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Abstract

Reporting errors are endemic to breaking news, even though accuracy is prized

by consumers. I present a continuous-time model to understand the strategic forces

behind such reporting errors. News firms are rewarded for reporting before their com-

petitors, but also for making reports that are credible in the eyes of consumers. Errors

occur when firms fake, reporting a story despite lacking evidence. I establish existence

and uniqueness of an equilibrium, which is characterized by a system of ordinary dif-

ferential equations. Errors are driven by both a lack of commitment and by competition.

A lack of commitment power gives rise to errors even in the absence of competition:

firms are tempted to fake after their credibility has been established, capitalizing on

the inability of consumers to detect fake reports. Competition exacerbates faking by

engendering a preemptive motive. In addition, competition introduces observational

learning, which causes errors to propagate through the market. The equilibrium fea-

tures rich dynamics. Firms become gradually more credible over time whenever there

is a preemptive motive. The increase in credibility rewards firms for taking their time,

and thus endogenously mitigates the haste-inducing effects of preemption. A firm’s be-

havior will also change in response to a rival report. This can take the form of a copycat
effect, in which one firm’s report triggers an immediate surge in faking by others.
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1. Introduction

What a newspaper needs in its news, in its headlines, and on its editorial page is
terseness, humor, descriptive power, satire, originality, good literary style, clever
condensation, and accuracy, accuracy, accuracy!

— Joseph Pulitzer

Accuracy is often considered to be the core tenet of news media. This belief is widely
held by consumers of news: when asked in a 2018 Pew survey, the majority of respon-
dents listed accuracy as a primary function of news, valuing it over thorough coverage,
unbiasedness, and relevance.

Despite this, public perceptions of news accuracy are not favorable. In a 2020 Survey,
38% of respondents stated that they go into a news story thinking it will be largely inaccu-
rate. While many factors may contribute to this skepticism, consumers express particular
concern about hasty reporting: 53% of respondents believe that news breaking too quickly
is a major source of errors.

These concerns are supported by a multitude of instances in which news media have
made major factual errors. In the immediate aftermath of the 9/11 attacks, cable news
stations made multiple statements that were false: NBC reported an explosion outside the
pentagon, CNN reported a fire outside the national mall, and CBS claimed the existence
of a car bomb outside the state department. Erroneous reporting has been endemic to ter-
rorist attacks in general, with news media misidentifying perpetrators or other key details
of the Boston bombings, Sandy Hook massacre, London bombings, and Oklahoma City
bombings. Furthermore, such errors are not limited to terrorist attacks. Notoriously, in
2004 CBS news, under the direction of Dan Rather, published the Killian Documents, a
collection of memos which called into question George W. Bush’s military record. These
documents could never be authenticated and were widely believed to be forged. More
recent media blunders are ever present: in 2017, ABC news falsely reported that Michael
Flynn would testify that Donald Trump had directed him “to make contact with the Rus-
sians.” In 2019, ABC News headlined its nightly news broadcast with what it claimed to
be exclusive footage of the ongoing air strikes on Syria. It was later uncovered that this
footage was in fact taken at a machine gun convention in Oklahoma.

While such errors are commonplace, they are also costly to news firms. For one, expo-
sure of errors can be reputationally damaging. This was acutely true of the Rolling Stone
scandal, in which the magazine falsely accused a group of University of Virginia students
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of sexual assault. Not only was the journalistic failure widely reported by other firms, the
error resulted in several publicized lawsuits against the magazine. Furthermore, major
errors often lead firms to part with valuable journalists in an effort to protect their repu-
tations. This was evident in the terminations of Dan Rather and Brian Ross —both lead
journalists at major news stations—following their respective reporting blunders.

The objective of this paper is twofold. First, I seek to understand why reporting errors
are pervasive despite their costliness to firms. In particular, I explore how strategic forces
can induce firms to commit errors that are completely avoidable. My second objective is
to understand when reporting errors are most probable, and relatedly, when firms are less
trustworthy. That is, I seek to understand both the dynamics of reporting errors and the
environmental factors that can make them more prevalent.

