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Abstract

Modeling of the dependence structure across heterogeneous data is crucial for Bayesian infer-

ence since it directly impacts the borrowing of information. Despite the extensive advances over

the last two decades, most available proposals allow only for non–negative correlations. We de-

rive a new class of dependent nonparametric priors that can induce correlations of any sign, thus

introducing a new and more flexible idea of borrowing of information. This is achieved thanks

to a novel concept, which we term hyper-tie, and represents a direct and simple measure of de-

pendence. We investigate prior and posterior distributional properties of the model and develop

algorithms to perform posterior inference. Illustrative examples on simulated and real data show

that our proposal outperforms alternatives in terms of prediction and clustering.

Keywords: Bayesian nonparametrics; Borrowing of information; Completely random measure;
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1 Introduction

Bayesian nonparametric methods are increasingly popular, mainly thanks to their flexibility and
strong foundations. The most common assumption underlying Bayesian models is exchangeabil-
ity, which corresponds to invariance of the joint distribution of the observations with respect to finite
permutations. However, real phenomena often present a level of heterogeneity that makes exchange-
ability unrealistic: collected data may refer to different features, populations, or, in general, may be
collected under different experimental conditions. Such situations entail a significant level of het-
erogeneity and opportunities for borrowing information, that can be exploited through the notion of

1



partial exchangeability, which implies exchangeability within each experimental condition, but not
across. Two sequences of observations X = (Xi)i≥1 and Y = (Yj)j≥1, taking values in a space X,
are partially exchangeable if and only if, for all sample sizes (n,m) and all permutations (π1, π2),(

(Xi)
n
i=1, (Yj)

m
j=1

) d
=
(
(Xπ1(i))

n
i=1, (Yπ2(j))

m
j=1

)
.

with d
= denoting equality in distribution. From an inferential point of view, partial exchangeability

entails that the order of the observations within each sample is non-informative, while the belonging
to a specific sample is relevant and has to be taken into account. Moreover, by de Finetti’s repre-
sentation theorem (de Finetti, 1938) X and Y are partially exchangeable if and only if there exist
random probabilities (p̃1, p̃2) such that for any i, j = 1, . . . , n

(Xi, Yj) | (p̃1, p̃2)
iid∼ p̃1 × p̃2 (p̃1, p̃2) ∼ Q (1)

with Q playing the role of the prior. The dependence induced by Q at the level of the observables
defines the Bayesian learning mechanism and it connects to the notion of borrowing of informa-
tion. This term was first coined by John Tukey (Brillinger, 2002) and popularized with reference
to Stein’s paradox and empirical Bayes techniques in Efron and Morris (1977). More generally,
statisticians refer to borrowing of information when many samples contribute to inference related to
just one sample. Imagine collecting the samples (Xi)

n
i=1 and (Yj)

m
j=1, while being interested only in

the parameter p̃1 associated to X . The simplest approach could be to disregard the second sample
(Yj)

m
j=1, with the drawback of losing potentially useful information. The typical borrowing instead

consists in shrinking the estimates for different samples towards each other: shrinkage is justified by
the fact that distributions of different, but related, populations are expected to be similar in terms of
shape and/or location. However, many contexts may still require borrowing of information between
(Xi)

n
i=1 and (Yj)

m
j=1, but without necessarily resulting in shrinkage. Indeed, one’s available prior

information may imply that the responses in different groups have a negative association and, thus,
tend to be dissimilar in location, which makes shrinkage undesirable. Similarly, when there is no
pre-experimental knowledge on the dependence between Xi and Yj , a flexible prior specification al-
lowing also for negative association would be more appropriate. A toy parametric example to further
clarify that borrowing does not necessarily imply classic shrinkage is provided in Section S2. of the
Appendix. Some applied scenarios of borrowing of information not resulting in shrinkage are, for
instance, the study of survival times and abundances of competitive species (Lee et al., 2020), the
incorporation of retrospective data to study associations between biomarkers (Gong et al., 2021), the
association between dental caries and dental fluorosis (Lorenz et al., 2018), the analysis of stocks and
bonds returns (see Bhardwaj and Dunsby, 2013, and Section 6.3), and the clustering of multivariate
responses with missing entries (see Section 6.4). In this paper we introduce a class of nonparametric

2



priors that allows for a more general version of borrowing, which includes shrinkage as a special
case. These can be used as core building blocks for models tailored to specific applications.

Starting from the pioneering works of Cifarelli and Regazzini (1978) and MacEachern (1999, 2000),
Bayesian nonparametric contributions for non–exchangeable data have grown substantially, see Foti
and Williamson (2013), Müller et al. (2015) and Quintana et al. (2022) for insightful reviews. The
vast majority of nonparametric models for partially exchangeable data entails that the random prob-
abilities in (12) are such that

p̃1
a.s.
=
∑

k≥1 J̄kδθk

p̃2
a.s.
=
∑

k≥1 W̄kδϕk

θk
i.i.d.∼ P0, ϕk

i.i.d.∼ P0 (2)

where the random weights
(
(J̄k), (W̄k)

)
and the atoms ((θk), (ϕk)) are independent and θk ⊥ ϕh for

k ̸= h. In this paper we focus on this class of models and, for ease of exposition, take p̃1 and p̃2 with
the same marginal distribution.

A first prominent strategy for defining Q is to explicitly assign the distribution of the weights and
the atoms in (2) so to create dependence between p̃1 and p̃2: this approach has led to dependent
Dirichlet processes (MacEachern, 1999, 2000; Quintana et al., 2022), dependent stick-breaking pro-
cesses, kernel stick-breaking processes (Dunson and Park, 2008), probit stick-breaking processes
(Rodriguez and Dunson, 2011) and others. Despite their flexibility and the availability of posterior
sampling schemes, the derivation of analytical results is very difficult for these models; it is often
not clear how the dependence of the series reflects at the level of the observables and therefore such
methods may lack transparency.

A second popular strategy, analytically more tractable, relies on completely random measures (CRMs)
either working directly on the law of multi-dimensional vectors of CRMs (Epifani and Lijoi, 2010;
Griffin and Leisen, 2017; Riva-Palacio and Leisen, 2021) or combining conditionally independent
CRMs, using additive structures (Müller et al., 2004; Griffin et al., 2013; Lijoi and Nipoti, 2014;
Lijoi et al., 2014a,b), nested structures (Rodriguez et al., 2008; Camerlenghi et al., 2019), or hierar-
chical structures (Teh et al., 2006; Camerlenghi et al., 2019). CRMs are then suitably transformed
to obtain the random probabilities in (2).

Dependent random probabilities clearly induce dependence across groups of observations. The sim-
plest and most intuitive way to quantify the dependence structure is through correlations. Therefore,
when considering correlations among observables, we will implicitly assume real-valued Xi’s and
Yj’s, namely X = R. All other results and concepts are valid for general spaces X. A first result
in this direction shows that, regardless of the specific dependent model, observations in different
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groups cannot be more correlated (in absolute sense) than the ones in the same group.

Proposition 1. Suppose X and Y are partially exchangeable sequences, such that p̃1 and p̃2 in (12)
have the same marginal distribution. Then

−corr(Xi, Xi′) ≤ corr(Xi, Yj) ≤ corr(Xi, Xi′),

for any i, i′ and j.

Due to exchangeability within each group, the upper bound in Proposition 1 is always non–negative
and it can be shown that, for all the models as in (2), the correlation between observations in the
same sample, corr(Xi, Xi′), is determined by the probability of a tie. As for the correlation across
samples corr(Xi, Yj), we show that a similar result holds true, with hyper-ties, the new notion we
introduce, replacing ties.

Moreover, note that for most models based on CRMs, which allow for the computation of the corre-
lation, corr(Xi, Yj) turns out to be positive: this happens in particular when the interaction between
two or more groups is of interest. Therefore, the literature available to date within the partially
exchangeable setting is focused on models that attain a limited range of possible values of the cor-
relation, when it can be evaluated. Here we aim to overcome this limitation and introduce a novel
class of priors which yield a wider range of correlation values among the observables, including
those with negative sign. The next result shows that the sign of the correlation is only determined by
the dependence structure between the atoms.

Proposition 2. Suppose X and Y are partially exchangeable sequences, such that the underlying p̃1
and p̃2 are as in (2). Moreover, for any k and k′, let corr(θk, ϕk′) ≥ 0. Then corr (Xi, Yj) ≥ 0, for

any i and j.

For instance, hierarchical processes (Teh et al., 2006; Camerlenghi et al., 2019), which represent one
of the most popular dependent models, induce dependence by the sharing of atoms across groups.
However, by Proposition 2, this means that achieving negative correlation is impossible. Hence, a
flexible joint distribution for the sequence of atoms must be specified. This task is accomplished
by our proposal, termed normalized CRMs with Full-Range Borrowing of Information (n-FuRBI),
that allows to attain any possible value for the correlation specified in Proposition 1. Moreover, it
encompasses many previous constructions as special cases. We will show that it nicely combines
the flexibility of the random series construction with the analytical tractability featured by CRMs.
Our proposal allows to consider any interesting choice of borrowing of information: independence,
classical shrinkage, but also repulsion of estimates for different samples, generating what we term
full–range borrowing of information. Note that the repulsive behaviour of n-FuRBI is different from
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the one featured by the priors introduced in Petralia et al. (2012) and Quinlan et al. (2017), that
induce repulsion among the atoms of a single random probability measure.

The appendix includes all the analytical derivations and proofs, the simulation algorithms for the
implementation of the proposed class of models, additional examples and numerical studies. In the
following we use the prefix S to indicate sections of the Appendix. The code to allow full replica-
tion of the numerical results is available at https://github.com/beatricefranzolini/
FuRBI.

2 General results on dependent processes

The vast majority of dependent processes introduced in the literature are almost surely discrete and
therefore admit a series representation as in (2). A key preliminary step leading to the definition of
hyper-tie and n-FuRBI priors is the observation that the random probabilities in (2) can be embedded
into p1

a.s.
=
∑

k≥1 J̄kδ(θk,ϕk)

p2
a.s.
=
∑

k≥1 W̄kδ(θk,ϕk)
(θk, ϕk)

i.i.d.∼ G0, (3)

with G0 a probability distribution on X × X, whose marginals equal P0. While p1 and p2 share the
same atoms, the weights and the atoms are independent and the pair of random probability measures
p̃1 and p̃2 in (2) are obtained as the projections over different coordinates of p1 and p2, namely
p̃1(·) = p1(· × X) and p̃2(·) = p2(X × ·). The structure of popular models is recovered by letting
either G0 = P 2

0 , which corresponds to independence, or G0(dθ, dϕ) = P0(dθ)δ{θ}(dϕ), that is
θk = ϕk for any k as happens for, e.g., hierarchical processes (see Camerlenghi et al., 2019). Almost
sure discreteness implies that a sample from the random probability measure p̃1 (or p̃2) will display
ties with positive probability. The probability of a tie, i.e. a coincidence of any two observations i
and j in the same sample, is

β := P(Xi = Xj) =
∑
k≥1

E(J̄2
k ) =

∑
k≥1

E(W̄ 2
k ) = P(Yi = Yj) (4)

with (J̄k)k≥1 and (W̄k)k≥1 equal in distribution since we are assuming, for simplicity, that p̃1 and
p̃2 are equal in distribution. When considering jointly the two samples, the concept of tie can be
replaced by the one of hyper-tie, that is two observations in different samples coinciding with com-
ponents having the same label. According to (12), its probability is

γ :=
∑
k≥1

P(Xi = θk, Yj = ϕk) =
∑
k≥1

E(J̄kW̄k). (5)
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Sampling from components with the same label is equivalent to sampling the same atom at the
level of the underlying (p1, p2) in (3). Clearly, when the atoms are shared between p̃1 and p̃2, i.e.
G0(dθ, dϕ) = P0(dθ)δ{θ}(dϕ), a hyper-tie corresponds to an actual tie between observations in
different samples.

The next result shows the relationship between β and γ, the probabilities of a tie and hyper-tie,
respectively: in particular, the probability of a tie is always larger and equality is attained if and only
if the probability masses of p1 and p2 are almost surely equal.

Proposition 3. Let (p̃1, p̃2) be as in (2) and β, γ as in (4) and (5), respectively. Then 0 ≤ γ ≤ β and

β = γ if and only if W̄k
a.s.
= J̄k for any k.

Hyper-ties play a crucial role in determining the dependence between observables across groups, as
the ties do for the dependence between observables within groups, as shown by the next proposition.

Proposition 4. Consider model (12) with (p̃1, p̃2) as in (2). Then, for any i ̸= i′ and any j ̸= j′

corr(Xi, Xi′) = corr(Yj, Yj′) = β corr(Xi, Yj) = γ ρ0

with ρ0 the correlation between two random variables jointly sampled from G0.

Thus, while the correlation between observations in the same sample equals the probability of a
tie, the correlation between observations from different samples is determined by the probability
of a hyper-tie, corrected by the correlation between atoms. Clearly a suitable choice of the joint
distribution of the atoms makes the latter negative. Thus, by choosing G0 appropriately, for instance
as a bivariate normal, it is easy to tune the correlation according to the available prior knowledge.
The following Corollary shows the values that can be attained, once the marginal law is specified.

Corollary 1. Consider model (12) with (p̃1, p̃2) as in (2). If the marginal distribution of p̃1 and p̃2
is fixed, then corr(Xi, Yj) ∈ [−β, β] and the extreme values are attained if and only if the jumps are

equal and ρ0 = ±1.

Unsurprisingly, with equal weights and jumps, which corresponds to full exchangeability, one achieves
the extreme case of corr(Xi, Yj) = β. Null correlation, instead, is attained when atoms are un-
correlated or when the probability of hyper-ties is zero. Lastly, maximum negative correlation
corr(Xi, Yj) = −β is attained with equal weights and negatively correlated atoms and can be thought
of as the opposite case with respect to exchangeability, at least in terms of correlation. Ties and
hyper-ties play a similar role also in the predictive structure, as the next result shows.
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Proposition 5. Consider model (12) with (p̃1, p̃2) as in (2). Then

P (X1 ∈ A,X2 ∈ B) = βP0(A ∩B) + (1− β)P0(A)P0(B).

and

P (X1 ∈ A, Y1 ∈ B) = γG0(A×B) + (1− γ)P0(A)P0(B).

The result is indeed quite intuitive. If X1 and Y1 form a hyper-tie (with probability γ) they come
from the same pair of atoms and need to be sampled jointly; otherwise they refer to different atoms
and are sampled independently. The same happens inside each group, where X1 and X2 are equal
with probability β.

Example 1. The hierarchical Dirichlet process (Teh et al., 2006) is characterized by the hierarchical
representation p̃i | p̃0

i.i.d.∼ DP(θ, p̃0), with p̃0 ∼ DP(θ0, P0), where P0 is a diffuse measure and
DP(α,H) denotes the law of a Dirichlet process with concentration parameter α > 0 and baseline
distribution H . Since the p̃i’s share the atoms, an hyper-tie corresponds to an actual tie between
observations in different samples, so that with simple computations we get

β = corr(Xi, Xj) = 1− θθ0
(1 + θ)(1 + θ0)

, γ = corr(Xi, Yj) =
1

1 + θ0
.

Thus, the correlation among the observables is forced to be positive, with θ0 tuning the dependence;
see Example 1 in Camerlenghi et al. (2019) for more details.

