
Stability and Efficiency of Two-Sided Matching Markets
Preliminary Draft for Seminar at Collegio Carlo Alberto

Qingmin Liu∗

May 9, 2022

Abstract

We study the stability of two-sided markets with incomplete information and pro-
pose a program for formulating cooperative concepts that separate belief formation
and coalition formation. Belief- based refinements are invoked to show that stability
has significant restrictions.
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1 Matching Games with Incomplete Information

We build on the complete-information matching games formulated by Gale and Shapley
(1962), Shapley and Shubik (1971) and Crawford and Knoer (1981). The economic agents are
referred to as workers and firms, but the model of two-sided markets is obviously applicable
more generally.

Let I be a finite set of workers, and J be a finite set of firms. Let Ti and Tj be finite
sets of types for worker i ∈ I and j ∈ J respectively. We also use n ∈ I ∪ J to denote either
a worker or a firm. Let T = ∏

n∈I∪J Tn be the set of type profiles for all workers and firms,
with a typical element t. We shall assume that there is a common prior β0 ∈ ∆(T ) and, for
simplicity, that β0 has a full support.1 To simply notiation, we shall write tij = (ti, tj) as
the profile of types of the pair of worker i and firm j, t−ij as the profile of types of players
outside of the pair, and Tij and T−ij as the corresponding set of type profiles. To account
for unmatched players, we equate tii and ti, and tjj and tj.

When the type profile is t ∈ T , let aij(t), bij(t) ∈ R be the matching values worker
i and firm j receive in a matched pair (i, j), respectively, and let aii(t), bjj(t) ∈ R be the
players’ payoff from staying single. For generality, we allow the possibility that matching
values depend on players’ observable attributes summarized by their index i and j, and we
also allow the possibility that matching values of a matched pair depend on the entire profile
of player types, including players outside of the pair.

A matching game
(
a, b, β0

)
with incomplete information is summarized by the match-

ing value function (a, b) : I × J × T → R2 and the common prior β0 ∈ ∆(T ).
A match is a one-to-one function µ : I ∪ J → I ∪ J that pairs up workers and firms such

that the following holds for each i ∈ I and j ∈ J : (i) µ(i) ∈ J ∪ {i}, (ii) µ(j) ∈ I ∪ {j}, and
(iii) µ(i) = j if and only if µ(j) = i. Here µ(i) = i ∈ I means that worker i is unmatched;
likewise for µ(j) = j ∈ J .

Let P ⊂ R be the set of permissible transfers and denote by pij ∈ P the transfer
that worker i receives from firm j. We assume 0 ∈ P. If P = {0} , the matching game has
non-transferrable utility. If P = R, the matching game has perfectly transferrable
utility. A transfer scheme associated with a match µ is a vector p that specifies a transfer
piµ(i) ∈ P for each i ∈ I and pµ(j)j ∈ P for each j ∈ J. Without loss of generality, we require
pii = pjj = 0. If worker i and firm j are matched together with a transfer pij when the profile
of workers’ types is t, worker i’s and firm j’s ex post payoffs are aij(t) + pij and bij(t) − pij,

respectively.
We shall refer to a match together with a transfer scheme (µ, p) as a matching outcome.

We shall assume that a matching outcome is publicly observable.
1The extension to type spaces without common priors or with heterogenous priors without full support

are straightforward; see Liu (2017) for a formulation.
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2 Some Classes of Matching Games

Several classes of matching games are of general interests. Let πI = {(i, j) : i ∈ I, j ∈ J ∪ {i}}
be the set of pairs that involve a worker (including unmatched workers), and let πJ =
{(i, j) : j ∈ J, i ∈ I ∪ {j}} be the set of pairs that involve a firm (including unmatched firms).

2.1 Private Values

Definition 1. A matching game has private values if for any t ∈ T we have

aij(t) = Aij(ti) + Ai(t) for all (i, j) ∈ πI ,

bij(t) = Bij(tj) + Bj(t) for all (i, j) ∈ πJ ,

where Aij : Ti → R, Bij : Tj → R, and Ai, Bj : T → R are a class of real-valued functions.