Model To answer these questions, I present a dynamic model of breaking news. I con-
sider a continuous-time setting where multiple firms dynamically and privately learn about
a story and must choose if and when to report it. Firms learn by seeking confirmation that
the story is true. Reporting errors occur when firms fake, i.e., report the story despite lack-
ing confirmation. Because reports are publical, firms also learn by observing the reports of
their competitors. I thus account for an important feature of the newsroom setting: firms
learn privately but also observationally.

Firms in this model seek viewership. Error-prone reporting conflicts with this objective,
and is thus costly to the firm, in two ways. First, errors harm firms ex post (after they
have been exposed). This ex-post cost captures the detrimental effect of errors on a firm’s
future livelihood. Importantly, error-prone reporting is also costly ex ante (before errors
can be unearthed). This is due to the fact that a firm’s viewership hinges on its credibility,
i.e., the consumer’s belief that the report is not fake. This belief is formed rationally with
knowledge of the firm’s reporting strategy: firms who fake more achieve lower credibility
in equilibrium. By making this assumption, I take the stance that a story is valued to the
extent that there is trust in a firm’s journalistic standards, a notion that is informed by
consumers’ demonstrated preference for accurate news.

Finally, this model accounts for one of the most salient qualities of the breaking news
problem: competition. All else equal, a firm who preempts its rivals (e.g., by being the first
to report) is rewarded with greater viewership. This allows us to understand the impact of
competition on the propensity of firms to err. Doing so is especially pertinent given the rise
of digital news. Since the ascent of the internet, there has been a documented shift from
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print to digital news.1 This shift has arguably contributed to a news industry where firms
feel greater pressure to get stories out quickly in order to beat out competitors. This is due
to the fact that, while print news is limited to daily publication at most, digital news faces
no such constraints.2 By considering a continuous-time setting, one can better understand
24-hour news environment, where preemptive concerns are not only present but ceaseless.

Analysis I analyze this model, establishing both existence and uniqueness of an equilib-
rium. Under this equilibrium, fake reports do not occur at set times, but are rather dis-
tributed continuously over time. This mixing implies an indifference condition: at any time
in which the firm must fake, it must be indifferent between faking immediately and after
some short wait. Formally, this condition implies an ordinary differential equation (ODE)
on the firm’s reporting behavior. I thus show that the equilibrium is characterized by a
system of ODEs, a result which is central to our analysis and guides many of the economic
implications that follow.

Economic Implications I find that errors are strategic responses to two features of the
news environment: a lack of commitment by firms, and competition.

To this end, I begin by showing that competition alone is not responsible for reporting
errors. In particular, if the ex-post cost of error is relatively small —because consumers are
less aware or critical of them —even a monopolist will fake. Such errors are driven by a
firm’s inability to commit to a reporting strategy: a firm is tempted fake after its credibility
has been assessed. This is due thte fact that firms cannot observe whether a firm is faking,
and thus the firm is not directly punished for doing so. I substaniate the notion that a lack
of commitment causes errors by proving that a firm who can commit will always report
truthfully, and thus never err.

I then show that competition exacerbates errors, and does so through two separate chan-
nels. First, competition can give rise to a preemptive motive in equilibrium: firms have an
incentive to speed up their reporting in order to beat out competitors. This incentive for
speed induces firms to fake and thus err. Second, competition causes errors through an-
other, less obvious channel: observational learning. When one firm reports a story, other
firms become more confident that the story is true. This increased confidence in turn yields
firms more likely to fake. I thus find that observational learning exacerbates errors not by

1 While 16% of 2018 survey respondents often receive news from print newspapers, 33% do so from news
websites.

2 This is also true of TV news, which remains the most popular news medium in the United States.
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giving rise to them in the first place, but by causing existing errors to propagate through
the market.