Given the above results and considerations, it should be clear that γ defined in (5) is crucial for
tuning the level of dependence. However, closed form expressions of γ are available only for a few
cases and, in fact, we are facing a trade–off: on the one hand we have dependent processes based on
the stick-breaking representation, that allow for high flexibility while sacrificing the availability of
analytical results; on the other hand we have constructions based on CRMs, for which an extensive
theory has been developed, though they are not as effective for tuning the dependence, since all the
existing instances produce non-negative correlation across samples. In the following we combine
the best of both approaches through n-FuRBI: they are flexible processes that can attain any value
for the correlation between the observables, while at the same time a posterior representation can be
derived. Their construction is based on CRMs and completely random vectors, reviewed in the next
section.
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3 Some basics on completely random measures

As shown in Lijoi and Prünster (2010), many Bayesian nonparametric models can be obtained as
suitable transformations of CRMs; among others, these include the Dirichlet process, the Pitman-
Yor process and the neutral-to-the-right priors. The extension of CRMs to the bivariate setting is
provided by completely random vectors µ = (µ1, µ2), whose components take values in the space
of boundedly finite measures on X and are such that, for every collection of pairwise disjoint sets
(Ai)

n
i≥1, the random vectors (µ1(A1), µ2(A1)), . . . , (µ1(An), µ2(An)) are mutually independent. We

focus on the case of no fixed atoms and no deterministic component, so that the marginal CRMs µ1

and µ2 are almost surely discrete and can be written as sum of X–valued random atoms with random
weights, i.e.

µ1
a.s.
=
∑
i≥1

Jiδκi , µ2
a.s.
=
∑
i≥1

Wiδκi .

In the following section it will be convenient to use the reparametrization κi = (θi, ϕi) ∈ X =

X1 ×X2. Such completely random vectors are characterized by the Lévy-Khintchine representation

E
{
e−µ1(f1)−µ2(f2)

}
= exp

− ∫
R2
+×X

{1− e−s1 f1(x)−s2 f2(x)} v(ds1, ds2, dx)

 (6)

where µi(fi) =
∫
X fi(x)µi(dx) for R+-valued fi and v(ds1, ds2, dx) is the joint Lévy intensity. We

shall focus on the homogeneous case, in which jumps (Jj)j≥1 and locations (Xj)j≥1 are independent.
In terms of Lévy intensity it reads v(ds1, ds2, dx) = ρ(ds1, ds2)α(dx) for some finite measure α
on X and measure ρ. Moreover, in the sequel we will also need the joint and marginal Laplace
exponents given by

ψb(λ1, λ2) :=

∫
R2
+×X

(1− e−λ1s1−λ2s2)ρ(ds1, ds2)α(dx), λ1 > 0, λ2 > 0.

ψ(λ) :=

∫
R+×X

(1− e−λs)ρ(ds)α(dx) λ > 0,

For an exhaustive account on CRMs, we refer to Kingman (1967, 1993). Completely random vectors
and CRMs are often normalized to obtain random probability measures, as introduced in Regazz-
ini et al. (2003), i.e. p(·) = µ(·)/µ(X). Notice that in principle any random measure µ such that
P(0 < µ(X) < ∞) = 1 can be normalized in order to define a random probability measure.
However, the strength of completely random vectors and measures lies in their Lévy–Khintchine
representations and unique correspondence with the associated Lévy intensity, which allow a high
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degree of analytical tractability. CRMs and the corresponding normalized probabilities have been
extensively studied to model exchangeable data (see, for instance, James et al., 2006, 2009, 2010;
Lijoi and Prünster, 2010; Favaro et al., 2016; Camerlenghi et al., 2018). Similarly, a completely ran-
dom vector can be used to model dependence between two groups. For more details on completely
random vectors and an interesting account of their dependence structure, we refer to Catalano et al.
(2021, 2023). Since the two measures in the vector share all the atoms, by virtue of Proposition 2
the induced model yields non–negative correlation between samples. The issue is addressed in the
next section, by means of a novel class of random probability measures that leverage the dependence
structure specifed for the atoms.

4 Full-range borrowing of information nonparametric prior

4.1 Definition and first properties

In this section we introduce n-FuRBI and for simplicity we still consider only the case of two samples
with the same a priori marginal distribution.

Definition 1. Consider a completely random vector (µ1, µ2) on X2 with Lévy intensity

v(ds1, ds2, dx1, dx2) = ρ(ds1, ds2) α(dx1, dx2),

where α(dx1, dx2) = θG0(dx1, dx2), where θ = α(X2) ∈ (0,+∞), and G0 is a non-atomic proba-
bility measure on X2 such that G0(· × X) = G0(X× ·) = P0(·). Then µ̃1 and µ̃2 defined as

µ̃1(·) = µ1(X× ·) µ̃2(·) = µ2(· × X)

are CRMs with Full-Range Borrowing of Information (FuRBI CRMs) and underlying Lévy intensity
v. The normalized versions p̃j(·) = µ̃j(·)/µ̃j(X) for j = 1, 2 are said normalized CRMs with Full-

Range Borrowing of Information (n-FuRBI).

Essentially, first a pair of random measures endowed with the same locations is constructed on the
product space X2; as a second step, the coordinates of each pair of atoms are split. Thus, the n-
FuRBI admit a representation as in (2) and (3). In general FuRBI CRMs are not completely random
vectors, because the joint sampling of the atoms forbids the independence of the vector evaluated
on pairwise disjoint sets. However, the representation in terms of a completely random vector in the
product space is useful to characterize the joint law of the FuRBI CRMs, as shown in the following
proposition.
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Proposition 6. Let (µ̃1, µ̃2) be a vector of FuRBI CRMs. Then

(i) µ̃1 and µ̃2 are CRMs with intensity ρ(ds)θP0(dx), where ρ(ds) =
∫
R+
ρ(ds1, ds).

(ii) For any A and B, the following equality holds

E
[
e−λ1µ̃1(A)−λ2µ̃2(B)

]
= exp{−G0(A×Bc)ψ(λ1)−G0(A

c ×B)ψ(λ2)}

× exp{−G0(A×B)ψb(λ1, λ2)},

where ψ denotes the common marginal Laplace exponent and ψb the joint Laplace exponent

of (µ1, µ2).

(iii) The joint law of (µ̃1, µ̃2) is characterized by the joint Lévy intensity of (µ1, µ2).

The next proposition shows that the β and γ associated to any couple of n-FuRBI can be computed
through their Laplace exponents.

Proposition 7. Consider (p̃1, p̃2) n-FuRBI. Then the probability of a tie and of a hyper-tie are re-

spectively

β = −
∫
R+

u

{
d2

du2
ψ(u)

}
e−ψ(u) du, γ = −

∫
R2
+

{
∂2

∂u1∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2.

Thus, the crucial value of γ can be obtained by computing, analytically or numerically, a bivariate
integral. The two results above show a recurrent trait of our approach: interesting quantities will be
usually rewritten in terms of the original completely random vector, in order to exploit its analytical
tractability. We conclude this section with two examples of FuRBI CRMs, that also show how some
existing constructions can be obtained as special cases.

Example 2 (FuRBI CRMs with equal jumps). Let ρ(ds1)δs1(ds2) θ G0(dx1, dx2) be the underlying
Lévy intensity. The series representation of the corresponding FuRBI CRMs is

µ̃1(·)
a.s.
=
∑
k≥1

Wkδθk µ̃2(·)
a.s.
=
∑
k≥1

Wkδϕk with (θk, ϕk)
i.i.d∼ G0.

Therefore, γ = β, so that a tie and a hyper–tie are observed with the same probability.

Example 3 (Extended Compound FuRBI CRMs). Consider the Lévy intensity

v(ds1, ds2, dx1, dx2) =

∫
z−2h(s1/z, s2/z) ds1ds2v

∗(dz) θ G0(dx1, dx2),
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where h is some density and v∗ is a Lévy intensity that satisfies∫
z−2

∫
min{1, ||s||}h(s1/z, s2/z) ds1ds2v∗(dz) <∞, ||s|| =

√
s21 + s22.

The series representation of the corresponding FuRBI CRMs is

µ̃1(·)
a.s.
=
∑
k≥1

m1,kWkδθk µ̃2(·)
a.s.
=
∑
k≥1

m2,kWkδϕk

where (θk, ϕk)
i.i.d∼ G0 and (m1,k,m2,k)

iid∼ h. When G0 is degenerate on the main diagonal, one
retrieves the class of compound random measures introduced by Griffin and Leisen (2017).

4.2 Correlation structure between n-FuRBI

In order to analyze the dependence between the marginal n-FuRBI priors p̃1 and p̃2, it is useful to
compute the correlation of the random probability measures evaluated on the same set A. In all
the existing CRM-based models such a correlation does not depend on the specific set considered
and, hence, it is often used as a global measure of dependence. The next proposition provides the
covariance structure between two n-FuRBI.

Proposition 8. Let p̃1 and p̃2 be n-FuRBI. Then for any A,B, such that 0 ≤ P0(A) ≤ 1 and

0 ≤ P0(B) ≤ 1, we have cov(p̃1(A), p̃2(B)) = γ [G0(A×B)− P0(A)P0(B)] and

corr(p̃1(A), p̃2(B)) =
γ

β

G0(A×B)− P0(A)P0(B)√
P0(A)(1− P0(A))P0(B)(1− P0(B))

.

By setting A = B, from the previous results one immediately deduces that cov(p̃1(A), p̃2(A)) =

γ [G0(A× A)− P0(A)
2] and

corr(p̃1(A), p̃2(A)) =
γ

β

G0(A× A)− P0(A)
2

P0(A)(1− P0(A))
.

Unlike what usually happens with existing models, here the correlation can be negative, when A
is such that G0(A × A) < P0(A)

2, that is when G0 exhibits a repulsive behaviour between the
coordinates in X2. Moreover, the correlation depends on the specific set on which the two measures
are evaluated and, therefore, it has to be interpreted as a local measure of dependence. See Section
S3. for an illustration of this phenomenon on sets of the form (−∞, x).
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Example 4 (n-FuRBI with equal jumps). In this case, Proposition 3 entails β = γ. Therefore

corr (p̃1(A), p̃2(A)) =
G0(A× A)− P0(A)

2

P0(A)(1− P0(A))
.

Moreover, still by virtue of Proposition 3, for a given G0 this is the highest possible correlation in
absolute value.

Proposition 4 then provides the correlation between the observables, which is even more important
from a modeling perspective.

Example 5 (Gamma n-FuRBI with equal jumps). If the common marginal is the law of a Dirichlet
process, then corr(Xi, Yj) = ρ0/(1 + θ). Choosing appropriately ρ0 and θ the entire range (−1, 1)

becomes available.

Note that hyper-ties allow to perform a more general type of borrowing, compared to ties, even when
the correlation is positive. While ties are a useful construction to model multiple samples that share
certain values/latent parameters, hyper-ties can borrow information even when the two samples have
no common values/latent parameter. This aspect will play a crucial role in the data-analyses of
Sections 6.3 and 6.4; for these the assumption of common values would be highly unrealistic.

5 Inference

5.1 Posterior Characterization

Having provided an exhaustive description of the a priori properties of n-FuRBI, the following key
step is to provide a tractable posterior characterization. Conjugacy is out of question here: even
in the exchangeable context it is a property characterizing the Dirichlet process (see James et al.,
2006). Nevertheless, conditional on a set of suitable latent variables, the posterior distribution of the
original completely random vector (µ1, µ2) turns out to be again a completely random vector leading
to a neat posterior characterization and viable methods for sampling.

Consider a sample of n observations (Xi)
n
i=1 from p̃1 with unique values X∗

n = (X∗
1 , . . . , X

∗
k) and

associated multiplicities (n1, . . . , nk); analogously, consider m observations (Yj)
m
j=1 from p̃2 with

unique values Y ∗
m = (Y ∗

1 , . . . , Y
∗
c ) and multiplicities (m1, . . . ,mc). While it is immediate to check

for ties, hyper-ties cannot be identified from the data. To this end, we define a latent random element
p encoding the hyper-ties, such that p = {(il, jl)}l, where (i, j), with 1 ≤ i ≤ k and 1 ≤ j ≤ c,
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denotes a hyper-tie between X∗
i and Y ∗

j . Moreover (i, 0), with 1 ≤ i ≤ k, denotes that X∗
i does not

form a hyper-tie with any value in Y ∗
m and (0, j), with 1 ≤ j ≤ c, denotes that Y ∗

j does not form an
hyper-tie with any value in X∗

n.

Therefore, if (i, j) ∈ p with i ̸= 0 and j ̸= 0, it means that X∗
i and Y ∗

j come from the same pair
of atoms in representation (3). Instead, (i, 0) ∈ p implies that X∗

i is the only value associated to a
specific pair, and similarly for Y ∗

j if (0, j) ∈ p. Since we are working with unique values, it is clear
that each X∗

i and Y ∗
j can form at most one hyper-tie, i.e. it is associated to a unique member of p.

This justifies the following formal definition.

Definition 2. We say that p = {(il, jl)}l is a compatible hyper-ties structure for (Xi)
n
i=1 and (Yj)

m
j=1

if, firstly, for any 1 ≤ i ≤ k, there exists exactly one il such that il = i, thus each element of X∗
n

forms at most one hyper-tie; secondly, for any 1 ≤ j ≤ c, there exists exactly one jl such that jl = j,
thus each element of Y ∗

m forms at most one hyper-tie; lastly, for any l, if il = 0 then jl ̸= 0, thus at
least one coordinate refers to an element of X∗

n or Y ∗
m.

As a simple example, suppose that Xn and Y m contain respectively 2 and 1 unique values. Then
k = 2, c = 1 and the support of p is

P =

{
{(1, 1), (2, 0)}, {(1, 0), (2, 1)}, {(1, 0), (2, 0), (0, 1)}

}
.

Once the latent structure p is identified, its elements can be conveniently partitioned into the set ∆p =

{(i, j) ∈ p | i ̸= 0 and j ̸= 0}, which includes all the hyper-ties, and the sets ∆1
p = {(i, j) ∈ p | j = 0}

and ∆2
p = {(i, j) ∈ p | i = 0}. If X∗

i and Y ∗
j form a hyper-tie, it means that (X∗

i , Y
∗
j ) is an actual

atom in representation (3). Instead, if X∗
i does not form a hyper-tie, we have a partial knowledge

of the original pair: the unknown second coordinate can be sampled from PX∗
i
(·), that is the condi-

tional distribution given X∗
i , induced by the joint measure G0, which will henceforth be assumed to

be non–atomic. A similar argument applies if Y ∗
j does not form a hyper-tie.

In order to simplify notation, we set gi,j = g0(X
∗
i , Y

∗
j ), gi,0 = p0(X

∗
i ), and g0,j = p0(Y

∗
j ), where

g0 and p0 are the density functions of G0 and P0 respectively, that we assume exist with respect to
suitable dominating measures. Finally, we consider the following integrals

τn,m(u) =

∫
R2
+

e−u1s1−u2s2sn1s
m
2 ρ(ds1, ds2), u = (u1, u2),

where often n and m will be equal to ni and mj , with 1 ≤ i ≤ k and 1 ≤ j ≤ c. For consistency,
we set n0 = m0 = 0.