In a private-value matching game a player’s matching value can depend on the observable
attribute of his partner, as well as the types of all other players not in the pair (i, j). Although
the matching value aij depends on tj through Ai(t), this dependence on tj behaves more like
a private value because aij′ , j′ ̸= j, depends on tj through Ai(t) in the same way. In the
special case where the matching values of a pair (i, j) depend only on tij, the functional
forms in the definition of private values simplify to

aij(t) = Aij(ti) and bij(t) = Bij(tj),

and the terminology of “private value” is justified.2

2.2 Comonotonic Differences

Two real-valued functions f, g : X1×X2 → R are comonotonic on X1 if (f(x1, x2) − f(x′
1, x2)) (g (x1, x2) − g (x′

1, x2)) ≥
0 for any x1, x′

1 ∈ X1 and x2 ∈ X2.

Definition 2. A matching game has comonotonic differences if aij − aij′ and bij − bi′j

are comonotonic on Ti and on Tj for any two pairs (i, j) ∈ I × J and (i′, j′) ∈ (I ∪ {j}) ×
(J ∪ {i}) .

Comonotonicity on Ti and on Tj separately is weaker than comonotonicity on Ti × Tj.
Although the property of comonotonic differences clearly places no restriction on complete
information matching games, it is central for incomplete information problems. For any

2In this case, aij(tij , t−ij) = aij(tij , t′
−ij) and hence Aij(ti) + Ai(tij , t−ij) = Aij(ti) + Ai(tij , t′

−ij). There-
fore, Ai(tij , t−ij) = Ai(tij , t′

−ij). Thus Ai is independent of t−ij . Similar arguments apply to a pair (i, j′)
and hence Ai is independent of t−ij′ . Therefore, Ai depends only on ti, which is a special case of Aij .
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putative matching, consider a potential blocking pair i and j whose partners are j′ ̸= j and
i′ ̸= i respectively. Worker i’s gain from the deviation is aij − aij′ and firm j’s gain from the
deviation is bij − bi′j. If the game has comonotonic differences, then the incentives for i and
j to rematch with each other are aligned.

Some special cases of comonotonic differences are of interests in their own rights.

One-sided Interdependence. A matching game has one-sided interdependence if for
any t ∈ T, we have either

aij(t) = Ai(t) + Aij for all (i, j) ∈ πI

with no restriction placed on b, or

bij(t) = Bj(t) + Bij for all (i, j) ∈ πJ

with no restriction placed on a, where Ai, Bj : T → R are real-valued functions, and Aij and
Bij are constants.

One-sided interdependence captures, e.g., applications where workers’ cost of production
is a function of their own types (but firms’ outputs depend on both workers’ and firms’
private information), or customers’ (in J) valuations are their own private information while
providers’ (in I) actual costs of serving their clients depend both their private information
and buyers’ valuations.

To verify comonotonic differences, consider the first case where firms’ matching values
are arbitrary. We have that

aij(t) − aij′(t) = Aij − Aij′

does not depend on ti and tj. Therefore, aij − aij′ and bij − bi′j are comonotonic on Ti and
Tj.

Separable Values. A matching game has separable values if for any t ∈ T we have

aij(t) = Aij(t−i) + Ai(t) for all (i, j) ∈ πI ,

bij(t) = Bij(t−j) + Bj(t) for all (i, j) ∈ πJ ,

where Ai, Bj : T → R, Aij : T−i → R and Bij : T−j → R are a class of real-valued functions.
Separable-value games appears similiar to private-value games in their functional forms,

but they are qualitatively different. If matching values of a matched pair (i, j) depend only
on tij, then separable values imply

aij(t) = Aij(tj) + Ai(ti) and bij(t) = Bij(ti) + Bj(tj)
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for a class of real-valued functions Aij, Bj : Tj → R and Bij, Ai : Ti → R. If, in addition,
players’ payoffs do not depend on their observable attributes (i and j), then

aij(t) = A(ti) + A′(tj) and bij(t) = B(ti) + B′(tj)

for a class of real-valued functions A, B : Ti → R and A′, B′ : Tj → R. So the essence of
separable values is that there is no interaction of a player’s own type with the matching
partner’s observable attribute (i.e., the absence of the interaction between ti and j and the
interaction between tj and i).

To see a separable-value matching game has comonotonic differences, observe that

aij(t) − aij′(t) = Aij(t−i) − Aij′(t−i),

which is independent of ti, and

bij(t) − bi′j(t) = Bij(t−j) − Bi′j(t−j),

which is independent of tj. Therefore, aij − aij′ and bij − bi′j are comonotonic on Ti and Tj.

Common Values. Consider a two-player co-ordination game with incomplete informa-
tion: I = {i} and J = {j}. Also aij = bij and aii = bii ≡ 0. Notice that aij − aii = aij and
bij − bjj = bij are identical. Hence the game has comonotonic differences (for this conclusion
it sufficies that aij and bij are comonotonic).