This paper also sheds light on the dynamics of reporting behavior and credibility. These
dynamics take two different forms in equilibrium: gradual changes that happen in the
absence of new reports and discrete changes that occur in response to a new report.

I first show that firms become gradually more truthful —i.e., less inclined to fake—as
time passes. Furthermore, firms become more credible over time whenever preemptive
concerns are present. In other words, consumers are less trusting of reports that are made
quickly. This model thus justifies consumers’ expressed concerns about hasty reporting.
The reason for this gradual improvement in credibility lies in the firms incentives. The
risk of being preempted introduces an endogenous cost to delay. That is, the firm must
somehow be compensated for this cost to ensure that its indifference condition is satisfied.
This is achieved by means of increasing credibility. That is, increasing credibility mitigates
the haste-inducing effects of preemption.

In addition to this gradual increase in credibility, dynamics can take a second form: dis-
crete changes in a firm’s reporting behavior and credibility in response to a rival report.
This can entail a copycat effect, in which one firm’s report causes an instantaneous boost in
faking by others. The copycat effect implies that when one firm’s report is quickly repeated
by other firms, such follow-up reports will often lack credibility because they are not in-
dependently verified. It illustrates that firms can herd on both the reports themselves and
the timing of their reports. This provides an explanation for the “clustering” of reporting
errors that can occur in breaking news.3

In addition to these core results, I consider comparative statics and an extension of the
model. I find that, unsurprisingly,credibility is improved by both a higher ex-post cost
of error and a higher learning ability. I also further explore the role of competition by
considering the marginal effect of an additional firm in the market. Whenever preemptive
concerns are present, adding a competitor will make each individual firm more likely to
fake early on by increasing the preemptive threat they face. However, this is mitigated later
on by the effects of observational learning: existing firms are able to learn that the story is
false more quickly by observing the silence of an additional competitor, which will yield
them less willing to fake. Finally, I extend the model to allow for heterogeneity in firms’
ability to learn. This extended model gives rise to an intuitive result: firms with greater
ability to learn are also more credible in equilibrium. Though there are many potential

3 Examples of this include the reporting surrounding the Boston bombings and the 2000 US presidential
election.
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reasons why ability and accuracy can correlate in the market for news, this model provides
a novel explanation: firms with lower ability face a greater preemptive threat, and are thus
more willing to fake.

Related Literature. The preemption literature has modeled a variety of scenarios, includ-
ing R&D races (Fudenberg, Gilbert, Stiglitz, and Tirole (1983)), technology adoption (Fu-
denberg and Tirole (1985)), the strategic exercise of options (Grenadier (1996)), and finan-
cial bubbles (Abreu and Brunnermeier (2003)). This paper contributes to this literature in
two key ways. The first is in the endogeneity of the payoff function. In the existing liter-
ature, a player’s decision to preempt does not affect its underlying payoff function. That
is, the benefit of preempting may be stochastic (e.g., Grenadier (1996)), but it is exoge-
nous. In my setting, however, a firm’s payoff from reporting hinges on the consumer’s
beliefs about its reporting behavior. Such beliefs are important in the market for news be-
cause consumers may not be able to immediately observe the quality of a news report, e.g.,
whether it was verified before being reported. This assumption has implications for the
nature of the firm’s incentives. While in the existing literature, players earn some exoge-
nous benefit from delaying their actions which counteracts the incentive to preempt, this is
not true in our setting. Rather, I find that even if no such benefit exists exogenously, it will
arise endogenously.