The key result of the section relies on a latent structure that is identified by random variables whose
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conditional distributions, given (Xi)
n
i=1 and (Yj)

m
j=1, are available. Indeed, these random variables

are given by p, whose probability mass function is proportional to ∏
(i,j)∈p

gi,j

∫
R2
+

un−1
1 um−1

2

∏
(i,j)∈p

τni,mj
(u) e−ψb(u) du,

the vector (U1, U2), whose density on R2
+ is proportional to un−1

1 um−1
2

∏
(i,j)∈p τni,mj

(u)e−ψb(u), the
variables {Zx

i }i, whose distribution is PX∗
i
(·), for any i = 1, . . . k, and {Zy

j }j , whose distribution is
PY ∗

j
(·), for any j = 1, . . . , c. We are now ready to state the key posterior characterization.

Theorem 1. Let(Xi)
n
i=1 and (Yj)

m
j=1 be from model (12), with Q being the law of a n-FuRBI. Then,

the distribution of (µ1, µ2) conditional on (Xi)
n
i=1, (Yj)mj=1 and the set of latent variables (p, U1, U2,

{Zx
i }i, {Z

y
j }j) is

(µ̂1, µ̂2) +
∑

(i,j)∈∆p

Ji,jδ(X∗
i ,Y

∗
j )

+
∑

(i,j)∈∆1
p

Ji,0δ(X∗
i ,Z

x
i )

+
∑

(i,j)∈∆2
p

J0,jδ(Zy
j ,Y

∗
j )
,

where (µ̂1, µ̂2) is a completely random vector with intensity e−U1s1−U2s2ρ(ds1, ds2)G0(dx) and

Ji,j = (J1
i,j, J

2
i,j), with i = 0, . . . , k e j = 0, . . . , c, are jumps with density proportional to

sni
1 s

mj

2 e−U1s1−U2s2ρ(ds1, ds2).

Moreover (µ̂1, µ̂2) and Ji,j are independent.

Conditional on the latent variables, the structure is quite intuitive: the posterior is the law of a
completely random vector with modified intensity and fixed locations, given by the pairs formed
by the hyper-ties. This is somehow reminiscent of the posterior structures of exchangeable models
(James et al., 2009; Lijoi and Prünster, 2010), with the key novelty played by the new notion of
hyper-ties, in addition to the identification of a suitable latent structure.

The distribution of the latent variables admits a nice interpretation. For instance, the mass function of
the latent structure p is the product of two terms: the probability of observing the number of hyper-
ties identified by p times the likelihood that exactly those pairs are formed, through the density
function g0. Thus, thanks to the homogeneity of the original completely random vector, we observe
a separate effect for jumps and locations on this hidden clustering structure. The next corollary
shows how the posterior distribution of the normalized measures can be deduced from Theorem 1.
The statement focuses on p1, though an analogous representation holds also for p2.
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Corollary 2. Under the same assumptions of Theorem 1, conditional on (Xi)
n
i=1, (Yj)mj=1 and the

latent variables (p, U1, U2, {Zx
i }i, {Z

y
j }j), the random probability measure p1 in (3) equals in dis-

tribution

w1
µ̂1

T1
+ w2

∑
(i,j)∈∆p

J1
i,jδ(X∗

i ,Y
∗
j )∑

(i,j)∈∆p
J1
i,j

+ w3

∑
(i,j)∈∆1

p
J1
i,0δ(X∗

i ,Z
x
i )∑

(i,j)∈∆1
p
J1
i,0

+ w4

∑
(i,j)∈∆2

p
J1
0,jδ(Zy

j ,Y
∗
j )∑

(i,j)∈∆2
p
J1
0,j

,

where T1 = µ̂1(X× X), while

w1 ∝ T1, w2 ∝
∑

(i,j)∈∆p

J1
i,j, w3 ∝

∑
(i,j)∈∆1

p

J1
i,0, w4 ∝

∑
(i,j)∈∆2

p

J1
0,j,

with the constraint
∑4

i=1wi = 1.

5.2 Predictive structure

Prediction of new observations arises naturally within the Bayesian framework, since it coincides
with the estimate of the distribution under a square loss function. Moreover, it has the merit of
providing intuition on how the model behaves and learns and it can be used to develop marginal
algorithms that avoid the direct sampling of p̃1 and p̃2, which are infinite-dimensional objects. In
Proposition 5 we saw how to sample the first pair of observations. The next result tackles the general
case.

Theorem 2. Consider samples (Xi)
n
i=1 and (Yj)

m
j=1 from model (12), with the same setting of Theo-

rem 1. Then there exist probability weights ξ0, {ξxi } and {ξyj } such that

P
(
Xn+1 ∈ C | (Xi)

n
i=1, (Yj)

m
j=1

)
= ξ0P0(C) +

k∑
i=1

ξxi δX∗
i
(C) +

c∑
j=1

ξyjPY ∗
j
(C) .

Analogously, there exist probability weights η0, {ηxi } and {ηyj } such that for any C ∈ X

P
(
Ym+1 ∈ C | (Xi)

n
i=1, (Yj)

m
j=1

)
= η0P0(C) +

c∑
j=1

ηyj δY ∗
j
(C) +

k∑
i=1

ηxi PX∗
i
(C) .

Explicit formulae for the weights are available in the proof of Theorem 2, in Section S1. In specific
cases they can be computed in closed form, conditional to the latent variables: see e.g. example S1
in Section S4 for the Inverse Gaussian case with equal jumps.

Hence, the marginal predictive distributions have a quite intuitive form: they are linear combinations
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of the centering distribution P0, a weighted version of the empirical distribution and a last term that
depends on the other sample. The crucial differences with respect to prediction rules arising in the
exchangeable case (Lijoi and Prünster, 2010; De Blasi et al., 2015) is the addition of the last term,
which clearly shows how posterior inference changes when incorporating heterogeneous information
and performing borrowing of information.

Example 6 (n-FuRBI with equal atoms). If the joint distribution G0 is degenerate such that the
atoms are completely shared between p̃1 and p̃2, then PZ(·) = δZ(·). Therefore, the last term in
Theorem 2 becomes a weighted version of the empirical distribution relative to the other sample.

Algorithms for posterior inference and prediction are derived in Section S4.

6 Numerical Illustrations and Real Data Analyses

6.1 Bayesian mixture models

Discrete Bayesian models, as the one specified in (12), are usually not employed directly on the data,
but as a building block in hierarchical mixture models: in this settingX and Y are hidden values that
describes the clustering structure within the data. Such models have been introduced by Lo (1984)
for the Dirichlet processes and gained popularity thanks also to the availability of sampling methods
for posterior inference (Escobar and West, 1995; Ishwaran and James, 2001; Neal, 2000). Suppose
{f(· | x) : x ∈ X} is a family of probability density kernels on a space W. Then the model can be
formulated in the context of (12) as

Wi |Xi
ind∼ f(· | Xi)

Xi | p̃1
i.i.d.∼ p̃1

,
Vj |Yj

ind∼ f(· | Yj)

Yj | p̃2
i.i.d.∼ p̃2

, (p̃1, p̃2) ∼ n-FuRBI.

where (Wi)
n
i=1 and (Vj)

m
j=1 are the observable samples and are assumed to be conditionally indepen-

dent, given (Xi)
n
i=1 and (Yj)

m
j=1. Integrating out the latent variables (Xi)

n
i=1 and (Yj)

m
j=1, the data are

random draws from suitable countable mixtures, i.e.

Wi | p̃1
iid∼
∫
f(· | x) p̃1(dx), Vj | p̃2

iid∼
∫
f(· | y) p̃2(dy).

Example 7 (Gaussian mixtures). We assume f(· | x) := N(· | x, σ2), with σ2 positive known
constant, to be the normal density. Thus, the latent parameter is the mean, i.e. X = R. In this
case cov(Xi, Yj) = cov(Wi, Vj), so that the joint behavior of the latent means is reflected on the
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observations: this shows the importance of the correlation structure given by Proposition 4 also
for hierarchical models. Alternatively, the latent parameters could specify both the mean and the
variance, with X = R× R+.

The goal is then to draw samples from the posterior distribution given (Wi)
n
i=1 and (Vj)

m
j=1: however

this requires to integrate out all the possible partitions of the n +m latent variables. As detailed in
Section S4., it is possible to devise a Gibbs sampler for drawing from the posterior distribution of
(Xi)

n
i=1 and (Yj)

m
j=1.

Once a posterior sample (Xi)
n
i=1 and (Yj)

m
j=1 is generated, relevant quantities of interest can be

approximated by exploiting the conditional independence of (Wi)
n
i=1 and (Vj)

m
j=1, given the latent

variables.

6.2 Simulation study for density estimation

We consider a simple application with simulated data, in order to understand how inference changes
when taking into account heterogeneous sources of information. Assume the following generating
mechanism: Wi

i.i.d.∼ N(· | 10, 1), for i = 1, . . . , 20, and Vj
i.i.d.∼ N(· | −10, 1), for j = 1, . . . , 100.

Supposing only the phenomenon associated to the first sample is of interest, hierarchical mixtures
are considered to make prediction on the unknown density of Wi. The kernel considered is the
one specified in Example 7, with known σ2 = 1 and latent mean µ. Four different approaches for
modelling dependence between (Wi)i≥1 and (Vi)i≥1 are devised: the exchangeable approach, ac-
cording to which sequences W and V are supposed to form one exchangeable sequence, inducing
the highest positive correlation between Wi and Vj; the independent approach, according to which
the sample (Vi)i≥1 is disregarded entirely, that is (Wi)i≥1 and (Vi)i≥1 are treated independently; the
hierarchical approach, where we use a hierarchical Dirichlet process (see Example 1) that corre-
sponds to a classical borrowing of information; the FuRBI approach, where the underlying random
probability measures p̃1 and p̃2 are n-FuRBI with equal weights and the distribution on the atoms is
G0(· | ρ0) = N2 (· | 0, 1, ρ0) with ρ0 ∼ Unif([−1, 1]), where N2(· | m,σ2

0, ρ0) denotes the bivariate
normal distribution with mean vector m, common variance σ2

0 and correlation ρ0. It can be proven
that under this specification corr(Wi, Vj) = 0, so that a priori W and V are marginally uncorrelated.
The prior specification is purposely simple, especially regarding the base measure and the concen-
tration parameter, in order to single out the effect of the borrowing between the two groups as much
as possible.

For the first two cases and the n-FuRBI, the marginal distribution is given by a Dirichlet process with
θ = 1 and P0(·) = N(· | 0, 1); instead for the hierarchical process the concentration parameters are
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fixed in order to match the expected number of different clusters with the other methods, for a fair
comparison. As highlighted in Example 5, n-FuRBI with equal jumps lead to the most general setting
in terms of achievable correlation between samples; moreover, choosing the marginal processes to
derive from a Gamma process, we can achieve any value in the interval (−1, 1), tuning appropriately
the concentration parameter θ.

Figure 1: Left: mean posterior densities for the case with opposite true means. Right: mean integrated error
(computed on a grid and as the median over 50 different samples) for the four estimates, varying the true mean
of V .

The left panel of Figure 1 shows the performances of the four methods, after the application of the
blocked Gibbs sampler provided in the supporting material: the mean posterior density (computed
pointwise) is depicted. The exchangeable approach behaves very badly, as expected, because the two
samples clearly have a different distribution. The independent choice leads to a reasonable estimate,
even if it still overestimates the probability mass around the prior mean (because of the small sample
size of the first sample). The hierarchical estimate is quite good, but our proposal, instead, fits almost
perfectly the target density and seems to exploit the opposite behaviour of the two phenomena: this
is clearly highlighted by the posterior distribution of ρ0, whose approximated mean is close to −0.9.

One may wonder whether these superior performances follow from the precise specification above,
with opposite true means. Therefore, we have repeated the experiment by keeping the same gener-
ating mechanism for W , but with the true mean of V ranging in the set {−16,−14, . . . , 14, 16}: the
mean integrated absolute error (computed on a grid and as the median over 50 different samples) is
depicted in the right panel of Figure 1. It is apparent that the FuRBI approach almost always yields
the smallest error, regardless of the true value. Its performance is close to the exchangeable case
only when the two true means are equal, that is when exchangeability actually holds; analogously,
the n-FuRBI priors yield the highest error when the mean of V corresponds to the prior mean, i.e.,
when the other group provides less additional information. The hierarchical process captures the
right dependence when the two means coincide, but can be misled when they are close; finally,
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Figure 2: Posterior median of the cor-
relation (obtained through 100 simu-
lation studies) between the three un-
known means. Black with triangular
shapes: correlation between the first
and second components. Red with
square shapes: correlation between the
first and third components. Green with
circular shapes: correlation between
the second and third components.

Mean of V Exch. Ind. FuRBI Hier.
-16 1.769 0.995 0.163 0.604
-10 1.769 0.995 0.189 0.592
0 1.737 0.995 0.489 0.587

10 0.205 0.995 0.338 0.397
16 1.666 0.995 0.435 0.592

Table 1: Mean integrated absolute error associated to the four methods for some values of the mean of V . The
values in bold are the smallest ones for each row.

when the second sample is very far from the first one it performs better than the independent model,
probably thanks to the different inner clustering structure. The results are also summarized in Ta-
ble 1. Thus, n-FuRBI seem to be always capable of combining heterogeneous information in the
right way; in particular, at least in this example, they recognize the most useful type of borrowing
of information. In Section S5.1 similar experiments are conducted, using different data generating
distributions: they show that the conclusions hold even when the data display significantly different
features, as multimodality or heavy tails.

Finally, we consider a similar application with three groups, in order to see whether n-FuRBI are
able to discern more complex types of dependence. We assume to observe W1,i

i.i.d.∼ N(· | 10, 1),
W2,i

i.i.d.∼ N(· | −10, 1), and W3,i
i.i.d.∼ N(· | x, 1), where i = 1, . . . , 20 and x ∈ {−10,−9, . . . , 10}.

Then, for each value of x we apply the same n-FuRBI with the same weights described above, but
where the atoms are distributed according to

G0 (·) = N3

·
∣∣∣∣0, 1,

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1


 ,

where N3(· | µ0, σ
2,Ψ) denotes a multivariate normal distribution with mean µ0, all the variances

equal to σ2 and correlation matrix Ψ and ρ12, ρ13, ρ23
i.i.d.∼ Unif([−1, 1]). The posterior medians of

ρ12, ρ13 and ρ23 are depicted in Figure 2, for any value of x. The results are in line with our intuition:
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Figure 3: Empirical correlation between average stock return and average commodity return computed on a
moving window of 12 months using data from March 2011 to January 2021.

the correlation between the first and second component is always close to −1 (indeed they have
opposite behaviour relative to the prior), while ρ13 and ρ23 vary linearly with x, being positive when
the means have the same sign.

6.3 Predicting stocks and bonds returns

Findings from the previous section and Section S5.1 suggest that n-FuRBI may be used to enhance
density estimates and prediction in multi-sample data. Here, the performance is showcased on a
real dataset of stock and bond returns. We collected monthly returns of January 2021 for a sample
of 49 stocks portfolios from the Kenneth R. French’s Data Library (data available at http://mba.
tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html) and for
a sample of 55 commodities from the Primary Commodity Prices Database of the International Mon-
etary Fund (data available at https://www.imf.org/en/Research/commodity-prices).

We employ a Bayesian mixture model and assume that stock and bonds returns, denoted by Wi and
Vj , respectively, are sampled from mixtures of normals where the mixing distributions act on mean
and variance of the kernel, i.e.,

Wi | p̃1
iid∼
∫
N(· | x, σ2

w) p̃1(dx, dσ
2
w) Vj | p̃2

iid∼
∫
N(· | y, σ2

v) p̃2(dy, dσ
2
v).