Violation of Comonotonic Differences. Consider a lemon’s problem with two play-
ers. The buyer’s value is bij(ti, tj) = tj and the seller’s reservation value (or production cost)
is tj so aij(ti, tj) = −tj. The no-trade value is 0, aii ≡ bii ≡ 0. The game does not have
comonotonic differences.

3 Stability

3.1 Matching-Belief Configuration

For every type profile t ∈ T, some matching outcome (µ, p) materializes. The relationship
between the underlying uncertainties and the observable outcomes is described by a function
M : t 7→ (µ, p). We shall call the function M a matching function or simply a matching
for the matching game with incomplete information.
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The mapping M : t 7→ (µ, p) appears to be deterministic, but this is a matter of interpre-
tation. A non-deterministic matching function can be written as M : (t, s) 7→ (µ, p) where s

is a profile of private/public signals possibly correlated with t, but in this case we are simply
enlarging the type space.3

Associated with each matching outcome (µ, p) ∈ M(T ), player n ∈ I ∪ J of type tn

has an on-path belief βn(µ, p, tn) ∈ ∆(T ), and associated with each pairwise deviation
(i, j, p) from (µ, p), where µ(i) ̸= j and p ∈ R, player n ∈ {i, j} of type tn has an off-path
belief βn (µ, p, i, j, p, tn) ∈ ∆(T ). We call (µ, p, i, j, p) a pairwise deviation of M at t if
M(t) = (µ, p).

Knowing M and observing (µ, p), players can infer that the set of type profiles is

M−1(µ, p) = {t ∈ T : M(t) = (µ, p)}.

Naturally, we shall require that

βn(µ, p, tn)(tn) = βn (µ, p, i, j, p, tn) (tn) = 1,

i.e, player n knows his own type, and

βn(µ, p, tn)(M−1(µ, p)) = βn (µ, p, i, j, p, tn) (M−1(µ, p)) = 1,

i.e., player n’s belief does not contradict his knowledge of M.

We do not specify the process that leads to these beliefs, which must require additional
assumptions on dynamic interactions; the key observation is that a Bayesian player should
have a belief for each on-path and off-path scenario, regardless of the process leading to
them. Let β = (βn)n∈I∪J denote a system of beliefs and call (M, β) a matching-belief
configuration.

3.2 Stable Configuration

A configuration (M, β) is individually rational at t ∈ T if, for (µ, p) = M(t) and all i ∈ I

and j ∈ J ,

Eβi(µ,p,ti)
(
aiµ(i)

)
+ piµ(i) ≥ Eβi(µ,p,ti) (aii) and Eβj(µ,p,tj)

(
bµ(j)j

)
− pµ(j)j ≥ Eβj(µ,p,tj) (bjj) .

3See further discussion of this ideas in Liu (2010, 2015).

7



A configuration (M, β) is blocked at t ∈ T if there exists a pairwise deviation (µ, p, i, j, p)
at t such that

Eβi(µ,p,i,j,p,ti) (aij) + pij > Eβi(µ,p,i,j,p,ti)
(
aiµ(i)

)
+ piµ(i)

Eβj(µ,p,i,j,p,tj) (bij) − pij > Eβj(µ,p,i,j,p,tj)
(
bµ(j)j

)
− pµ(j)j

Equivalently, for each pariwise deviation (µ, p, i, j, p) at t, define

Di :=
{
ti : Eβi(µ,p,i,j,p,ti) (aij) + p > Eβi(µ,p,i,j,p,ti)

(
aiµ(i)

)
+ piµ(i)

}
;

Dj :=
{
tj : Eβj(µ,p,i,j,p,tj) (bij) − p > Eβj(µ,p,i,j,p,tj)

(
bµ(j)j

)
− pµ(j)j

}
.

(3.1)

Thus Di and Dj are the set of worker i’s types and firm j’s types that find the devia-
tion (µ, p, i, j, p) profitable.4 We shall call (Di, Dj) blocking sets of (M, β) with respect
to (µ, p, i, j, p). A configuration (M, β) is blocked by (µ, p, i, j, p) if and only if the corre-
sponding blocking sets (Di, Dj) are non-empty.

Definition 3. A matching-belief configuration (M, β) is stable if it is individually rational
and is not blocked at any t ∈ T. If (M, β) is a stable configuration, we say M is a stable
matching and β is a stable belief.

When T is a singleton, the definition of stability reduces to the familiar notion of complete
information. Without any restrictions on beliefs, the concept is restrictive only for very
specail games.