This paper is not the first to consider observational learning in a preemption setting. In
Hopenhayn and Squintani (2011), firms can only observe their own payoffs, and thus draw
inferences about the payoffs of their competitors by observing when and whether they act.
Meanwhile, in Bobtcheff, Bolte, and Mariotti (2017), players receive breakthroughs which
are privately observed, and thus at every moment are uncertain about how much com-
petition they face. In contrast, I assume that firms learn observationally about their own
payoffs, namely whether publishing a story will result in error. It is for this reason that
observational learning causes firms to herd on not only on the decisions of their opponents
but also on the timing of these decisions. In this sense, this paper also connects to the liter-
ature on herding with endogenously-timed decisions (Gul and Lundholm (1995), Chamley
and Gale (1994), Levin and Peck (2008)). In particular, the notion that an action by one indi-
vidual can trigger others to quickly follow suit arises in Gul and Lundholm (1995). While
such behavior is efficient in their setting, that is not the case in ours, where it can cause
errors to propagate through the market.

To my knowledge, there are two other papers that study preemption in breaking news:
Lin (2014) and Pant and Trombetta (2019). In both settings, a firm benefits in some way
from being the first to report, and in Lin (2014), incurs some cost of error. However, neither

5



of these works account for the two novel features highlighted above, i.e., the role of credi-
bility and observational learning. It is because I account for these additional features that I
find errors to be driven by not preemption alone, but also a lack of commitment power and
observational learning. Furthermore, this paper differs from these other works by giving
rise to dynamics in the firm’s reporting behavior, including herding.

This paper also contributes to a broad literature on the impact of competition on news
quality. This literature is surveyed by Gentzkow and Shapiro (2008), with more recent
contributions by Liang, Mu, and Syrgkanis (2021), Galperti and Trevino (2020), Chen and
Suen (2019), and Perego and Yuksel (2018). Chen and Suen (2019) and Galperti and Trevino
(2020) specifically consider the effects of competition on news accuracy. In both papers,
firms compete for the attention of consumers and face constraints or costs to accuracy.
Meanwhile, in my setting, accuracy is not intrinsically costly. Rather, accurate reporting
entails an indirect cost, namely that of being preempted. I contribute more generally to
this literature in two ways. First, I consider the effects of competition on a different notion
of accuracy, namely the prevalence of factual errors. Second, this paper also sheds light on
the dynamics of firm behavior. This allows one to understand the effects of competition on
not only on news quality as a whole, but also on its time path.

Finally, this paper connects broadly to the literature on the strategic provision of in-
formation. Unlike frameworks where a sender seeks to induce a particular action from
receivers (Crawford and Sobel (1982), Kamenica and Gentzkow (2011)), firms in my model
treat information as a good, aiming to maximize its appeal to consumers. This notion un-
derlies the literature on demand-driven media bias. In Mullainathan and Shleifer (2005),
firms bias their reports in an appeal to consumers’ preferences for having their beliefs con-
firmed. Meanwhile, in Gentzkow and Shapiro (2006) bias arises purely in response to rep-
utational concerns, and is thus driven by an aim for long-term profitability. My framework
accounts for both the short-term and long-term objectives of a news firm. This sheds light
on an intertemporal tradeoff faced by news media: low-quality reporting may benefit a
firm in the short run, but can cause damage in the long run. Separately, I note that the kind
of deception firms engage in shares common threads with other work. The notion of faking
is also studied in Boleslavsky and Taylor (2020) in a competition-free setting that encorpo-
rates discounting. Furthermore, the endogenous Poisson arrival of inaccurate information,
a feature our equilibrium exhibits, also arises in Che and Hörner (2018), and takes the form
of “spamming” by recommender systems.

Outline The remainder of the paper is organized as follows. Section 2 presents the model.
Section 3 is dedicated to characterizing its equilibrium, first considering the monopoly
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benchmark and then encorporating competition. In Section 4, I present the core economic
implications of this equilibrium, which pertain to the effects of competition and equilib-
rium dynamics. In Section 5, I present comparative statics. Section 6 considers an exten-
sion of the model in which firms have heterogenous learning abilities. Finally, Section 7
concludes. All formal proofs are relegated to the Appendix.

2. A model of breaking news

There are N ≥ 1 firms, indexed by i, and one consumer. Time, which is continuous and
has an infinite horizon, is denote by t ∈ [0,∞) . There is a time-invariant state θ ∈ {0, 1},
which denotes whether a particular story is true (θ = 1) or false (θ = 0). All players are
endowed with a common prior p0 ≡ Pr(θ = 1) ∈ (0, 1).