Stocks and commodities exhibit correlation that largely varies over time ranging from positive to
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negative values (see, for instance, Bhardwaj and Dunsby, 2013, and Figure 3). As a consequence,
commodities returns contain useful information to make inference over the distribution of stocks
portfolios, and viceversa. Thus, borrowing of information represents a natural strategy to improve
inference. However, returns may differ even largely in value between the two sets of financial in-
struments, especially in periods of negative correlation. For instance, in our dataset, 53% of the
observed stocks returns are negative, while only 16% of the bonds returns have negative sign. As
such, classical nonparametric borrowing, consisting in sharing of mixture components, is not appro-
priate and, as shown in the following, possibly harmful. We instead make use of n-FuRBI models as
prior distribution, i.e.,

(p̃1, p̃2) | θ, z, G0 ∼ n-FuRBI(θ, ρ,G0)

θ ∼ Gamma(α, β)

The base measure G0 is chosen so that marginal distributions are given by normalized CRMs with
conjugate Normal-InverseGamma base measure, i.e.

G0(dx, dy, dσ
2
w, dσ

2
v | ρ0) =N2(dx, dy | m,Σ(λ1, λ2, σ2

w, σ
2
vρ0))

× InvGamma(dσ2
w | α1, β1)× InvGamma(dσ2

v | α2, β2)

with

m = (m1,m2)
′ and Σ =

 σ2
w

λ1
ρ0

σw

λ
1/2
1

σv

λ
1/2
2

ρ0
σw

λ
1/2
1

σv

λ
1/2
2

σ2
v

λ2


and we use the following joint underlying Lévy intensity v(ds1, ds2, dx1, dx2) = {z [ρ(ds1)δ0(ds2)+
ρ(ds2)δ0(ds1)]+ (1− z) ρ(ds1)δs1(ds2)} θ G0(dx1, dx2), with z ∼ Unif([0, 1]). We term the result-
ing n-FuRBI additive n-FuRBI, since the series representation of the corresponding FuRBI CRMs
is

µ̃1(·)
a.s.
=
∑
k≥1

Wkδθ0,k +
∑
k≥1

Jkδθ1,k µ̃2(·)
a.s.
=
∑
k≥1

Wkδϕ0,k +
∑
k≥1

Vkδϕ2,k ,

where (θ0,k, ϕ0,k)
i.i.d∼ G0, θ1,k

i.i.d∼ P0 and ϕ2,k
i.i.d∼ P0. When G0 is degenerate on the main diagonal

(i.e. ρ0 = 1), one retrieves GM-dependent completely random measures (Lijoi et al., 2014a,b; Lijoi
and Nipoti, 2014). In order to obtain two Dirichlet processes marginally we set ρ(s) = s−1e−s, so
that β = 1/(1 + θ) and γ = (1− z) 3F2(θ − θ z + 2, 1, 1; θ + 2, θ + 2; 1)θ/(1 + θ)2, where 3F2 is
the generalized hypergeometric function.

As for the hyperparameters of the model, we set the a priori expectations m1 and m2 in the two
groups equal to the empirical averages of the two groups in December 2020, i.e., the month preced-
ing the data collection, leading to m1 = 5.8591 and m2 = 3.9731. In the following, we say that a
financial instrument is outperforming if its observed return is higher than its a priori expected value.
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(a) FuRBI with ρ0 ∈ [−1, 1] (b) FuRBI with ρ0 = −0.95 (c) FuRBI with ρ0 = 0.95

(d) Exchangeable model (e) GM-dependent model (f) Independent model

Figure 4: Posterior density estimates for stocks returns.

In order to assign ρ0, we use the results of Propositions 4 and 5. The elicited ρ0 should reflect our
prior opinion about the correlation, which means that it should induce a learning mechanism agree-
ing with the following principle: under positive/negative correlation, conditioning on the event of
outperforming commodities, the prior probability of outperforming/underperforming stocks should
increase. Prior opinion about the correlation can be formulated working with financial experts and,
thanks to n-FuRBI, incorporated through an informative prior on the parameter ρ0. Here, we con-
sider three scenarios: in the first and second, we derive inferential results under a prior opinion of
negative and positive correlation, respectively, while in the third scenario we assume that no infor-
mation on the correlation is available. The three scenarios are obtained with, respectively, ρ0 = 0.95,
ρ0 = −0.95, and using a uniform prior on ρ0. After standardizing the data, we set the remaining
hyperparameters in a weakly informative way, i.e. λ1 = λ2 = 1, α1 = α2 = 2, and β1 = β2 = 4.
Sensitivity analysis, carried out in Section S6.2, shows that results are robust with respect to different
choices for λj , αj and βj for j = 1, 2. We perform 50, 000 iterations of the marginal algorithm (Sec-
tion S4.1) and discard the first 10, 000 as burn–in. Section S8. contains results about convergence
diagnostic, mixing performance, and computational times of the algorithm.

Finally, we compare our approach with three alternative models: the independent model and the ex-
changeable model, described in the previous section, and the GM-dependent model from Lijoi et al.
(2014b), which performs classical borrowing based on ties and shares the same additive structure of
additive n-FuRBI.

Figure S5 displays the posterior density estimates for stocks returns. The analogous figure for bonds
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ALCPO MLCPO
FuRBI ρ0 ∈ [−1, 1] -1.2347 -0.9627
FuRBI ρ0 = −0.95 -1.2925 -1.0115
FuRBI ρ0 = 0.95 -1.2896 -1.0149
Exch -1.5024 -1.1521
GM-dep -1.4864 -1.1557
Ind -1.3495 -1.1017

Table 2: ALCPO and MLCPO under the three models. Best performance is highlighted in bold.

returns can be found in Section S6.1. Models employing additive n-FURBI produce density esti-
mates that better resemble the empirical distribution. The best performance is attained by placing a
(non-informative) prior over the correlation ρ0, which leads to a posterior skewed towards negative
values but still quite dispersed (see Figure S7) reflecting the direction and intensity of the borrow-
ing of information. The FuRBI models with fixed ρ0 perform worse compared to full-borrowing;
nonetheless, thanks to their flexibility, they still produce better results than other competitors. The
GM-dependent and the exchangeable models yield the worst density estimates in terms of resem-
blance of the histogram, as expected. Indeed, the type of borrowing they perform differ from the
one allowed by FuRBIs (even when ρ0 = 0.95), as it is based on ties, which are not appropriate
for the specific problem at hand. Lastly, we note that the independent model appears to provide a
reasonable density estimation, but presents significantly higher uncertainty.

While Figure S5 provides insight on the model performance, an important caveat is in order: a too
close resemblance of the empirical distribution may indicate overfitting.

To evaluate the predictive performance, we resort to the conditional predictive ordinates (CPOs)
statistics (see, e.g. Gelfand et al., 1992; Barrios et al., 2013). Essentially, for each value i, we train
the model without the i-th observation and compute the predictive density at the observed point. For
the first sample it reads CPOw

i = f̃(wi | w−i, v), for i = 1, . . . , n and analogously for the second
sample we have CPOv

j = f̃(vj | w, v−j), for j = 1, . . . ,m, where w and v denote the vectors of
observed returns for, respectively, stocks and commodities.

Table 2 displays the average logarithmic CPO (ALCPO) and the median logarithmic CPO (MLCPO)
in the overall sample. Higher values correspond to a better performance, and the n-FuRBI exhibits
the best performance.
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6.4 Clustering of multivariate data with missing entries

We now show how to leverage on our methodology to perform borrowing of information and clus-
tering with multivariate data affected by missing entries. The n-FuRBI priors are very well suited
for this problem: indeed, incomplete observations can be interpreted as projections of latent com-
plete observations and, in particular, hyper-ties between incomplete observations can be thought of
as actual ties between complete observations.

We consider a P -variate (P > 1) dataset with missing entries and divide the dataset into distinct
samples based on the missing entries: denote by (W

(j1,...,jl)
i , i = 1, . . . , n(j1,...,jl)) the sample where

l outcomes with labels (j1, . . . , jl) are missing. The dimension of the vector W (j1,...,jl)
i is therefore

Pj1,...,jl = P − l. Denote by q̃j1,...,jl the corresponding unknown distribution, i.e.,

W
(x)
i | q̃x

iid∼ q̃x for i = 1, . . . , nx and x ∈ I,

where I is the index set of all the possible combinations of missing variables identifying differ-
ent samples, which are at most 2P − 1. Independent analyses for each sample should clearly be
avoided and classical nonparametric borrowing cannot even be specified because the support spaces
of different samples differ one from the other.

To perform clustering, we assume that each q̃x is a mixture of multivariate normal kernels with
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Figure 5: Simulated data: left panel shows true clusters locations, right panel shows complete simulated data
for n = 1000 before applying the missingness mechanisms.
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simul missing % of missing n-FuRBI n-FuRBI n-FuRBI mice + mice +
number mechanism entries z = 0.2 z = 0.5 z = 0.8 k-means DPM

n.1 MCAR 16.1% 0.7883 0.7882 0.7881 0.7408 0.7734
n.2 MNAR 16.7% 0.7703 0.7704 0.7706 0.6323 0.7617
n.3 MCAR 35.9% 0.7292 0.7285 0.7283 0.6786 0.7165
n.4 MNAR 34% 0.7304 0.7301 0.7432 0.6391 0.7328

Table 3: Rand indexes for 5 competing methods: 3 n-FuRBI models with varying parameter z, mice+k-means
and mice+DPM. For n-FuRBI and mice+DPM the posterior expected value is computed averaging over the
Rand indexes of all clustering configurations visited by the MCMC chain after burn-in.

simul missing % of missing n-FuRBI n-FuRBI n-FuRBI mice + mice +
number mechanism entries z = 0.2 z = 0.5 z = 0.8 k-means DPM

n.1 MCAR 16.1% 4.24 4.19 4.22 3 5.48
n.2 MNAR 16.7% 4.59 3.29 3.37 2 5.36
n.3 MCAR 35.9% 4.38 4.18 4.20 3 7.01
n.4 MNAR 34.0% 4.28 4.17 4.59 2 5.85

Table 4: Estimated number of clusters for 5 competing methods. The posterior mean is used for n-FuRBI and
mice+DPM, while the number of clusters is selected by maximizing the average silhouette for mice+k-means.
The true number of clusters is equal to 4.

diagonal covariance matrix and mixing measure p̃x on locations, i.e.

W
(x)
i | p̃x, σ2 iid∼

∫
NPx(· | µx, σ

2
x) p̃x(dµx),

where σ2 = (σ2
1, . . . , σ

2
P ), σ

2
x is the restriction of σ2 to all the elements besides x and NK(· | µ, τ 2)

denotes the K-variate normal distribution with mean vector µ and diagonal covariance matrix given
by τ 2. Independence of the kernel (implied by the diagonal covariance matrix) is a common assump-
tion in clustering models for multivariate responses (see, for instance, Gao et al., 2020; Franzolini
et al., 2023): in this way we are forcing the clustering structure to encode all the dependence across
responses. The p̃x are distributed as

(p̃x, x ∈ I) ∼ additive n-FuRBI,

described in Section 6.3. The atoms of (p̃x, x ∈ I) are costrained so that an hyper-tie can be inter-
preted as an actual tie between complete observations: moreover the choice of dependent weights
allows to recover group-specific features, if the missingness mechanism is informative. Section S7.1
provides a discussion of this and contains the details about the choice of the hyperparameters.

First, we conduct a simulation study where data for n = 1, 000 items, P = 3 responses, and K = 4

clusters are simulated from a mixture of Gaussian distributions. Figure 5 shows the locations of the
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true clusters and the complete simulated data before deleting entries. Then, different missingness
mechanisms are applied to determine the entries to be treated as missing. Missing completely at ran-
dom (MCAR) scenarios are obtained by sampling missing entries uniformly, while, in missing non
at random (MNAR) scenarios the probability of being missing depends on the true cluster allocation.
Different combinations of missing variables define different samples: the number of samples ranges
from 3 to 6 among simulation scenarios. The detailed distributions of missing values are provided
in Section S7.2. Different values of the hyperparameter z of the Lévy intensity are considered. Our
results are compared with those obtained with two alternative approaches, called “mice + k-means”
and “mice + DPM”, which follow a two-steps procedure: first one imputes missing data by chained
equations as implemented in the R package mice (van Buuren and Groothuis-Oudshoorn, 2011),
then, the clustering structure is estimated with, respectively, k-means and a Dirichlet process mix-
ture. Note that the number of clusters for k-means is chosen to maximize the average silhouette.
For each run of the n-FuRBI model, we perform 25, 000 iterations of the MCMC chain and discard
the first half as burn-in. Section S8. contains results about convergence diagnostics, mixing perfor-
mance, and computational times of the algorithm. Tables 3 and 5 summarize the performance of
the models. The n-FuRBI priors outperform the alternatives in all scenarios considered, in term of
estimating both the number of clusters and the clustering configuration, measured by Rand indexes
between the estimated configuration and the true clustering structure. Moreover, the posterior distri-
bution of n-FuRBI models reflects uncertainty both about the estimated clustering configuration and
about the imputation mechanism, which is instead ignored by two-step procedures.

Finally, we apply the model also on the brandsma dataset (Snijders and Bosker (2012)), which
refers to grade 8 students (age about 11 years) in elementary schools in the Netherlands (see,
Brandsma and Knuver, 1989). The goal is to cluster n = 4, 106 pupils, based on their IQ ver-
bal score (IQV), IQ performance score (IQP), language score (LRP), and arithmetic score (APR).
The number of subjects presenting missing entries is 339 out of 4, 106 (i.e., 8.26%). As before,
different combinations of missing variables define different samples: the number of samples is 7
in the brandsma dataset. In this real data analysis, the final clustering configuration provides a
lower-dimensional description of the data rather than an estimate of ideal true clusters. Data are
standardized before running the model, so that the sample means and variances are equal to 0 and 1.
Figure 6 shows the estimated clustering configuration obtained minimizing the variation of informa-
tion loss with respect to the posterior distribution. The model identifies three clusters, which show
as major tendency that groups of students performing above/below average for one of the four scores
tends to perform above/below average also for the other scores. In particular, a first cluster includes
53% of the subjects, which have lower performances: indeed cluster averages of the standardized
scores are IQV= −0.371, IQP= −0.398, LRP= −0.387, and APR= −0.435. Instead, the second
cluster, including 44% of the subjects, retains the best students: the cluster averages of the standard-
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Figure 6: Scatter plots of the four scores (after standardization) for the brandsma dataset. Coordinates
of missing data are set equal to their respective posterior median. Different colors and symbols denote the
three estimated clusters obtained minimizing the variation of information loss with respect to the posterior
distribution.

ized scores are IQV= 0.609, IQP= 0.595, LRP= 0.629, and APR= 0.642. Finally, the students
with the worst scores are allocated to a third cluster whose averages are IQV= −2.01, IQP= −1.43,
LRP= −1.90, and APR= −1.34.

7 Conclusion

Hyper-ties play a crucial role in driving the Bayesian learning mechanism and the borrowing of
information across samples. However existing nonparametric priors either do not allow an explicit
evaluation of the probability of a hyper-tie or, when they do, often only non-negative correlation is
induced. On the contrary, n-FuRBIs allow for analytical tractability and may induce either positive
or negative correlation between the random probabilities as well as across samples resulting in a
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novel and flexible idea of borrowing of strength. They are immediately applicable to model multi-
sample data through mixture models, as shown in Section 6.3. Morever, n-FuRBIs also allow for
a variety of interesting extensions, since they can be seen as an effective building block to model
non-trivial dependencies in more complex data analyses. Future work will further explore these
applications.
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Appendix

S1 Proofs

S1.1 Proofs of Section 1

Proof of Proposition 1. Consider two partially exchangeable sequences X and Y whose elements take
value in R. By de Finetti’s representation theorem, there exist two random probability measures p̃1 and
p̃2 such that

(Xi, Yj) | p̃1, p̃2
iid∼ p̃1 × p̃2.