Theorem 1. Suppose the matching game has private values. Then M(t) is a complete-
information stable matching for any stable configuration (M, β).

4 Belief-Based Refinements

4.1 Bayes’ Rule with Matching Functions

For each n ∈ I ∪ J, we write M−1
n (µ, p) as the set of player n types that are consistent with

observing (µ, p),

M−1
n (µ, p) = {tn ∈ Tn : M(tn, t−n) = (µ, p) for some t−n ∈ T−n}.

4Since βi(µ, p, i, j, p, ti) and βj(µ, p, i, j, p, tj) are defined only for t ∈ M−1(µ, p), we have Di ⊂ M−1
i (µ, p)

and Dj ⊂ M−1
j (µ, p).
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Each player n ∈ I ∪ J in addition observes his private type tn and Bayes’ rule require
that his belief on t = (tn, t−n) ∈ M−1(µ, p) is

β0(t|µ, p, tn) = β0(t)
β0(M−1(µ, p) ∩ ({tn} × T−n))

. (4.1)

We say (M, β) is on-path consistent if

βn(µ, p, tn) = β0(·|µ, p, tn). (4.2)

If, in addition, player n knows that some other player m’s types is in a non-empty subset
of types Dm ⊂ Tm, the posterior belief of player n is

β0(t|µ, p, tn, Dm) = β0(t)
β0(M−1(µ, p) ∩ ({tn} × Dm × T−nm))

(4.3)

for any t = (tn, tm, t−nm) ∈ ({tn}×Dm ×T−nm)∩M−1(µ, p). Subsets of types that of interest
are the set of types that benefit from the deviation, as defined in (3.1).

4.2 Surplus Maximization

From a planner’s perspective, knowing the matching game (a, b, β0) and the matching func-
tion M, and observing (µ, p), her posterior will be

β0(t|µ, p) = β0(t)
β0(M−1(µ, p))

for all t ∈ M−1(µ, p). The expected surplus generated from this matching outcome according
to this posterior is ∑

i∈I,j∈J

E
(
aiµ(i) + bµ(j)j|µ, p

)
We can ask the following question: can the planner rearrange the matching to improve
the expected surplus? That is to say, whether µ is the solution of the following surplus
maximization problem:

max
µ′

∑
i∈I,j∈J

E
(
aiµ′(i) + bµ′(j)j|µ, p

)
(4.4)

If the answer is in the affirmative for all (µ, p) ∈ M(T ), we say the matching M is Bayesian
efficient.

To compute the surplus, an outside observer need to know M and the game (a, b, β0).
This is unrealistic. We instead pursue theorems of the following kind: efficiency is obtained
a large class of stable matchings for a large class of games. We identify the class of stable
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matchings by refinements of off-path beiefs, and identify the class of games by structrual
properties of payoffs. So the planner needs to know neither the stable matching nor the
exact games.

The surplus maximization problem (4.4) has a dual minimization problem5:

min
(ui)i∈I ,(vj)j∈J

∑
i∈I

ui +
∑

j∈J
vj

such that, for any i ∈ I and j ∈ J,

ui + vj ≥ E (aij + bij|µ, p) ;
ui ≥ E (aii|µ, p) ;
vj ≥ E (bjj|µ, p) .

Lemma 1. A matching M is Bayesian efficient if for all (µ, p) ∈ M(T ), i ∈ I and j ∈ J,

we have

E
(
aiµ(i)|µ, p

)
+ E

(
bµ(j)j|µ, p

)
≥ E (aij + bij|µ, p) ; (4.5)

E
(
aiµ(i)|µ, p

)
≥ E (aii|µ, p) ; (4.6)

E
(
bµ(j)j|µ, p

)
≥ E (bjj|µ, p) . (4.7)

This is the implication of the theorem of duality. If the conditions in Lemma 1 are sat-
isfied, then

((
E

(
aiµ(i)|µ, p

))
i∈I

,
(
E

(
bµ(j)j|µ, p

))
j∈J

)
is a feasible solution for the dual pro-

gram and ∑
i∈I,j∈J E

(
aiµ(i) + bµ(j)j|µ, p

)
is an upper bound for the primal program. There-

fore, µ is a solution to the primal.