Each firm privately learns about the state by means of a one-sided Poisson signal: if θ =

1, a signal revealing that θ = 1 arrives to each firm at a Poisson rate λ > 0. To formalize this
learning process, let si ∈ [0,∞] denote the time at which such a conclusive signal arrives
to firm i, with si =∞ denoting that a signal never arrives. I assume that si ∼ (1− e−λsi) if
θ = 1, and si =∞ if θ = 0. I further assume that conditional on θ = 1, si is i.i.d. across firms.
Under this learning process, firms validate a story by receiving breakthroughs. I assume
this learning process because it reasonably approximates the learning that takes place in a
breaking news setting. One can imagine that given the short lifecycle of a breaking news
story, firms do not seek piecemeal evidence but rather pursue reliable sources who can
confirm the story. For instance, in the case a terrorist attack, this would entail reaching out
to contacts in the police department.

In addition to learning about the story, firms also report about it. Each firm has a single
opportunity to make a report over the course of the game. I assume that firm does not
choose what to report, but instead whether and when to do so. As the payoff function will
soon illustrate, the content of this report can be interpreted as an assertion that the story
is true, i.e., that θ = 1. A report history H is a partially ordered set of pairs (i, ti), pairing
each firm i who has reported with a report time ti, with elements ordered according to the
order in which the respective reports were made.4 Report histories are public information:
at every time t, all players observe the current report history. Thus, firms not only learn
about θ via their private signal, but also observationally by means of their rival firms’
reports.

4 Formally, elements are ordered according to relation %, where (i, ti) � (j, tj) if ti > tj or ti = tj but j
reported first, and (i, ti) ∼ (j, tj) indicates that the reports were made simultaneously.
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A firm who never reports earns a payoff of 0. A firm who does report earns

knα− βI(θ = 0). (1)

The first term of (1), knα, denotes the immediate market share (i.e., viewership or reader-
ship) that the firm enjoys from reporting a story. kn captures the role of the firm’s order n in
its payoff, while α denotes the credibility of the firm’s report. Formally, an index n denotes
that the firm was the nth to report. The kn are constants, where k1 ≥ k2 ≥ ... ≥ kN ≥ 0. This
assumption accounts for competition. All else equal, firms who report early compared to
their competitors enjoy greater market share. The firm’s payoff is also increasing in the
credibility of its report, α. A report’s credibility is the consumer’s belief, at the time the
report was made, that the firm has received evidence that θ = 1. Formally, this is the belief
that si ∈ [0, t], where t is the time of the firm’s report. While the kn are exogenous, α is en-
dogenous. In assuming a product form for the market share, I take the stance that a report
is profitable only insofar that consumers believe it was informed. This captures the notion
that consumers value accuracy in journalism, and thus only consume news to the extent
that they find it credible.

The second term of (1), −βI(θ = 0), captures the ex-post penalty of error: a firm who
reports when θ = 0 incurs a penalty, given by a constant β > 0. This penalty captures the
reputational harm a firm suffers from making a report that is later uncovered to be false.

2.1. Equilibrium

A Markov strategy F is a set of distributions Fp,n over future report times for each belief
p ≡ Pr(θ = 1) and order n ∈ {1, ..., N} of the next firm to report.5 Formally, let t denote
the span of time the firm waits before reporting conditional on not receiving a conclusive
signal. Then, t is distributed according to Fp,n ∈ ∆[0,∞], where t = ∞ denotes a lack of
report altogether.6 I restrict attention to symmetric equilibria, and thus will omit the firm’s
index from the Fp,n in much of the analysis below.