Note that cov(Xi, Yj) = E{cov(Xi, Yj | p̃1, p̃2)} + cov{E(Xi | p̃1),E(Yj | p̃2)}, where the first term
equals 0, so that

cov(Xi, Yj) = cov
(∫

x p̃1(dx),

∫
x p̃2(dx)

)
,

and analogously

cov(Xi, Xi′) = cov
(∫

x p̃1(dx),

∫
x p̃1(dx)

)
= var

(∫
x p̃1(dx)

)
.

Lastly assume that p̃1
d
= p̃2, where d

= indicates equality in distribution. By the Cauchy-Schwartz inequal-
ity

−var
(∫

x p̃1(dx)

)
≤ cov

(∫
x p̃1(dx),

∫
x p̃2(dx)

)
≤ var

(∫
x p̃1(dx)

)
,

which, in terms of the observables, can be equivalently rewritten as

−cov(Xi, Xi′) ≤ cov(Xi, Yj) ≤ cov(Xi, Xi′).

Proof of Proposition 2. By definition of covariance we have

cov(Xi, Yj) = cov

(∑
j≥1

Jjθj,
∑
k≥1

Wkϕk

)
=
∑
j≥1

∑
k≥1

cov (Jjθj,Wkϕk) .

For arbitrary j and k we have

E (JjWkθjϕk) = E(JjWk)E(θjϕk) ≥ E(JjWk)E(θj)E(ϕk),
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since cov(θj, ϕk) ≥ 0. Denoting c = E(θj) = E(ϕk), we get

cov (Jjθj,Wkϕk) ≥ c2cov(Jj,Wk).

Finally, since p̃1 and p̃2 are random probability measures it holds

cov(Xi, Yj) ≥ c2cov

(∑
j≥1

Jj,
∑
k≥1

Wk

)
= 0,

which completes the proof.

S1.2 Proofs of Section 2

Proof of Proposition 3. Recall that

β :=
∑
k≥1

E(J̄2
k ) =

∑
k≥1

E(W̄ 2
k ) γ :=

∑
k≥1

E(J̄kW̄k).

Since
E(J̄kW̄k) ≤

√
E(J̄2

k )E(W̄
2
k ) = E(J̄2

k )

it follows that γ ≤ β. Moreover, the equality holds if and only if J̄k
a.s
= ak + W̄k, for any k, with ak ∈ R.

However the equality of marginal distributions implies ak = 0.

of Proposition 4. Recall that

cov(Xi, Yj) = cov

(∑
k≥1

J̄kθk,
∑
h≥1

W̄hϕh

)
=
∑
k≥1

∑
h≥1

cov
(
J̄kθk, W̄hϕh

)
.

and for arbitrary k and h, we have

E(J̄kW̄hθkϕh) =E(J̄kW̄h)E(θkϕh)

=E(J̄kW̄h)
[
E(θkϕk)1{k=h} + E(θk)E(ϕh)1{k ̸=h}

]
,

while
E(J̄kθk) = E(J̄k)E(θk).
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Thus, setting c = E(θk) = E(ϕh), we have

cov(Xi, Yj) =
∑
k≥1

E(J̄kW̄h)E(θkϕk)− c2
∑
k≥1

E(J̄k)E(W̄k) + +c2
∑
k≥1

∑
h̸=k

cov
(
J̄k, W̄h

)
where ∑

k≥1

∑
h̸=k

cov
(
J̄k, W̄h

)
=cov

(∑
k≥1

J̄k,
∑
h≥1

W̄h

)
−
∑
k≥1

cov
(
J̄kW̄k

)
=−

∑
k≥1

E(J̄kW̄h) +
∑
k≥1

E(J̄k)E(W̄k)

Putting everything together we obtain

cov(Xi, Yj) =
∑
k≥1

E[J̄kW̄k]cov(θk, ϕk).

Moreover
var(Xi) = var(Yj) =

∫ ∫
xG0(dx, dy) = var(θk)

Thus, corr(Xi, Yj) = γ ρ0 proving the second statement in Proposition 4. Finally, applying the same
procedure marginally, we get

cov(Xi, X
′
i) =

∑
k≥1

E(J̄2
k ) var(θk)

which proves the first statement in Proposition 4.

Proof of Corollary 1. The result immediately follows from Propositions 3 and 4.

Proof of Proposition 5. Let β be the probability of a tie. By definition we get

P (X1 ∈ A,X2 ∈ B) =P(X1 ∈ A,X2 ∈ B | X1 = X2)β+

+ P(X1 ∈ A,X2 ∈ B | X1 ̸= X2)(1− β),

which, by independence of the atoms, equals

P (X1 ∈ A,X2 ∈ B) =P(X1 ∈ A ∈ B)β+

+ P(X1 ∈ A)P(X2 ∈ B)(1− β).

Analogously, we have

P (X1 ∈ A, Y1 ∈ B) =P(X1 ∈ A, Y1 ∈ B | X1 and Y1 form an hyper-tie )γ+

+ P(X1 ∈ A, Y1 ∈ B | X1 and Y1 do not form an hyper-tie )(1− γ),
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where γ is the probability of a hyper-tie, which equals

P (X1 ∈ A, Y1 ∈ B) =P((X1, Y1) ∈ A×B | X1 and Y1 form an hyper-tie )γ+

+ P(X1 ∈ A)P(Y1 ∈ B)(1− γ).

S1.3 Proofs of Section 4

Proof of Proposition 6. The first point follows from the Lévy-Khintchine representation of the Laplace
functional of a CRV. As for (ii), one has

E (exp{−λ1µ̃1(A)− λ2µ̃2(B)}) =E (exp{−λ1µ1(A× X)− λ2µ2(X×B)})

=E
(
exp{−λ1µ1(A×Bc)− λ1µ1(A×B)+

− λ2µ2(A
c ×B)− λ2µ2(A×B)}

)
.

By independence of evaluations on disjoint sets, µ1(C) and µ2(D) are independent if C ∩D = ∅, so that
the right hand side reads

E
(
exp{−λ1µ̃1(A)− λ2µ̃2(B)}

)
=E (exp{−λ1µ1(A×Bc)})E (exp{−λ2µ2(A

c ×B)})×

× E (exp{−λ1µ1(A×B)− λ2µ2(A×B)}) .

The result follows upon upon using the expressions of the marginal and joint Laplace exponents of µ1

and µ2. Since from the joint Lévy intensity it is possible to recover the joint Laplace exponent, (iii) is
also proved.

In order to prove Proposition 7, we show that

P (X ∈ A, Y ∈ B) = P0(A)P0(B) (1− δ) +G0(A×B)δ,

where
δ := −

∫
R2
+

{
∂2

∂u1∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2.

is the probability of a pseudo-tie. We start with three Lemmas.

Lemma 1. If ψb is the joint Laplace exponent of a CRV, then∫
R2
+

{
∂

∂u1
ψb(u1, u2)

}{
∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2 = 1− δ.
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Proof of Lemma S2.1. Integrating by parts∫ ∞

0

{
∂

∂u1
ψb(u1, u2)

}{
∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1

= −
∫ ∞

0

{
∂

∂u2
ψb(u1, u2)

}{
∂

∂u1
e−ψb(u1,u2)

}
du1

=

[[
−
{

∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2)

]∞
0

+

∫ ∞

0

{
∂2

∂u1∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1

]
=

[{
∂

∂u2
ψb(0, u2)

}
e−ψb(0,u2) +

∫ ∞

0

{
∂2

∂u1∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1

]
.

Note that
∫∞
0

{
d

du2
ψb(0, u2)

}
e−ψb(0,u2) du2 = 1, by the fundamental theorem of calculus. Thus the result

follows immediately.

Lemma 2. We have∫
R2
+

E
(
e−u1µ1(X×X)−u2µ2(X×X)µ1(C)µ2(C)

)
du1du2 = G0(C)

2 (1− δ) +G0(C)δ.

Proof of Lemma S2.2. By independence of evaluations on disjoint sets it follows that∫
R2
+

E
(
e−u1µ1(X×X)−u2µ2(X×X)µ1(C)µ2(C)

)
du1du2

=

∫
R2
+

E
(
e−u1µ1(C)−u2µ2(C)−u1µ1(Cc)−u2µ2(Cc)µ1(C)µ2(C)

)
du1du2

=

∫
R2
+

E
(
e−u1µ1(C)−u2µ2(C)µ1(C)µ2(C)

}
E
(
e−u1µ1(C

c)−u2µ2(Cc)
)
du1du2

=

∫
R2
+

E
(

∂

∂u1

∂

∂u2
e−u1µ1(C)−u2µ2(C)

)
E
(
e−u1µ1(C

c)−u2µ2(Cc)
)
du1du2

=

∫
R2
+

∂

∂u1

∂

∂u2

[
E
(
e−u1µ1(C)−u2µ2(C)

)]
E
(
e−u1µ1(C

c)−u2µ2(Cc)
)
du1du2

=

∫
R2
+

∂

∂u1

∂

∂u2

{
e−G0(C)ψb(u1,u2)

}
e−G0(Cc)ψb(u1,u2) du1du2

=

∫
R2
+

∂

∂u1

{
−G0(C)

∂

∂u2
ψb(u1, u2)e

−G0(C)ψb(u1,u2)

}
e−G0(Cc)ψb(u1,u2) du1du2.
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Performing the derivative with respect to u1, the latter expression can be written as follows

=

∫
R2
+

{
G0(C)

2 ∂

∂u1
ψb(u1, u2)

∂

∂u2
ψb(u1, u2)

}
e−G0(C)ψb(u1,u2)e−G0(Cc)ψb(u1,u2) du1du2+

+

∫
R2
+

{
−G0(C)

∂

∂u1∂u2
ψb(u1, u2)

}
e−G0(C)ψb(u1,u2)e−G0(Cc)ψb(u1,u2) du1du2

=

∫
R2
+

{
G0(C)

2 ∂

∂u1
ψb(u1, u2)

∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2+

+

∫
R2
+

{
−G0(C)

∂

∂u1∂u2
ψb(u1, u2)

}
eψb(u1,u2) du1du2

By Lemma 1 we then obtain∫
R2
+

E
(
e−u1µ1(X×X)−u2µ2(X×X)µ1(C)µ2(C)

)
du1du2 = G0(C)

2 (1− δ) +G0(C)δ,

as desired.

Lemma 3. Let C,D be such that C ∩D = ∅. Then∫
R2
+

E
(
e−u1µ1(X×X)−u2µ2(X×X)µ1(C)µ2(D)

)
du1du2 = G0(C)G0(D) (1− δ)

Proof of Lemma S3. Let Y = (C ∪D)c. Since C and D are disjoint, by independence of evaluations on
disjoint sets it holds∫

R2
+

E
(
e−u1µ1(X×X)−u2µ2(X×X)µ1(C)µ2(D)

)
du1du2

=

∫
R2
+

E
(
e−u1µ1(C∪D)−u2µ2(C∪D)µ1(C)µ2(D)

}
E
{
e−u1µ1(Y )−u2µ2(Y )

)
du1du2

=

∫
R2
+

E
(
e−u1µ1(C)−u2µ2(C)µ1(C)

)
E
(
e−u1µ1(D)−u2µ2(D)µ2(D)

)
×

× E
(
e−u1µ1(Y )−u2µ2(Y )

)
du1du2

=

∫
R2
+

∂

∂u1

{
e−G0(C)ψb(u1,u2)

} ∂

∂u2

{
e−G0(D)ψb(u1,u2)

}
e−G0(Y )ψb(u1,u2) du1du2

= G0(C)G0(D)

∫
R2
+

{
∂

∂u1
ψb(u1, u2)

∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2

The result follows by applying Lemma 1.
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Proof of Proposition 7. We have

P (X ∈ A, Y ∈ B) = E
(
µ̃1(A)

µ̃1(X)
µ̃2(B)

µ̃2(X)

)
= E

(
µ1(A× X)
µ1(X× X)

µ2(X×B)

µ2(X× X)

)
=

=

∫
R2
+

E
(
e−u1µ1(X×X)−u2µ2(X×X)µ1(A× X)µ2(X×B)

)
du1du2 =

=

∫
R2
+

E
(
e−u1µ1(X×X)−u2µ2(X×X){µ1(A×B)µ2(A×B) + µ1(A×B)µ2(A

c ×B)+

+ µ1(A×Bc)µ2(A×B) + µ1(A×Bc)µ2(A
c ×B)

})
du1du2

We compute each integral separately applying Lemmas 2 and 3 and obtain

P (X ∈ A, Y ∈ B) = G0(A× X)G0(X×B) (1− δ) +G0(A×B)δ

= P0(A)P0(B) (1− δ) +G0(A×B)δ,
(7)

as desired. Then the probability of a tie in the product space is given exactly by δ, denoted γ in the
manuscript. The probability of a tie is given by the particular case ψb(u1, u2) = ψ(u1 + u2), since

−
∫
R2
+

{
∂2

∂u1∂u2
ψb(u1 + u2)

}
e−ψb(u1+u2) du1du2 = −

∫ ∞

0

∫ u

0

dv

{
∂2

∂u2
ψb(u)

}
e−ψb(u) du,

with the change of variables u = u1 + u2 and v = u1.

Proof of Proposition 8. Since

E (p̃1(A)p̃2(B)) = P (X ∈ A, Y ∈ B) ,

by (7) we have

E (p̃1(A)p̃2(B)) = G0(A× X)G0(X×B) (1− γ) +G0(A×B)γ.

Finally,

cov (p̃1(A), p̃2(B)) = G0(A× X)G0(X×B) (1− γ) +G0(A×B)γ −G0(A× X)G0(X×B)

= γ {G0(A×B)−G0(A× X)G0(X×B)} .

From this one also obtains

var (p̃1(A)) = cov (p̃1(A), p̃1(A)) = β
{
P0(A)− P0(A)

2
}

= βP0(A) {1− P0(A)} ,
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and the desired result follows.

S1.4 Proofs of Section 5

Proof of Theorem 1. We need to compute the conditional Laplace functional of (µ1, µ2), i.e.

E
(
e−

∫
X2 h1(x)µ1(dx)−

∫
X2 h2(x)µ2(dx) | (Xi)

n
i=1, (Yj)

m
j=1

)
,

with hi : X2 → R+ measurable functions. Define Aj = Aj,ϵ = {x ∈ X | d(x,X∗
i ) < ϵ} and Bj =

Bj,ϵ =
{
x ∈ X | d(x, Y ∗

j ) < ϵ
}

, with 1 ≤ i ≤ k and 1 ≤ j ≤ c, such that Ai ∩ Aj = ∅ and Bi ∩ Bj = ∅
for any i ̸= j. Moreover, denote

Ak+1 =
(
∪ki=1Ai

)c
, Bc+1 = (∪ci=1Bi)

c .

