observations for each group are available, one would
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not need to leverage on the information contained in the other groups of observations, and the
borrowing of information would be useless (if not harmful). However, in real situations with
only few observations per group available or strongly unbalanced datasets, the borrowing of
information can lead to crucial improvements in the estimates and meaningful reduction of their
uncertainty.

Let µ̃ = (µ̃1, . . . , µ̃D) be a vector of random measures. Two extreme situations can be
identified: (i) when the random measures are equal almost surely, i.e., µ̃1 = · · · = µ̃D a.s., there is
maximal dependence and, since all observations are treated as belonging to the same group, full
borrowing of information; (ii) when the random measures are mutually independent, there is no
borrowing of information, since the inference for each group is not affected by the observations in
other groups. In the elicitation of the prior, it is crucial to understand how much dependence
is introduced in the model, as this has major consequences on the learning mechanism. In this
respect, it is sufficient to remark that if (i) is assumed a priori, the estimates for each group are
exactly the same, without taking into account possible differences across the groups, while if (ii)
is imposed a priori, the estimate for each group does not take into account the observations in
other groups, with potential loss of information.

One of the most natural summaries of the dependence structure between two random measures
µ̃i and µ̃j is their pairwise covariance structure Cov(µ̃i(A), µ̃j(A)), for any set A ∈ X , and its
normalized version, the pairwise correlation Corr(µ̃i(A), µ̃j(A)). See Catalano et al. (2021, 2023)
for alternative approaches based on the Wasserstein distance. Note that, when the pairwise
correlation is 1, it is sufficient to consider random measures with the same marginal distribution
to prove that the random variables µ̃1(A), . . . , µ̃D(A) are equal almost surely. Moreover, even
if a pairwise correlation equal to 0 does not imply, in general, that the random variables
µ̃1(A), . . . , µ̃D(A) are mutually independent, it actually does for many specific models. Both
these features hold for the hierarchical structures we have considered in this work, namely,

µ̃(1) =
(
µ̃
(1)
1 , . . . , µ̃

(1)
D

) ∣∣ µ̃0 i.i.d.∼ CRM
(
ρ(ds)

µ̃0(dx)

µ̃0(X)

)
, (22)

µ̃(2) =
(
µ̃
(2)
1 , . . . , µ̃

(2)
D

) ∣∣ µ̃0 i.i.d.∼ CRM(ρ(ds) µ̃0(dx)), (23)

where µ̃0 is a CRM with Lévy intensity measure ν0(ds, dx) = ρ0(ds)P0(dx). In the previous
sections, we have applied normalization to the random measures in (22) and a hazard mixture
transformation to the random measures in (23). In this section, we rather focus on the comparison
between the dependence structures at the level of the random measures, irrespective of the
particular choice of transformation. Indeed, while it would be possible to focus on the transformed
random measures as well, we believe that a direct comparison between (22) and (23) can help to
disentangle the effect of the hierarchical construction from the effects of the transformations.

A decisive advantage of the pairwise covariance is represented by its plain evaluation for
hierarchical models through the law of total covariance and Campbell’s theorem. In particular,
considering the vector of random measures µ̃(1) =

(
µ̃
(1)
1 , . . . , µ̃

(1)
D

)
in (22), for any fixed set A ∈ X

and i ̸= j,

E
(
µ̃
(1)
i (A)

)
=

(∫
s ρ(ds)

)
E
(
µ̃0(A)

µ̃0(X)

)
;

Var
(
µ̃
(1)
i (A)

)
= Cov

(
µ̃
(1)
i (A), µ̃

(1)
j (A)

)
+

(∫
s2ρ(ds)

)
E
(
µ̃0(A)

µ̃0(X)

)
;

Cov
(
µ̃
(1)
i (A), µ̃

(1)
j (A)

)
=

(∫
s ρ(ds)

)2

Var
(
µ̃0(A)

µ̃0(X)

)
.

(24)

The corresponding expressions for the vector µ̃(2) =
(
µ̃
(2)
1 , . . . , µ̃

(2)
D

)
in (23) are obtained by

replacing the normalized random measure µ̃0(A)/µ̃0(X) with its non-normalized counterpart
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µ̃0(A). At the root level of the hierarchy, the mean and the variance of both the CRM µ̃0
and its normalization µ̃0(·)/µ̃0(X) may be expressed in terms of their Lévy intensity measure
ν0, exploiting Campbell’s theorem and the techniques developed in James et al. (2006). For
illustration purposes, consider the hierarchical gamma process, where µ̃(h)1 , . . . , µ̃

(h)
D , for h = 1, 2,

and µ̃0 are gamma completely random measures, obtained by choosing

ρ(ds) =
α e−s

s
ds, ρ0(ds) =

α0 e
−s

s
ds.