I place some restrictions on F . First, I assume that for all (p, n), Fp,n must be piecewise
twice differentiable and right-differentiable everywhere on [0,∞). This restriction grants
analytical convenience and ensures that all equilibrium objects are well-defined.7

5 Formally, n = |H| + 1, where H denotes the current history. I assume that if m firms report at the same
history H , one firm will be assigned order n, another n+ 1, etc., with their identities randomly determined.

6 By defining strategies in this way, I assume that firms react can instantly to a competitor’s report. To
illustrate this point, suppose Fp,2(t) = 1 for all t and p. Then if some firm makes the first report at t, all other
firms will also report at t.

7 Note that F satisfies the above restrictions if and only if there exist two functions on p, qn and bn, where
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Second, I impose a selection criterion (SC): a firm immediately reports once it has learned
the story is true. This criterion is stated formally as follows:

Definition 1. F satisfies (SC) if

F1,n(t) = 1 for all t ≥ 0, n ∈ {1, ..., N}.

(SC) imposes that firms do not abstain from reporting a story they know to be true. It
serves the purpose of ruling out unintuitive equilibria with periods of silence, which can
only be supported by off-path beliefs that reports made during these gaps entail little or no
credibility. An implication of this assumption is that fixing any starting belief p, all players
who have not yet reported will share the same common belief about the state after t time has
passed. I denote this common belief by p(t).

While defining strategies in this way, i.e. with a separate distribution for each (p, n), is
convenient, it introduces redudancy. Thus, I must impose a consistency condition to ensure
that the Fp,n are consistent with each other whenever on-path.8 This condition stipulates
that Fp,n and Fp(t),n are related via the following formula:

Fp(t),n(s) =
Fp,n(s+ t)− Fp,n(t−)

1− Fp,n(t−)
for all s ≥ 0 whenever Fp,n(t) < 1, (2)

where Fp,n(t−) ≡ limτ↑t Fp,n(τ). This formula is an immediate result of Bayes Rule.

Before proceeding, I define two intuitive terms to describe reporting behavior: faking
and truth telling. A report is fake if it is made by a firm despite lacking independent confir-
mation, i.e., a signal si 6= ∅. Meanwhile, a report that is made in response to such a signal is
truthful. I use these terms to not only describe a firm’s report, but also its behavior: a firm
is faking if it is sending a fake reports, while it is truth telling if its reports are exclusively
truthful. Given the above selection assumption, strategies only differ in the distributions
they place over fake reports.

I seek a symmetric perfect Bayesian equilibrium of this game. This is defined as a

for all (p, n) and t ≥ 0,

Fp,n(t) =
∑

s≤t|qn(p(s))>0

qn(p(s)) +

∫ t

0

bn(p(s))ds

such that bn are piecewise differentiable and qn(p) = 0 at all but a countable number of p. Namely, qn denotes
the point mass of reports, while bn denotes the right hazard rate of reports.

8 This condition is analogous to the closed-loop property specified in Fudenberg and Tirole (1985). I adopt
the term consistency condition from Laraki, Solan, and Vieille (2005), who define this condition for a general
class of continuous-time games of timing.
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Markov strategy F paired with beliefs α and p at each history such that F satisfies se-
quential rationality and both α and p are consistent with Bayes Rule.

The consistency of α with Bayes Rule implies that it must be given by the following
formula at all (p, n) on-path: 9

αn(p) =


λp

λp+bn(p)
if Fp,n(0) = 0

0 if Fp,n(0) > 0
(3)

where bn(p) ≡ F ′p,n(0+) denotes the right-derivative of Fp,n at 0. That is bn(p) denotes the
instantaneous hazard rate of fake reports by a firm. This can be interpreted as the intensity
with which a firm fakes at a particular (p, n).

This formula is intuitive. If Fp,n(0) > 0, there exists a point mass of reports at (p, n).
However, because conclusive signals are continuously distributed over time, the probabil-
ity with which a valid report is made at (p, n) is zero. Thus, the consumer and all com-
peting firms know with certainty that a report made at (p, n) was fake, and thus assigns to
it a credibility of zero. Meanwhile if there does not exist a point mass of reports at (p, n),
credibility is assessed by comparing the instantaneous arrival rate of truthful reports (λp)
to that of fake reports (bn(p)), assigning higher credibility to reports made when the hazard
rate of fake reports is comparatively low.