4.3 Refinement 1: Weak Consistency

Motivation. For each pairwise deviation (µ, p, i, j, p) of (M, β), players i and j gain from
this deviation if and only if their types are in the blocking sets Di and Dj, respectively (see
(3.1)):

Di :=
{
ti : Eβi(µ,p,i,j,p,ti) (aij) + p > Eβi(µ,p,i,j,p,ti)

(
aiµ(i)

)
+ piµ(i)

}
;

Dj :=
{
tj : Eβj(µ,p,i,j,p,tj) (bij) − p > Eβj(µ,p,i,j,p,tj)

(
bµ(j)j

)
− pµ(j)j

}
.

5The primal is the maximization of
∑

i∈I

∑
j∈J xijE (aij + bij |µ, p) +

∑
i∈I xiiE (aii|µ, p) +∑

j∈J xjjE (bjj |µ, p) over non-negative real vectors (xij , xii, xjj)i∈I,j∈J subject to
∑

j∈J∪{i} xij ≤ 1 and∑
i∈I∪{j} xij ≤ 1.
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If the two players form their beliefs conditional on each other’s gain from the deviation, their
belief should satisfy

βi (µ, p, i, j, p, ti) = β0(·|µ, p, ti, Dj)
βj (µ, p, i, j, p, tj) = β0(·|µ, p, tj, Di)

. (4.8)

When Di or Dj is empty, Bayes’ rule has no restriction. Intuitively, when i is called to
deviate together to j, he needs to assume that j gains from the deviation, i.e., j’s type is
in Dj, to make his decision (this reasoning is similiar to the familiar one in common value
auctions or pival voting). This leads to the following definition.

Definition 4. The configuration (M, β) is weakly off-path consistent if (4.8) is satisfied
for each pairwise deviation (µ, p, i, j, p) at t ∈ T and its corresponding blocking sets (Di, Dj)
defined in (3.1). The configuration (M, β) is weakly consistent if it is on-path consistent
and weakly off-path consistent.

Weakly consistent stable configuration impose strong restrictions on a class of matching
games.

Theorem 2. All weakly consistent stable configurations of a matching game with one-sided
interdependence are Bayesian efficient.

Proof. Individual rationality and on-path consistency of (M, β) imply that (4.6) and (4.7)
are satisfied. Suppose to the contrary that (M, β) is inefficient, then by Lemma 1,

E (aij + bij|µ, p) > E
(
aiµ(i)|µ, p

)
+ E

(
bµ(j)j|µ, p

)
and hence there exist p ∈ R and t∗ ∈ M−1 (µ, p) such that

E (aij|µ, p, t∗
i ) + p > E

(
aiµ(i)|µ, p, t∗

i

)
+ piµ(i) (4.9)

E
(
bij|µ, p, t∗

j

)
− p > E

(
bµ(j)j|µ, p, t∗

j

)
− pµ(j)j (4.10)

By one-sided interdependence, (4.9) takes the form of

E (Ai(t) + Aij|µ, p, ti) + p > E
(
Ai(t) + Aiµ(i)|µ, p, ti

)
+ piµ(i)

and hence, Aij + p > Aiµ(i) + piµ(i). Therefore,

Di : =
{
ti ∈ M−1

i (µ, p) : Eβi(µ,p,i,j,p,ti) (aij) + p > Eβi(µ,p,i,j,p,ti)
(
aiµ(i)

)
+ piµ(i)

}
=

{
ti ∈ M−1

i (µ, p) : Aij + p > Aiµ(i) + piµ(i)
}

= M−1
i (µ, p)
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Weak off-path consistency requires that

βj (µ, p, i, j, p, tj) = β0(·|µ, p, tj, Di) = β0(·|µ, p, tj)

Therefore,

Dj : =
{
tj ∈ M−1

j (µ, p) : Eβj(µ,p,i,j,p,tj) (bij) − p > Eβj(µ,p,i,j,p,tj)
(
bµ(j)j

)
− pµ(j)j

}
=

{
tj ∈ M−1

j (µ, p) : E (bij|µ, p, tj) − p > E
(
bµ(j)j|µ, p, tj

)
− pµ(j)j

}
Now Dj ̸= ∅ because (4.10). Therefore, (Di, Dj) are non-empty blocking sets for (M, β),
contradicting the assumption of stability.

4.4 Refinement 2: Strong Consistency

Motivation. Weak off-path consistency computes blocking sets (Di, Dj) given beliefs βi(µ, p, i, j, p, ti)
and βj(µ, p, i, j, p, tj), and then requires that βi(µ, p, i, j, p, ti) be βi (·|µ, p, ti, Dj) and that
βj(µ, p, i, j, p, tj) be βj (·|µ, p, tj, Di) , following Bayes’ rule.