Thus our goal becomes to compute

E
(
e−

∫
X2 h1(x)µ1(dx)−

∫
X2 h2(x)µ2(dx) | (Xi)

n
i=1, (Yj)

m
j=1

)
= lim

ϵ→0
E
(
e−

∫
X2 h1(x)µ1(dx)−

∫
X2 h2(x)µ2(dx) | X∗

n ∈ ×k
j=1Aj, Y

∗
m ∈ ×c

j=1Bj

)
= lim

ϵ→0

E
(
e−

∫
X2 h1(x)µ1(dx)−

∫
X2 h2(x)µ2(dx)

∏k
j=1 p̃1(Aj)

nj
∏c

j=1 p̃2(Bj)
mj

)
E
(∏k

j=1 p̃1(Aj)
nj
∏c

j=1 p̃2(Bj)mj

) .

(8)

We start to evaluate

E (p̃1(A1)
n1 . . . p̃1(Ak)

nk p̃2(B1)
m1 p̃2(Bc)

mc) =

= E
(
µ̃1(A1)

n1 . . . µ̃1(Ak)
nk µ̃2(B1)

m1µ̃2(Bc)
mc

µ̃1(X)nµ̃2(X)m

)
= E

(
µ1(A1 × X)n1 . . . µ1(Ak × X)nkµ2(X×B1)

m1µ2(X×Bc)
mc

µ1(X× X)nµ2(X× X)m

)
= I.

By Netwon’s binomial

µ1(Ah × X) =
∑

ih1+...i
h
c+1=nh

(
nh

ih1 , . . . , i
h
c+1

) c+1∏
r=1

µ
ihr
1 (Ah ×Br), h = 1, . . . , k,

µ2(X×Br) =
∑

jr1+...j
r
k+1=mr

(
mr

jr1 , . . . , j
r
k+1

) k+1∏
h=1

µ
jrh
2 (Ah ×Br), r = 1, . . . , c.
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For ease of notation denote∑
i,j

(
n

i

)(
m

j

)
=

∑
i11+...i

1
c+1=n1

(
n1

i11, . . . , i
1
c+1

)
· · ·

∑
ic+1
1 +...ik+1

c+1=nk+1

(
nk+1

ik+1
1 , . . . , ik+1

c+1

)
×

×
∑

j11+...j
1
k+1=m1

(
m1

j11 , . . . , j
1
k+1

)
· · ·

∑
jk+1
1 +...jk+1

k+1=mk+1

(
mk+1

jk+1
1 , . . . , jk+1

k+1

)
.

Thus
I =

∑
i,j

(
n

i

)(
m

j

)
Ii,j ,

with

Ii,j = E

(∏k
h=1

∏c
r=1 µ

ihr
1 (Ah ×Br)µ

jrh
2 (Ah ×Br)

µ1(X× X)n
×

×
∏k

h=1 µ
ihc+1

1 (Ah ×Bc+1)
∏c

r=1 µ
jrk+1

2 (Ak+1 ×Br)

µ2(X× X)m

)
Letting µ1 := µ1(X× X) and µ2 := µ2(X× X), we have

1

µ1(X× X)nµ2(X× X)m
=

1

Γ(n)Γ(m)

∫
R2
+

un−1
1 um−1

2 e−u1µ1−u2µ2 du,

with u = (u1, u2). Thus, by Fubini’s Theorem

Ii,j =

∫
R2
+

un−1
1 um−1

2

Γ(n)Γ(m)
E
(
e−u1µ1−u2µ2

{
k∏

h=1

c∏
r=1

µ
ihr
1 (Ah ×Br)µ

jrh
2 (Ah ×Br)

}
×

×
k∏

h=1

µ
ihc+1

1 (Ah ×Bc+1)
c∏

r=1

µ
jrk+1

2 (Ak+1 ×Br)

)
du =

=

∫
R2
+

un−1
1 um−1

2

Γ(n)Γ(m)
ρi,j(u) du.

By independence of evaluations on disjoint sets we have

ρi,j(u) = E

({
k∏

h=1

c∏
r=1

e−u1µ1(Ah×Br)−u2µ2(Ah×Br)µ
ihr
1 (Ah ×Br)µ

jrh
2 (Ah ×Br)

}
×

×

{
k∏

h=1

e−u1µ1(Ah×Bc+1)−u2µ2(Ah×Bc+1)µ
ihc+1

1 (Ah ×Bc+1)

}
×

×

{
c∏

r=1

e−u1µ1(Ak+1×Br)−u2µ2(Ak+1×Br)µ
jrk+1

2 (Ak+1 ×Br)

})
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This can be equivalently written as

k∏
h=1

c∏
r=1

E
(
e−u1µ1(Ah×Br)−u2µ2(Ah×Br)µ

ihr
1 (Ah ×Br)µ

jrh
2 (Ah ×Br)

)
×

×
k∏

h=1

E
(
e−u1µ1(Ah×Bc+1)−u2µ2(Ah×Bc+1)µ

ihc+1

1 (Ah ×Bc+1)
)
×

×
c∏

r=1

E
(
e−u1µ1(Ak+1×Br)−u2µ2(Ak+1×Br)µ

jrk+1

2 (Ak+1 ×Br)
)
.

Considering each element separately we have

E
(
e−u1µ1(Ah×Br)−u2µ2(Ah×Br)µi1(Ah ×Br)µ

j
2(Ah ×Br)

)
= E

(
(−1)i+j

∂i+j

∂ui1∂u
j
2

e−u1µ1(Ah×Br)−u2µ2(Ah×Br)

)
= (−1)i+j

∂i+j

∂ui1∂u
j
2

E
(
e−u1µ1(Ah×Br)−u2µ2(Ah×Br)

)
= (−1)i+j

∂i+j

∂ui1∂u
j
2

{
e
−

∫
Ah×Br

∫
R2+

(1−e−u1s1−u2s2 ) ρ(ds)G0(x)
}
.

Recall that we are interested in the limit as ϵ→ 0, so that

∂i+j

∂ui1∂u
j
2

{
e
−

∫
Ah×Br

∫
R2+

(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)
}

∼ e
−

∫
Ah×Br

∫
R2+

(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)×

× ∂i+j

∂ui1∂u
j
2

{∫
Ah×Br

∫
R2
+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}
,

(9)

where we say f ∼ g if limϵ→0 f(x)/g(x) = 1. By simple algebra we get

∂i+j

∂ui1∂u
j
2

{
e
−

∫
Ah×Br

∫
R2+

(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)
}
=

∂i+j−1

∂ui−1
1 ∂uj2

{
−
∫
Ah×Br

∫
R2
+

e−u1s1−u2s2×

× s1 ρ(ds)G0(dx)e
−

∫
Ah×Br

∫
R2+

(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)
}

=
∂i+j−2

∂ui−2
1 ∂uj2

{∫
Ah×Br

∫
R2
+

e−u1s1−u2s2s21 ρ(ds)G0(dx)e
−

∫
Ah×Br

∫
R2+

(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)

+

(∫
Ah×Br

∫
R2
+

e−u1s1−u2s2s1 ρ(ds)G0(dx)

)2

e
−

∫
Ah×Br

∫
R2+

(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)
}
,
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and

lim
ϵ→0

(∫
Ah×Br

∫
R2
+
e−u1s1−u2s2s1 ρ(ds)G0(dx)

)2∫
Ah×Br

∫
R2
+
e−u1s1−u2s2s21 ρ(ds)G0(dx)

= 0.

By applying this argument repeatedly we obtain (9). Thus, letting ρ(u) =
∑

i,j

(
n
i

)(
m
j

)
ρi,j(u), by aggre-

gating the terms we have

ρ(u) ∼
∑
i,j

(
n

i

)(
m

j

)
(−1)n+me−ψb(u)×

×
k∏

h=1

c∏
r=1

{
∂i

h
r+j

r
h

∂u
ihr
1 ∂u

jrh
2

∫
Ah×Br

∫
R2
+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}
×

×
k∏

h=1

{
∂i

h
c+1

∂u
ihc+1

1

∫
Ah×Bc+1

∫
R2
+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}
×

×
c∏

r=1

{
∂j

r
k+1

∂u
irk+1

2

∫
Ak+1×Br

∫
R2
+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}

=
∑
i,j

(
n

i

)(
m

j

)
(−1)n+mV (i, j).

The following three Lemmas characterize the set of indices (i, j) that are relevant once the limit is taken.

Lemma 4. Consider (i, j) such that 0 < ihr , i
h
l < nh, with r > l and 1 ≤ h ≤ k. Then ∃(ĩ, j̃) such that

limϵ→0 V (i, j)/V (ĩ, j̃) → 0.

Proof of Lemma S2.4. For ease of notation set ih = (ih1 , . . . , i
h
c+1). Then

• If r = c+ 1, set ĩh = (ih1 , . . . , i
h
l + ihc+1, . . . , 0).

• If jrh = 0, set ĩh = (ih1 , . . . , i
h
l + ihr , . . . , 0, . . . ).

• If jlh = 0, set ĩh = (ih1 , . . . , 0, . . . , i
h
r + ihl , . . . ).

• If jlh > 0 and jrh > 0, set j̃r = (jr1 , . . . , 0, . . . , j
r
k+1 + jrh) and ĩh = (ih1 , . . . , i

h
l + ihr , . . . , 0, . . . ).

For example in the last case we have

lim
ϵ→0

var(i, j)
var(ĩ, j̃)

= lim
ϵ→0

∫
Ah×Br

∫
R2
+
e−u1s1−u2s2s

ihr
1 s

jrh
2 ρ(ds)G0(dx)∫

Ac+1×Br

∫
R2
+
e−u1s1−u2s2s

jrh+j
r
c+1

2 ρ(ds)G0(dx)
= 0,

as desired.
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Thus, Lemma 4 guarantees that ih has exactly one element different from 0, that is equal to nh.

Lemma 5. Consider (i, j) such that ihr = nh and jrh = 0. Then there exists (̃i, j̃) such that

lim
ϵ→0

V (i, j)/V (̃i, j̃) → 0.

Proof of Lemma S5. Set (ĩ, j̃) equal to (i, j), apart from ĩhr = 0 and ĩhc+1 = nh.

Lemma 6. Consider (i, j) such that ihc+1 = nh and jrh > 0. Then there exists (̃i, j̃) such that

lim
ϵ→0

V (i, j)/V (̃i, j̃) → 0.

Proof of Lemma S2.6. Set (ĩ, j̃) equal to (i, j), apart from j̃rh = 0 and j̃rk+1 = mr.

The three lemmas imply that each relevant (i, j) corresponds to an admissible latent structure, i.e.

ρ(u) ∼
∑
p∈P

(−1)n+me−ψb(u)
∏

(i,j)∈∆p

{
∂ni+mj

∂uni
1 ∂u

mj

2

∫
Ai×Bj

∫
R2
+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}
×

×
∏

(i,j)∈∆1
p

{
∂ni

∂uni
1

∫
Ai×Bc+1

∫
R2
+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}
×

×
∏

(i,j)∈∆2
p

{
∂mj

∂u
mj

2

∫
Ak+1×Bj

∫
R2
+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}
.

Evaluating the derivatives we have

ρ(u) ∼
∑
p∈P

e−ψb(u)
∏

(i,j)∈∆p

{∫
Ai×Bj

∫
R2
+

e−u1s1−u2s2sni
1 s

mj

2 ρ(ds)G0(dx)

}
×

×
∏

(i,j)∈∆1
p

{∫
Ai×Bc+1

∫
R2
+

e−u1s1−u2s2sni
1 ρ(ds)G0(dx)

}
×

×
∏

(i,j)∈∆2
p

{∫
Ak+1×Bj

∫
R2
+

e−u1s1−u2s2s
mj

2 ρ(ds)G0(dx)

}
.
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Finally, we get

I ∼
∑
p∈P

∫
R2
+

un−1
1 um−1

2

Γ(n)Γ(m)
e−ψb(u)

∏
(i,j)∈∆p

{∫
Ai×Bj

∫
R2
+

e−u1s1−u2s2sni
1 s

mj

2 ρ(ds)G0(dx)

}
×

×
∏

(i,j)∈∆1
p

{∫
Ai×Bc+1

∫
R2
+

e−u1s1−u2s2sni
1 ρ(ds)G0(dx)

}
×

×
∏

(i,j)∈∆2
p

{∫
Ak+1×Bj

∫
R2
+

e−u1s1−u2s2s
mj

2 ρ(ds)G0(dx)

}
du.

Evaluating the numerator of (8) the same reasoning yields a formula asymptotic to

∑
p∈P

∫
R2
+

un−1
1 um−1

2

Γ(n)Γ(m)
e−ψh(u)

∏
(i,j)∈∆p

{∫
Ai×Bj

∫
R2
+

e−(h1(x)+u1)s1−(h2(x)+u2)s2sni
1 s

mj

2 ρ(ds)G0(dx)

}
∏

(i,j)∈∆1
p

{∫
Ai×Bc+1

∫
R2
+

e−(h1(x)+u1)s1−(h2(x)+u2)s2sni
1 ρ(ds)G0(dx)

}
∏

(i,j)∈∆2
p

{∫
Ak+1×Bj

∫
R2
+

e−(h1(x)+u1)s1−(h2(x)+u2)s2s
mj

2 ρ(ds)G0(dx)

}
du.

where ψh(u) =
∫
X2

∫
R2
+

(
1− e−(h1(x)+u1)s1−(h2(x)+u2)s2

)
ρ(ds)G0(dx). Note that

1− e−(h1(x)+u1)s1−(h2(x)+u2)s2 = e−u1s1−u2s2
[
eu1s1+u2s2 − 1 + 1− e−h1(x)s1−h2(x)s2

]
=
[
1− e−u1s1−u2s2

]
+
[
1− e−h1(x)s1−h2(x)s2

]
,

so that
e−ψh(u) = e−ψb(u)e

−
∫
X2

∫
R2+
[1−e−h1(x)s1−h2(x)s2 ]ρ(ds)G0(dx)

= e−ψb(u)E
[
e−

∫
X2 h1(x) µ̂1(dx)−

∫
X2 h2(x) µ̂2(dx)

]
.

Furthermore
G0(Ah ×Br) = ϵ

G0(Ah ×Br)

ϵ
∼ ϵgh,r, 1 ≤ i ≤ c, 1 ≤ j ≤ k,

and
G0(Ah × dx) ∼ ϵgh,c+1QX∗

h
(dx), G0(dx×Br) ∼ ϵgk+1,rPY ∗

r
(dx).
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Thus, evaluating the limit in (8) we get

E
[
e−

∫
X2 h1(x)µ1(dx)−

∫
X2 h2(x)µ2(dx) | (Xi)

n
i≥1, (Yj)

m
j≥1

]
=

×
∑
p∈P

∫
R2
+

E
[
e−

∫
X2 h1(x) µ̂1(dx)−

∫
X2 h2(x) µ̂2(dx)

]
×

×
∏

(i,j)∈∆p

∫
R2
+

e−h1(X
∗
i ,Y

∗
j )s1−h2(X∗

i ,Y
∗
j )s2

sni
1 s

mj

2 e−u1s1−u2s2ρ(ds)

τni,mj(u)

×

×
∏

(i,j)∈∆1
p

∫
X

∫
R2
+

e−h1(X
∗
i ,x2)s1−h2(X∗

i ,x2)s2
sni
1 e

−u1s1−u2s2ρ(ds)

τni,0(u)

QX∗
i
(dx2)×

×
∏

(i,j)∈∆2
p

∫
X

∫
R2
+

e−h1(x1,Y
∗
2 )s1−h2(x1,Y ∗

2 )s2
s
mj

2 e−u1s1−u2s2ρ(ds)

τ0,mj(u)

PY ∗
j
(dx1)×

×

( ∫
R2
+
un−1
1 um−1

2

∏
(i,j)∈p gi,jτni,mj

(u)e−ψb(u) du∑
q∈P

∫
R2
+
un−1
1 um−1

2

∏
(i,j)∈q gi,jτni,mj

(u)e−ψb(u)du

)
×

×
un−1
1 um−1

2

∏
(i,j)∈p τni,mj

(u)e−ψb(u) du∫
R2
+
un−1
1 um−1

2

∏
(i,j)∈p τni,mj

(u)e−ψb(u) du
,

as desired.