This specification yields the following expressions for the quantities considered in (24), for both
hierarchical structures in (22) (left column) and (23) (right column):

E
(
µ̃
(1)
i (A)

)
= αP0(A),

Cov
(
µ̃
(1)
i (A), µ̃

(1)
j (A)

)
=
α2 P0(A)(1− P0(A))

1 + α0
,

Var
(
µ̃
(1)
i (A)

)
=
α2 P0(A)(1− P0(A))

1 + α0
+ αP0(A),

Corr
(
µ̃
(1)
i (A), µ̃

(1)
j (A)

)
=

α (1− P0(A))

α (1− P0(A)) + 1 + α0
,

E
(
µ̃
(2)
i (A)

)
= αα0 P0(A),

Cov
(
µ̃
(2)
i (A), µ̃

(2)
j (A)

)
= α2 α0 P0(A),

Var
(
µ̃
(2)
i (A)

)
= α (α+ 1)α0 P0(A),

Corr
(
µ̃
(2)
i (A), µ̃

(2)
j (A)

)
=

α

1 + α
.

In order to correctly interpret the information contained in (24), let us elaborate on two
different flexibility properties that are desirable for the dependence structure of a model that
induces positive association between the random measures. The first kind of flexibility ensures
that, for every value γ ∈ [0, 1], there exists a specification of the model parameters such that
the random measures have correlation equal to (or converging to) γ. This property holds for
hierarchical models in general, and can be easily checked for the hierarchical gamma process
considered above: in both cases, the values of α and, possibly, α0 can be chosen so that the
correlations are equal to (or converge to) every fixed value γ ∈ [0, 1]. The second, and stronger,
kind of flexibility asks that, for every marginal law of the random measures and for every value
γ ∈ [0, 1], there exists a specification of the model parameters such that the random measures
have correlation equal to (or converging to) γ. This kind of flexibility ensures that the marginal
law of the random measures can be modeled separately from their dependence structure, a feature
which is often desirable in practice, as they encode different aspects of the model. For simplicity,
it is usually sufficient to restrict to a weaker version, whereby one fixes only the first and second
moments of the random measures, instead of fixing their whole marginal laws.

Interestingly, most hierarchical models currently used in the literature do not achieve this
second type of flexibility. For example, consider the vector of random measures µ̃(2) with the
hierarchical gamma specification described above. As revealed by the expression of the correlation,
in order to recover perfectly correlated random measures, one needs α → +∞; however, in
such case, the expected value diverges. This suggests that a good practice for hierarchical
gamma random measures, when the root measure is not normalized, is to fix α0 = 1/α, so that
E
(
µ̃
(2)
i (A)

)
= P0(A) and thus the dependence structure does not affect the mean of the random

measure. Nevertheless, with such choice of parameters, one obtains Var
(
µ̃
(2)
i (A)

)
= (α+1)P0(A),

which in turn implies that the only way to recover perfectly correlated random measures is to have
(marginally) infinite variance. In conclusion, the flexibility of second kind cannot be achieved for
the hierarchical structure in (23). On the other hand, such issues do not arise for the vector µ̃(1)

described above, and the ultimate reason of this can be understood by looking at the expressions
in (24): if µ̃0 is a gamma random measure, its mean and variance coincide, whereas the variance
of the normalization µ̃0(·)/µ̃0(X) can be adjusted separately from its expected value. This fact
suggests to consider other classes of random measure for µ̃0, where a hyper-parameter can be set
to flexibly account for different values of the variance.
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Figure 1: Samples from µ̃(2,β)(A) =
(
µ̃
(2,β)
1 (A), µ̃

(2,β)
2 (A)

)
, for β = 1 (left) and β = 100 (right),

where A is a set such that P0(A) = 0.5. The covariance is the same for every value of β > 0, that
is, Cov

(
µ̃
(2,β)
1 (A), µ̃

(2,β)
2 (A)

)
= 1/2.

Summing up, when resorting to hierarchical constructions to model the dependence between
random measures, particular attention has to be put in eliciting the dependence structure, as it
will also affect the marginal distributions. For the same reason, the covariance is not a reliable
measure of dependence: since changing the covariance also affects the variance, the normalization
required in the expression of the correlation is not only a way to obtain values in [0, 1], but also
provides important information about the dependence structure. In order to effectively showcase
this last reasoning, consider the bivariate vector of hierarchical random measures

µ̃(2,β) =
(
µ̃
(2,β)
1 , µ̃

(2,β)
2

)
| µ̃0

i.i.d.∼ CRM
(
β e−βs

s
ds µ̃0(dx)

)
,

µ̃0 ∼ CRM
(
e−s

s
dsP0(dx)

)
,

where β > 0. Resorting to the expressions in (24), one can show that, for any A ∈ X , the
covariance Cov

(
µ̃
(2,β)
1 (A), µ̃

(2,β)
2 (A)

)
= P0(A) remains unchanged for every value of β; however,

the dependence structure of µ̃(2,β) appears substantially different for different values of β, as
shown in Figure 1, in the cases β = 1 and β = 100. This difference is correctly detected by the
correlation, which equals β/(1 + β) and thus converges to 1 as β diverges.
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