In a different approach, we do not compute the blocking sets. Instead, suppose players
i and j in the deviation believe that i’s type is in some arbitrary set Di ⊂ Ti and j’s
type is in Dj ⊂ Tj. Following Bayes’ rule, their posterior belief will be βi (·|µ, p, ti, Dj) and
βj (·|µ, p, tj, Di) , respectively. The sets of types that make i and j want to deviate with
these posterior beliefs are di (Dj) and dj (Di) , respectively, where

di (Dj) =
{
ti : E (aij|µ, p, ti, Dj) + p > E

(
aiµ(i)|µ, p, ti, Dj

)
+ piµ(i)

}
dj (Di) =

{
tj : E (bij|µ, p, tj, Di) − p > E

(
bµ(j)j|µ, p, tj, Di

)
− pµ(j)j

} . (4.11)

Players’ initial assumptions that their opponent’s types are in Di and Dj are confirmed
correct if and only if

di (Dj) = Di and dj (Di) = Dj. (4.12)

Of course, the existence and uniqueness of non-empty (Di, Dj) that satisfies (4.11) and (4.12)
are guaranteed.

This above operation can be intuitively understood as follows: a player, say i, in the
deviation makes the following claim: my type is in Di and I think your type is in Dj; if
so, let’s deviate together; indeed, conditional on your type being in Dj I benefit from the
deviation if and only if my type is in Di so you should believe that my type is in Di; if
you believe my type is in Di, you gain from the deviation if and only if your type is in Dj,

therefore, I should believe your type is in Dj.
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We present two examples to demonstrate the intuitive idea and explain why it is different
from weak consistency.

4.4.1 Motivating Examples

Example 1. There are only one worker i and one firm j. Each of them has two types
Ti = {ti, t′

i} and Tj =
{
tj, t′

j

}
. The prior β0 is uniform. The matching value (aij, bij) is as

follows
tj t′

j

ti 5, 5 −1, −1
t′
i −1, −1 −1, −1

and we assume aii(·) = bjj(·) = 0. Consider the matching function M that has both palyers
unmatched regardless of types. The on-path belief is uniform. Consider off-path beliefs βi

(resp. βj) that assigns probability 0.9 to the opponent being t′
j (resp. t′

i). Clearly Di = Dj = ∅.

Therefore, (M, β) is a weakly consistent stable configuration.
However, for this common interest game, it is quite intuitive that the worker of type ti and

the firm of type tj can form a coalition to block the no-trade outcome. For instance, worker i

of type ti can make the following announcement to firm j: “I’m type ti and if you’re type tj,

let’s match” and firm j of type tj can make a similar annoucement to worker i: “I’m type tj

and if you’re type ti, let’s match”. The two announcements are compatible in the following
sense: only the worker i of type ti will gain from the announced plan, so firm j of type ti has
no reason to doubt its sincerity, and vice versa. The takeaway message from this example is
that the off-path belief βi (resp. βj) that assign 0.9 to the opponent being t′

j (resp. t′
i) is not

perfectly reasonable, even if it is weakly consistent. We can strengthen the refinement.

Example 2. Consider a two-player game, each player has two types: Ti = {ti, t′
i, t′′

i } and
Tj =

{
tj, t′

j, t′′
j

}
. The prior β0 ∈ ∆(Ti × Tj) is uniform. The matching value (aij, bij) is as

follows
tj t′

j t′′
j

ti 1, 1 1, 2 −1, −1
t′
i 2, 1 −3, −3 −1, −1

t′′
i −1, −1 −1, −1 −1, −1

and we assume aii(·) = bjj(·) = 0. Consider the matching function M that lets both palyers
unmatched regardless of types. The on-path belief is uniform. Consider off-path beliefs βi

(resp. βj) that assigns probability 0.9 to the opponent being t′′
j (resp. t′′

i ). Consider M

that leaves both players alone regardless of types. The blocking sets with respect to the off-
path beliefs are empty, so (M, β) is a weakly consistent stable matching-belief configuration.
Consider the deviation with p = 0 that involves i’s types Di = {ti} and j’s types Dj =
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{
tj, t′

j

}
. Then for each t̃i ∈ Ti, β0(·|µ, p, t̃i, Dj) assigns equal probability to tj and t′

j. With
this belief, only ti will join the deviation. For each t̃j ∈ Tj, β0(·|µ, p, t̃j, Di) assigns probability
1 to ti and the set of j’s types that gain from the deviation is Dj = {tj, t′

j}. Therefore,
Di = {ti} and Dj =

{
tj, t′

j

}
are compatible.