Proof of Corollary 2. We use the shorthand notation µ1(f) =
∫
X f(x)µ1(dx) for any measurable func-

tion f : X → R such that µ1(|f |) < ∞. Letting U be the set of latent variables of Theorem 1, i.e.
U = (p, U1, U2, Z

x, Zy) for any y1, . . . , yn ∈ (0, 1) and A1, . . . , An ∈ X 2 we get

P
[
p1(A1) ≤ y1, . . . , pn(An) ≤ yn | U, (Xi)

n
i=1, (Yj)

m
j=1

]
=P
[
µ1(1A1 − y1) ≤ 0, . . . , µn(1An − yn) ≤ 0 | U, (Xi)

n
i=1, (Yj)

m
j=1

]
.

The result follows since the finite dimensional distributions of p1 given U , (Xi)
n
i=1, and (Yj)

m
j=1 coincide

with the ones of the normalized posterior distribution of µ1, given U , (Xi)
n
i=1, and (Yj)

m
j=1.

Proof of Theorem 2. Set H = (p, U1, U2) with domain D. Then

P(Xn+1 ∈ dx | (Xi)
n
i=1, (Yj)

m
j=1) = E[p̃1(dx) | (Xi)

n
i=1, (Yj)

m
j=1]

=

∫
D

E[p̃1(dx) | H = h, (Xi)
n
i=1, (Yj)

m
j=1]F (dv),
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where F (·) is the posterior distribution of H , with h = (p, u1, u2). Recalling the notation in Corollary 2

we have

E[p̃1(dx) |H = h, (Xi)
n
i=1, (Yj)

m
j=1] = E

[
µ̂1(dx× X)

R

]
+ E

[∑
(i,j)∈∆p

J1
i,jδX∗

i

R

]
+

+ E

[∑
(i,j)∈∆1

p
J1
i,c+1δX∗

i

R

]
+ E

[∑
(i,j)∈∆2

p
J1
k+1,jδZy

j

R

]
=

4∑
k=1

Ik,

where R = T1 +
∑

(i,j)∈∆p
J1
i,j +

∑
(i,j)∈∆1

p
J1
i,c+1 +

∑
(i,j)∈∆2

p
J1
k+1,j .

Set S =
∑

(i,j)∈∆p
J1
i,j +

∑
(i,j)∈∆1

p
J1
i,c+1 +

∑
(i,j)∈∆2

p
J1
k+1,j and exploit the conditional independence

between J1
ij and µ̂1 to obtain

I1 =

∫
R+

E
[
e−vS

]
E
[
µ̂1(dx× X)e−vT1

]
dv

= θP0(dx)

∫
R+

 ∏
(i,j)∈p

τni,mj
(u1 + v, u2)

τni,mj
(u1, u2)

 τ1,0(u1 + v, u2)e
−ψu

b (v,0) dv,

where ψub (λ1, λ2) is the Laplace exponent of (µ̂1, µ̂2) in Theorem 1. Observing that ψub (v, 0)+ψ(u1, u2) =
ψ(u1 + v, u2) and denoting with L(·) the distribution of p, we obtain

ξ0 =

∫
D

I1 F (du)

= θP0(dx)

∫ ∫
R3
+

{
un−1
1 um−1

2

 ∏
(i,j)∈p

τni,mj
(u1 + v, u2)

 τ1,0(u1 + v, u2)×

× e−ψ(u1+v,u2) du1du2dvL(dp)

}

=
θP0(dx)

n

∫ ∫
R2
+

un1u
m−1
2

 ∏
(i,j)∈p

τni,mj
(u1, u2)

 τ1,0(u1, u2)e
−ψ(u1,u2) du1du2L(dp)

=
θP0(dx)

n

∫
D

u1τ1,0(u1, u2)F (du),

where the second equality follows from the change of variables (w, z) = (u1 + v, u1). The proof for the
remaining weights follows along the same lines and leads to

ξxi =
1

n

∫
D

u1

[
τni+1,mj

(u1, u2)

τni,mj
(u1, u2)

+
τni+1,0(u1, u2)

τni,0(u1, u2)

]
F (du)

and

ξyi =
1

n

∫
D

u1
τ1,mj

(u1, u2)

τ0,mj
(u1, u2)

F (du).
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The weights for Ym+1 can be computed in an analogous fashion.

S2 A toy example of borrowing of information

Classical borrowing of information across samples is typically associated to positive correlation across
observations in different populations and, as a consequence, it induces shrinkage of the predictions. Let
us consider the toy situation in which observations coming from two different populations have been
collected and a normal model is assumed

Xi | µx
iid∼ N(µx, 1) for i = 1, . . . , n

Yj | µy
iid∼ N(µy, 1) for j = 1, . . . ,m

To obtain a working model, one has to specify a certain prior over µx and µy. The main typical strategies
one may employ are the following:

• Modeling µx and µy as independent, which ultimately means that we do not consider the informa-
tion coming from one population to be relevant for inference on the other.

• Modeling µx and µy as dependent, which induces borrowing of information. This typically reflects
the idea that, if the observed values of Y1, . . . , Ym are on average higher than our prior guess on µy,
then we should upwards revise our belief on µx and our prediction for X1.

To clarify this last point, we compare a typical strategy used to perform borrowing of information, which
is provided by the following hierarchy

µx | µ0 ∼ N(µ0, 1)

µy | µ0 ∼ N(µ0, 1)

µ0 ∼ N(ν, 1)

(10)

with the case of independent priors, namely

µx ∼ N(ν, 2) µy ∼ N(ν, 2)

µx ⊥ µy
(11)

where the variance is chosen to match the marginal distributions of the hierarchical specification. We
assume that only the sample (Y1, . . . , Ym) has been observed and we discuss its impact on the posterior
distribution of µx and on the predictive distribution of X1 under the two specifications. Under indepen-
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dence in (11), one obviously has
p(µx | (Yj)mj=1) = N(ν, 2)

while under model (10) the new distribution of µx is

p(µx | (Yj)mj=1) ∝
∫
R
p(µx | µ0) p(µ0 | (Yj)mj=1)dµ0

= N
(

1

2m+ 1
ν +

2m

2m+ 1

ν + ȳ

2
, 1 +

m+ 1

2m+ 1

)
,

where ȳ denotes the empirical average of Y1, . . . , Ym, and

E[X1 | (Yj)mj=1] = E[µx | (Yj)mj=1] = ν +
m

2m+ 1
(ȳ − ν)

Therefore, when ȳ > ν the borrowing results in an increase of the estimate for µx and of the prediction for
X1, while if ȳ < ν the borrowing of information induces the opposite effect. The shrinking behaviour is
ultimately a consequence of the fact that the hierarchical prior in (10) induces positive correlation across
Xi and Yj . However, what we show in the main paper is that classical shrinkage of the estimates is not
the only way to borrow information within partially exchangeable populations, neither necessarily the
best one.

S3 Example of correlation between FuRBI priors on Borel set

Consider a pair of n-FuRBI priors with equal jumps (see Example 4 in the main document), where the
baseline distribution G0 is given by a bivariate normal with zero mean, unit variances and correlation
ρ ∈ {−0.99,−0.5, 0, 0.5, 0.99}. In Figure S1 we depict the correlations on sets of the form (−∞, x],
with x ∈ [−5, 5] and for each value of the correlation. Notice that such correlation may be of particular
interest in survival settings, where the distribution function is often the main focus.

When ρ = 0, the correlation is equal to 0 as expected, sinceG0(A×A) = P0(A)
2 and the numerator of the

formula in Proposition 8 vanishes. For values of ρ different from 0, the correlation is symmetric around
0, due to the symmetry of the Gaussian distribution, and different signs indicate opposite behaviours:
therefore, ρ < 0 implies negative correlation on such Borel sets.

However, note that a different sign does not mean a completely specular behaviour: for instance the
correlation with ρ = 0.99 is higher in absolute value than the one with ρ = −0.99. This is due to the
fact that it is somewhat impossible to have strictly negative correlation on all Borel sets. Intuitively, if the
two priors have high negative correlation on (−∞, 0], it means that one of them has much larger mass on
(−∞, 0] and the other on (0,+∞): therefore, both priors will have a high mass on (−∞, a], with a large
positive number, so that the correlation can not attain again large negative values.
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Figure S1: Correlation on Borel sets
of the form (−∞, x], with x ∈
[−5, 5]. The four lines, from bot-
tom to top, correspond to ρ ∈
{−0.99,−0.5, 0, 0.5, 0.99}.

Finally, if ρ→ 1, then the correlation converges to the constant function 1, that is the value obtained with
equal atoms: indeed, the two priors will have equal jumps and linearly dependent atoms (see Corollary
1).

S4 Algorithms for posterior inference

In this section we address the issue of sampling from the posterior distribution. In discrete nonparametric
models, we need to distinguish whether the random probability measures are directly applied to the data
or rather convoluted with a suitable kernel (known as mixture model, see Section 6 in the paper).

Nevertheless, from a computational perspective, if the first problem is solved the second one can be
tackled in a similar way: it is indeed easy to propose a Gibbs sampler that alternates sampling of suitable
latent variables and the posterior distribution given data originated by the random probability measure
(see Section S4.4 below for how to extend algorithms to mixture models).

Therefore, in the following three sections, we assume to collect observations from

(Xi, Yj) | (p̃1, p̃2)
iid∼ p̃1 × p̃2 (p̃1, p̃2) ∼ Q (12)

S4.1 Marginal posterior samplers

The first approach is to directly simulate the trajectories of (p̃1, p̃2) from its posterior, giving rise to so–
called conditional algorithms. See, e.g, Ishwaran and James (2001); Walker (2007); Papaspiliopoulos and
Roberts (2008); Arbel and Prünster (2017). Conditional samplers for the n-FuRBI priors can be found in
Sections S3.2-3 below.

Alternatively, and this is the route followed in this section, one can use marginal algorithms, that integrate

A–18



out the random measures and sample sequentially from the predictive distributions (see, for instance,
Neal, 2000).

Given (Xi)
n
i=1 and (Yj)

m
j=1 and using the results in Theorem 2, we can sample iteratively new observations

from p̃1 as follows

Marginal algorithm - 1
(a) Compute weights ξ0, {ξxi } and {ξyj } from (Xi)

n
i=1 and (Yj)

m
j=1

(b) Draw Xn+1 from m(dx) = ξ0P0(dx) +
∑k

i=1 ξ
x
i δX∗

i
(dx) +

∑c
j=1 ξ

y
jPY ∗

j
(dx)

The algorithm is straightforward, but relies on the computation of the weights at point (a): this is not
optimal, since in general the explicit evaluation can be demanding. Nonetheless, Theorem 1 and Corol-
lary 2 show that, conditionally on a suitable set of latent variables, the posterior representation simplifies
greatly. Indeed, given ((Xi)

n
i=1, (Yj)

m
j=1, U1, U2, p), the predictive distribution of the first sample is

m(dx) ∝ θτ1,0(U1, U2)P0(dx) +
∑

(i,j)∈∆p

τni+1,mj
(U1, U2)

τni,mj
(U1, U2)

δX∗
i
(dx)

+
∑

(i,j)∈∆1
p

τni+1,0(U1, U2)

τni,0(U1, U2)
δX∗

i
(dx) +

∑
(i,j)∈∆2

p

τ1,mj
(U1, U2)

τ0,mj
(U1, U2)

PY ∗
j
(dx).

(13)

Those new weights, whose derivation can be found in Section S1.4, are easier to compute, as the next
example shows.

Example 8 (Inverse Gaussian n-FuRBI with equal jumps). For this case we obtain τn,m(u1, u2) =∫
R s

n+me−(u1+u2)sρ(ds) := τn+m(u1 + u2), where ρ(ds) is the common marginal jump intensity. If
the Lévy intensity is v(ds, dx) = e−s/2/(s3/2

√
2π)ds α(dx) the resulting normalized CRM corresponds

to the normalized inverse Gaussian process introduced in Lijoi et al. (2005). We then obtain τj(u) =

2j−1Γ (j − 1/2)/(
√
π(2u+ 1)j−1/2), where u = u1 + u2. Thus, conditionally on the latent variables, we

have

m(dx) ∝ θP0(dx) +
2√

2U + 1

∑
(i,j)∈∆p

(
ni +mj −

1

2

)
δX∗

i
(dx)

+
2√

2U + 1

∑
(i,j)∈∆1

p

(
ni −

1

2

)
δX∗

i
(dx) +

2√
2U + 1

∑
(i,j)∈∆2

p

(
mj −

1

2

)
PY ∗

j
(dx),

where U = U1 + U2. Sampling from this mixture is straightforward.

A–19



Thus we can derive a second marginal algorithm.

Marginal algorithm - 2
(a) Draw (U1, U2, p) from their conditional distributions specified in Section 5
(b) Draw Xn+1 from m(dx) in (13)

However, even the full conditional distribution of p may not always be available in closed form, and it
may be computationally intensive to evaluate, since it may have a very large support. When this is the
case, we may encode the latent clustering structure in a more convenient way introducing two arrays of
latent variables Cx = (ci,x)i≥1 and Cy = (cj,y)j≥1 such that ci,x = ci′,x denotes a tie between Xi and Xi′ ,
cj,y = cj′,y denotes a tie between Yj and Yj′ , while ci,x = cj,y denotes a hyper-tie between Xi and Yj .
Moreover, we reorder the unique values in X∗

n and Y ∗
m, so that X∗

c = Xi if and only if ci,x = c and
Y ∗
c = Yj if and only if cj,y = c. Therefore, P[cn+1,x = c | Cx, Cy, X∗

n, Y
∗
m] is

P[Xn+1 = X∗
c | Cx, Cy, X∗

n, Y
∗
m], for c ∈ Cx∫

P[Xn+1 = x | Cy, Y ∗
m] pY ∗

c
(x)dx, for c ∈ Cy \ Cx∫

P[Xn+1 = x] p0(x)dx, otherwise

Finally, the distribution of p, given Cx and Cy, is degenerate. Moreover, the posterior distribution of
(U1, U2) given p is equal to the posterior distribution of (U1, U2) given Cx and Cy. Therefore, we may build
a marginal algorithm sampling Cx and Cy instead of p, without modifying the full conditional distribution
for U1 and U2. The final marginal algorithm boils down to

Marginal algorithm - 3
(a) Draw (U1, U2) and cn+1,x

(b) Sample Xn+1 from m(dx) =


δX∗

cn+1,x
(dx), if cn+1,x ∈ Cx

PY ∗
cn+1,x

(dx), if cn+1,x ∈ Cy \ Cx
P0(dx), otherwise

The advantage of such approach is twofold. First, we do not need to sample directly the full conditional
distribution of p. Second, when the algorithm is applied to mixture models, as in section 6, sampling the
unique values, instead of single observations, improves the mixing of the algorithm (cfr. Neal, 2000).
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S4.2 Conditional posterior sampler based on the law of the CRV

To develop a conditional algorithm, we can sample from the distribution of (µ̃1, µ̃2) and then normalize
each draw to get an approximate realization of the random probabilities. Here we develop a general
conditional sampler based on this approach that can be tailored to specific choices of the intensity in the
prior.