For this game, D′
i = {ti, t′

i} and D′
j = {tj} form the other fixed point. So incorporating

the restriction into the off-path beliefs is not straightforward.

4.4.2 Formulation of Strong Consistency

The idea intuitively described around (4.11) and (4.12) and demonstrated in the two exam-
ples above can be formalized as follows.

We approch the refinement as follows.

Definition 5. We say a configuration (M, β) is strongly off-path consistent if
(i) it is weakly off-path consistent and
(ii) for any pairwise deviation (µ, p, i, j, p), and any ti ∈ M−1

i (µ, p) and tj ∈ M−1
j (µ, p),

the blocking sets with respect to βi(µ, p, i, j, p, ti) and βj(µ, p, i, j, p, tj) are non-empty if there
exists non-empty (Di, Dj) such that ti ∈ Di, tj ∈ Dj, and

Di =
{
ti : E (aij|µ, p, ti, Dj) + p > E

(
aiµ(i)|µ, p, ti, Dj

)
+ piµ(i)

}
Dj =

{
tj : E (bij|µ, p, tj, Di) − p > E

(
bµ(j)j|µ, p, tj, Di

)
− pµ(j)j

} . (4.13)

We say a configuration (M, β) is strongly consistent if it is on-path conistent and
srongly off-path consistent.

The second requirement says that if the blocking formulated by (4.13) is possible, then
blocking should be permitted under βi(µ, p, i, j, p, ti) and βj(µ, p, i, j, p, tj), the belief system
in (M, β) . The difference between weak and strong consistency is summarized below. Its
proof is by comparing definitions and hence omitted.

Lemma 2. A weakly consistent (M, β) is blocked by (µ, p, i, j, p) only if there exists non-
empty sets Di and Dj that satisfy (4.13). A strongly consistent (M, β) is blocked by (µ, p, i, j, p)
if and only if there exists non-empty non-empty sets Di and Dj that satisfy (4.13).

In dynamic non-cooperative games in which types are independent under prior beliefs, it
is common to assume that types remain independent after any history (see fudenberg1991
fudenberg1991, p. 237). Naturally, we shall consider independent on-path beliefs after any
observables; that is, workers’ types are independent under β0(·|M−1 (µ, p)) for all (µ, p) ∈
M(T ).
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Definition 6. A configuration (M, β) is independent if

β0(t|µ, p) =
∏

i∈I∪J

β0(ti|µ, p)

for all t ∈ T and all (µ, p) ∈ M(T ).

Strong consistency and independence have powerful implications in games with comono-
tonic differences. The main result of this paper concerns stable matching of games with
comonotonic differences.

Theorem 3. Suppose the matching game has comonotonic differences. A strongly Bayesian
consistent stable configuration (M, β) with indepedent beliefs is Bayesian efficient.

The proof proceeds in the following stpes, and the separate results are useful to under-
stand the implications of stability. The first result concerns the implication of comonotonicity
and indepenence.

Lemma 3. Suppose f, g : X1 × X2 → R are comonotonic on both X1 and X2, and for some
constants c1 and c2,

E(f) > c1 and E(g) > c2, (4.14)

where the expectation is with respect to some product measure on X1 × X2. Then there exist
non-empty sets D∗

1 ⊂ X1 and D∗
2 ⊂ X2 such that

D∗
1 = {x1 : E(f |x1, D∗

2) > c1}
D∗

2 = {x2 : E(g|x2, D∗
1) > c2}

. (4.15)

Two-dimensional comonotonicity of f and g implies that the mapping defined on the right-
hand side of (4.15) is order-reversing, and an application of Tarski’s fixed point theorem to
the twice iteration of the mapping has a fixed point, a modification of which is the desired
fixed point (D∗

1, D∗
2), and (4.14) ensures its non-emptiness.

Corollary 1 gives simple condition for blocking without the need of computing blocking
sets.

Corollary 1. Suppose the matching game has comonotonic differences and β0 is indepen-
dent. Then a strongly Bayesian consistent (M, β) is blocked by (µ, p, i, j, p) if

E (aij|µ, p) + p > E
(
aiµ(i)|µ, p

)
+ piµ(i)

E (bij|µ, p) − p > E
(
bµ(j)j|µ, p

)
− pµ(j)j

(4.16)

Taking f = aij −aiµ(i) and g = bij −bµ(j)j, Lemma 3 establishes the existence of non-empty
(D∗

1, D∗
2) that satisfies (4.13), which are blocking sets according to Lemma 2.
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Now Theorem 3 follows as follows. Individual rationality of a stable matching (M, β)
implies (4.6) and (4.7). By Lemma 1, if (M, β) is not efficient, (4.5) would be violated and
hence there exists p such that (4.16) holds. Corollary 1 would imply (M, β) is blocked, a
contradicton.

4.5 Bayesian Efficiency and Stability

Example 5. Consider a market with two workers and one firm. The matching values of each
worker and the firm are comonotonic, and are as follows:

t1 t′
1 t2 t′

2

(0.5, 5) (1, 6) (−2, 4) (−1.9, 12)

Suppose that β0(t1, t2) = β0(t′
1, t′

2) = 1
2 . Thus, the workers’ types are not independent.

Consider a matching M in which the firm hires worker 2 at a price of 2 regardless of the
workers’ types. In this case, the Bayesian consistent on-path belief is the same as the prior
belief β0. This matching is not Bayesian efficient: it generates an expected total surplus of
1
2 × (−2 + 4) + 1

2 × (−1.9 + 12) = 6.05, while the matching in which the firm hires worker 1
generates an expected total surplus of 1

2 × (0.5 + 5) + 1
2 × (1 + 6) = 6.25.

But the matching M is stable with Bayesian consistent beliefs. The firm’s expected payoff
in this matching is 1

2 × 4 + 1
2 × 12 − 2 = 6. Consider a deviating coalition that involves the

firm and worker 1 with a price p. No price p is such that only the type t1 of worker 1 joins the
coalition. If the price p is such that both types of worker 1 join the coalition, i.e., p > −0.5,

then the firm’s expected payoff is 1
2 × 5 + 1

2 × 6 − p < 6. In this case the firm rejects the
coalition. If the price p is such that only the type t′

1 of worker 1 joins the coalition, then the
firm’s payoff cannot be higher than 7, the total surplus produced by the pair. But because
the two workers’ types are correlated, when worker 1’s type is t′

1, worker 2’s type must be
t′
2, and the firm infers that its payoff from M by matching with worker 2 is 12 − 2 = 10.

Therefore, the firm rejects the coalition with worker 1 in this case as well.

4.5.1 Proof of Lemma 3

Suppose without loss of generality that both f and g are non-decreasing with respect to
some complete orders ≥n on Xn. Then consider the class of upper contour sets Bn(xn) =
{x′

n : x′
n ≥n xn}. Let Bn = {Bn(xn) : xn ∈ Xn} ∪ {∅}. Define d1 : B2 → R and d2 : B1 → R
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as follows:
d1(D2) := {x1 : E(f |x1, D2) > c1}
d1 (∅) := X2

d2(D1) := {x2 : E(g|x2, D1) > c2}
d2 (∅) := X1

. (4.17)

It follows from E(f) > c1 and E(g) > c2 that

d1(X2) ̸= ∅ ≠ d2(X1).

Define d on B1 ×B2 as d (D1, D2) = (d2 (D1) , d1 (D2)) . By monotonicity of f and g, we have
d1(D2) ∈ B1 and d2(D1) ∈ B2. Therefore d is a self-map on B1 × B2.

For any x′
1 ≥1 x1 and x′ ≥2 x2, we have

B1(x′
2) ⊂ B1(x2)

B2(x′
1) ⊂ B2(x1)

. (4.18)

By monotonicity of f and g, we have

d1(B2(x2)) ⊂ d1(B2(x′
2))

d2(B1(x1)) ⊂ d2(B1(x′
1))

. (4.19)

Notice that B1 × B2 is a complete lattice in the set-inclusion order. It follows from (4.17) ,

(4.18) , and (4.19) that d is order-reversing. Therefore d2 : B1 × B2 → B1 × B2 is order-
preserving. By Tarski’s fixed point theorem, d2 admits a fixed point (D1, D2).By definition,

d2(D1, D2) = d(d1(D2), d2(D1))
= (d1(d2(D1)), d2(d1(D2)))
= (D1, D2).

Thus d1(d2(D1)) = D1 and hence (D1, d2(D1)) is a fixed point of d. The fixed point cannot
be of the form (∅, D) because D = d2 (∅) = X2 but d1 (X2) ̸= ∅. Similarly, fixed point cannot
be of the form (D, ∅) because D = d1 (∅) = X1 but dY (X1) ̸= ∅. Therefore, the fixed point
of d is non-empty.
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