By Theorem 1, we know that a posteriori µ = (µ1, µ2) is the sum of two components, that we call µobs
and µ̂ and are such that

µobs =
∑

(i,j)∈∆p

Ji,jδ(X∗
i ,Y

∗
j )

+
∑

(i,j)∈∆1
p

Ji,c+1δ(X∗
i ,Z

x
i )

+
∑

(i,j)∈∆2
p

Jk+1,jδ(Zy
j ,Y

∗
j )
.

where Ji,j = (J1
i,j, J

2
i,j), and

µ̂ =

(
+∞∑
h=1

S1
hδ(Vh,Wh),

+∞∑
h=1

S2
hδ(Vh,Wh)

)

is a CRV with Lévy intensity e−U1s1−U2s2ρ(ds1, ds2)G0(dx). Denote the marginal and joint tail integrals
of µ̂ as

N1(s) =

+∞∫
s

+∞∫
0

e−U1s1−U2s2ρ(du1, du2), N2(s) =

+∞∫
0

+∞∫
s

e−U1s1−U2s2ρ(du1, du2)

and

N(s1, s2) =

+∞∫
s1

+∞∫
s2

e−U1s1−U2s2ρ(du1, du2).

Lastly, define the correspondent Lévy copula as F (x, y) = N(N−1
1 (x), N−1

2 (y)). If F (x, y) is continuous
on [0,+∞]2, the iterative conditional sampler based on the Ferguson and Klass algorithm (Ferguson and
Klass, 1972) reads

(a) Generate µobs as follows

(a1) Generate (U1, U2,p) from the distributions specified in Section 5;

(a2) Generate Ji,j = (J1
i,j, J

2
i,j) from the distributions specified in Theorem 1;

(a3) Generate Zx
i and Zy

j from the distributions specified in Section 5.

(b) Generate an approximation of µ̂, given by
(

M∑
h=1

S1
hδ(Vh,Wh),

M∑
h=1

S2
hδ(Vh,Wh)

)
as follows

(b1) Generate ξx1 , . . . , ξ
x
M from a Poisson Process with unit rate;
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(b2) Generate ξy1 , . . . , ξ
y
M from ξyh ∼ ∂

∂x
F (x, ξ)

∣∣∣∣∣
x=ξxh

(b3) Determine (S1
h, S

2
h) solving

ξxh = N1(S
1
h) ξyh = N2(S

2
h)

(b4) Generate (Vh,Wh) from G0.

(c) Obtain a draw from p̃1 as follows

p̃1 ≈

M∑
h=1

S1
hδVh +

∑
(i,j)∈∆p

J1
i,jδX∗

i
+
∑

(i,j)∈∆1
p
J1
i,c+1δX∗

i
+
∑

(i,j)∈∆2
p
J1
k+1,jδZy

j

M∑
h=1

S1
h +

∑
(i,j)∈∆p

J1
i,j +

∑
(i,j)∈∆1

p
J1
i,c+1 +

∑
(i,j)∈∆2

p
J1
k+1,j

.

An analogous approximation can be computed for p̃2.

S4.3 Conditional posterior sampler for gamma process with equal jumps

Alternatively, a second strategy for conditional algorithms is to sample approximate draws from the
posterior distribution of the random probabilities (p̃1, p̃2). We provide an example for gamma FuRBI
CRMs with equal jumps.

In the case of a process with equal jumps, we know from the definition that the measures in the product
space are p1 = p2 = p. Therefore, posterior inference can be conducted without loss of generality on

p =
∑
k≥1

W̄kδ(θk,ϕk), with (θk, ϕk)
i.i.d.∼ G0(·),

where {W̄k}k are the weights of a Dirichlet process, which can defined through the popular stick-breaking
construction (Sethuraman, 1994). In this context, Ishwaran and James (2001) developed a conditional
algorithm for hierarchical mixture models, called blocked Gibbs sampler, based on the approximation

p ≈
N∑
k=1

W̄kδ(θk,ϕk), for large N.

Exploiting the appealing analytical properties of the Dirichlet process, it is possible to devise simple
formulae for the posterior distribution of the N jumps and N locations: see Section 5 of Ishwaran and
James (2001) for more details.
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S4.4 Sampling from mixture models using marginal algorithms

Consider the mixture model defined in Section 6.1. Starting from Algorithm 2 in Section S4.1, we devise
a Gibbs sampler for drawing from the posterior distribution of (Xi)

n
i=1 and (Yj)

m
j=1.

Denoting by X t = (X t
1, . . . , X

t
n) and Y t = (Y t

1 , . . . , Y
t
n) the vectors sampled at step t, the algorithm

reads

1. Initialize at random X0 and Y 0.

2. For any t ≥ 1 do:

(b.1) Draw (U1, U2,p) given X t−1 and Y t−1, from the distributions specified in Theorem 1.

(b.2) Draw Xn, given (U1, U2,p) as follows: for any i sample X t
i from

q(dx | X t
−i) = qi,0(U1, U2)P0(dx) +

∑
(i,j)∈∆p

qi,j(U1, U2)δX∗
i

+
∑

(i,j)∈∆1
p

q1i,j(U1, U2)δX∗
i
(dx) +

∑
(i,j)∈∆p

q2i,j(U1, U2)PY ∗
j
(dx),

where X t
−i =

(
X t

1, . . . , X
t
i−1, X

t−1
i+1 , . . . X

t−1
n

)
, with unique values (X∗

1 , . . . , X
∗
k) and mul-

tiplicities (n1, . . . , nk). Analogously, (Y ∗
1 , . . . , Y

∗
c ) denotes the unique values in Y t−1 with

multiplicities (m1, . . . ,mc). The mixing proportions are given by

qi,0(U1, U2) ∝ θτ1,0(U1, U2)

∫
X
f(Wi | x)P0(dx),

qi,j(U1, U2) ∝
τni+1,mj

(U1, U2)

τni,mj
(U1, U2)

f(Wi | X∗
i ),

q1i,j(U1, U2) ∝
τni+1,0(U1, U2)

τni,0(U1, U2)
f(Wi | X∗

i ),

q2i,j(U1, U2) ∝
τ1,mj

(U1, U2)

τ0,mj
(U1, U2)

∫
X
f(Wi | x)PY ∗

j
(dx)

(c) Sample Y t similarly to point (b).

Once a sample of (Xi)
n
i=1 and (Yj)

m
j=1 is available, sampling new observations Xn+1 and Yn+1 proceeds

as explained in Section S3.1.
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S5 Additional simulation studies

S5.1 Additional simulation scenarios

We consider the same setting of Section 6.2 in the main manuscript, with different data generating distri-
butions. Formally we have

Wi
i.i.d.∼ p(· − 10), varj

i.i.d.∼ p(· − v),

where v ∈ [−16, 16] and p(·) is the density function of a zero mean random variable. In the main
manuscript we let p(·) = N(· | 0, 1), while here we consider three different choices

p1(·) = Exp(· | 1), p2(·) = 0.5N(· | 5, 1) + 0.5N(· | −5, 1), p3(·) = t(· | 3),

where t(· | q) denotes the density of a Student’s t distribution with q degrees of freedom. We let i =
1, . . . , 20, j = 1, . . . , 100 and consider the same nonparametric models of Section 6.2, with Gaussian
kernel. Therefore, the prior specification is misspecified in the first and third case, with different tail
behaviours of the kernel with respect to the true data generating mechanism. This implies a more complex
behaviour of the latent clustering structure: indeed the posterior distribution places positive mass to more
than one clusters, in order to accommodate for the misspecification. The mean integrated error for the
three cases is depicted in Figure S2, for different values of v. The interpretation is similar to the one
discussed in Section 6.2: the FuRBI specification yields an advantage especially when v is far from 0,
corresponding to the prior mean, and from 10, when the means of the two groups coincide. Indeed, in the
first case the borrowing provides little information, while in the second one exchangeability holds.

The second setting, corresponding to the two-components mixture, apparently seems more problematic
for the FuRBI model, which yields a less distinct advantage. Clearly, when v is close to zero the ex-
changeable and hierarchical models are favoured, since the two true distributions share one of the modes.
Moreover, the availability of only 20 observations for the first group makes it more difficult to both detect
the presence of two clusters and tune appropriately the correlation. Indeed, the left part of figure S3
depicts the error when 50 observations for the first group are collected: as expected, the performances of
the FuRBI approach significantly improve.

Finally, the right part of figure S3 shows the error when the two distributions are different: the first group
is endowed with a Student’s t density, while the second one is exponentially distributed. Notice that
the two groups are now very far in distributional sense, especially in terms of tail behaviour. The plot
indicates an interesting trade-off: when v is far from the prior mean (i.e. 0) the FuRBI approach allows
to alleviate the prior misspecification, otherwise borrowing information from very different distributions
may be detrimental.
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Figure S2: Mean integrated error (computed on a grid and as the median over 50 different samples) for the four
models, as the true mean of the second group varies. Rotating clockwise from the top left panel: data generated
from shifted exponential, mixtures of two Gaussians and shifted Student’s t distributions.

Figure S3: Mean integrated error (computed on a grid and as the median over 50 different samples) for the four
models, as the true mean of the second group varies. Left: data generated from mixtures of two Gaussians (50
observations for the first group). Right: data generated from shifted Student’s t (first group) and shifted exponential
(second group) distributions.
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S5.2 Logit stick-breaking prior and borrowing of information
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Figure S4: Left panel: density estimates for the logit stick-breaking model with only dependent weights, and
thus, ρ0 = 1. Right panel: density estimates for the logit stick-breaking model with dependent weights and atoms.
Shaded areas denote 95% credible intervals. Data are simulated according to Wi

i.i.d.∼ N(· | 10, 1), for i = 1, . . . , 20

(for sample n.1), and varj
i.i.d.∼ N(· | −10, 1), for j = 1, . . . , 100 (for sample n.2).

Figure S4 is based on the same data of Section 6.2. See Rigon and Durante (2021) for the model and the
associated algorithm.

S6 Predicting stocks and bonds returns: additional results

S6.1 Density estimation for bond returns

(a) FuRBI full (b) FuRBI −0.95 (c) FuRBI 0.95

(d) Exchangeable model (e) GM-dependent model (f) Independent model

Figure S5: Density estimates for bonds returns.
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S6.2 Sensitivity analysis

Figure S6 shows the results obtained with different specifications of the hyperparameters, which are

• Specification n.1: λj = 0.1, αj = 3, and βj = 3, j = 1, 2,

• Specification n.2: λj = 0.1, αj = 1.5, and βj = 4.5, j = 1, 2,

• Specification n.3: λj = 0.01, αj = 0.1, and βj = 0.2, j = 1, 2.

(a) Spec. 1: stocks (b) Spec. 2: stocks (c) Spec. 3: stocks

(d) Spec. 1: bonds (e) Spec. 2: bonds (f) Spec. 3: bonds

Figure S6: Sensitivity analysis: density estimates for bonds returns.

S6.3 Posterior distribution of ρ0

Figure S7: Posterior distribution of ρ0 for the analysis in Section 6.3.
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S7 Clustering multivariate data with missing entries: additional
details

S7.1 Choosing the hyperparameters

Assume P = 3, as in the simulation study of Section 6.4: the general case follows accordingly. In
this case I = {∅, (1), (2), (3), (1, 2), (2, 3), (1, 3), (1, 2, 3)}. In order to specify the prior, assumptions
on the missing generating mechanism should be made. The missing completely at random (MCAR)
assumption implies that each observation W (x)

i , for x ∈ I , is the result of randomly eliminating entries
from an (unobserved) complete observation Wi. For instance, W (1)

i = (w2,i, w3,i) is obtained from a
latent Wi = (w1,i, w2,i, w3,i) after eliminating the first entry. Under this assumption the latent complete
observations Wi are exchangeable, because the original value of Wi is independent from the mechanism
that generates the missing values. Thus, there exists q̃ such that Wi | q̃

iid∼ q̃ and q̃x is the projection of
q̃ onto coordinates different than x, e.g. q̃(1)(·, ·)

a.s
=
∫
q̃(dx1, ·, ·). This implies that the weights of q̃x

should be almost surely the same for every x. Instead, if the missing mechanism is not completely at
random, q̃x can not be described as the projection of a unique q̃. Indeed the missing mechanism may be
informative, leading to sample-specific features. Therefore, the choice of an additive n-FuRBIs allows q̃x
to have sample-specific components when needed.

As for the baseline distribution G0 on µ, suppose that an hyper-tie is sampled between an observation
(w2,i, w3,i) from sample “(1)” and one observation (w1,i, w3,i) from sample “(2)”, thus assigning the two
observations to the same cluster. G0 is then used to sample the corresponding locations: (X∗

2 , X
∗
3 ) and

(Y ∗
1 , Y

∗
3 ). Since we want to interpret the hyper-tie between incomplete observations as a tie between

complete observations, we must have X∗
3 = Y ∗

3 , while X∗
2 and Y ∗

1 are sampled jointly with a certain
correlation ρ1,2 and depending on X∗

3 through correlations ρ1,3 and ρ2,3. Therefore, since coordinates
corresponding to the same original variable should be assigned the same value, G0 is actually degenerate
on a P = 3 dimensional space. In the simulation and real data application G0 is a 3-variate normal,
whose correlation matrix ρ0 depends on correlation parameters ρ12, ρ23, ρ13 on which a truncated uniform
hyperprior is used, where the truncation ensures that the matrix is almost-surely positive-definite. Since
the data are centered, the mean of G0 is instead fixed equal to a vector of all 0. Moreover, an independent
Gamma(3, 3) prior is assigned to the three variances (σ2

1, σ
2
2, σ

2
3). Finally, the concentration parameter θ

is set equal to 0.1 in order to favor sparsity, i.e., a lower number of clusters.
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S7.2 Simulating scenarios: missing data distribution
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(a) MCAR 16.1% missing entries
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(b) MNAR 17.7% missing entries
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(c) MCAR 35.9% missing entries
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(d) MNAR 34% complete observations

Figure S8: Percentages of missing entries of each variable-cluster pair.
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S8 Mixing performance of the MCMC chains

(a) Concentration parameter θ. (b) Stock n.1 cluster location. (c) Bond n.1 cluster location.

Figure S9: Trace plots of the MCMC chain used in the real data analysis of Section 6.3.
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Figure S10: Trace plots of the MCMC chain of simulation study n.1 in Section 6.4, for the additive n-FuRBI model
with z = 0.5. Left: number of clusters. Right: Rand index.

ESS / N ESS / N
Model Rand index num. clusters

Additive n-FuRBIs, z = 0.2 0.1957 0.0518
Additive n-FuRBIs, z = 0.5 0.1994 0.0413
Additive n-FuRBIs, z = 0.8 0.1253 0.0596

DPM 0.1623 0.0227

Table 5: Effective Sample Size (ESS) per iteration in simulation study n.1 of Section 6.4 with 1, 000 observations.
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total dimension Type of code average time
sample size of data point algorithm language per iter (in sec)

Financial data - Sec. 6.3 n = 104 1 marginal Python 0.12
Simulation studies - Sec. 6.4 n = 1000 3 marginal R 2.41

Brandsma data - Sec. 6.4 n = 4106 4 marginal R 8.75

Table 6: Computational time in second per one iteration of the MCMC chain with n-FuRBIs. Codes are run on an
Intel Xeon W-1250 processor. Note that the in the last two lines not only the sample size is higher but also the data
are multivariate.
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