3. Equilibrium characterization

3.1. Properties of equilibrium

I begin by establishing two necessary conditions on the firm’s equilibrium strategy that
will guide the equilibrium characterization. Namely, I show that there are no jumps and no
gaps in the distribution of fake reports whenever credibility is less-than-perfect. These two
properties arise in other games with continuous strategy spaces, albeit in different forms.10

In my setting, these properties hold even in the absence of competition. As I will illustrate
below, this is because they are driven by the endogeneity of the firm’s payoff.

These two properties are stated formally as Lemma 1:

Lemma 1. In equilibrium, at any (p, n) on-path Fp,n is

9 Formally, the formula is derived by applying Bayes Rule to a discrete-time approximation of the beliefs
that obtain under this game. This derivation is presented in Appendix A.

10 In particular, similar properties have been established in war of attrition games (Hendricks, Weiss, and
Wilson (1988)) and all-pay auctions (Baye, Kovenock, and De Vries (1996)).
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(a) continuous at all t whenever p < 1

(b) strictly increasing at any t such that αn(p(t)) < 1.

Let us begin by considering part (a) of Lemma 1, i.e., the “no jumps” property. This states
that fake reports are distributed continuously over time whenever a firm is not certain that
the story is true. I.e., there can never be a point mass in faking when p < 1. Notably, this
property holds even when competition is absent (N = 1). I will now argue that such point
masses cannot occur because they give rise to a profitable deviation. This is driven by the
association between the firm’s strategy and its credibility in equilibrium (i.e, (3)): reports
that are made whenever there is a point mass in faking yield zero credibility. Meanwhile,
faking while also not being certain than the story is true yields a strictly positive expected
penalty β(1 − p). This implies that a firm’s value from faking at such a time is strictly
negative. Thus, the firm can profitably deviate by truth telling at that time: truth telling
precludes the firm from making an error, and therefore ensures a weakly positive payoff.

Next, let us turn to part (b) of Lemma 1, the “no gaps” property. This states that when-
ever the firm is less-than-fully credible, the hazard rate of fake reports must be strictly
positive. In other words, firms must mix between faking at all times in which αn(p(t)) < 1.
Again, this property results directly from the formula for α (3): whenever credibility is less-
than-perfect, the firm must be faking at some positive rate bn(p). While straightforward,
this property of the firm’s strategy has important implications for incentives in equilib-
rium. In particular, it implies that whenever a firm’s credibility is less-than-perfect, it must
be indifferent between faking instantly and waiting an infinitesimal increment of time be-
fore faking. This indifference condition will be crucial to characterizing the firm’s behavior
in equilibrium.

3.2. The monopoly benchmark and role of commitment

Before proceeding with the full model characterization, let us consider the special case
in which there is a single firm, i.e. N = 1. This serves two purposes. First, it elucidates the
forces at play when competition is absent. In particular, it shows that errors can occur even
without competition, and that such errors are driven by a lack of commitment power by the
firm. Second, it serves as a benchmark for understanding the marginal impact competition
on firm incentives and behavior.

I now state the monopoly characterization in terms of the firm’s credibility. Because
there is a single firm, I will drop the n index from all functions and parameters.
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Claim 1. Under a monopoly, for all p on-path

α(p) = min{β/k, 1}.

Claim 1 establishes two core facts about the monopoly equilibrium. First, credibility is
constant over time. As I will illustrate below, constant credibility implies that the firm’s re-
porting behavior is often not static. Namely the firm becomes more truthful over time. Sec-
ond, the monopolist’s credibility is weakly increasing in β, and is less-than-perfect when-
ever β is sufficiently small. That is, errors occur even without competition, whenever the
ex-post penalty from erring is sufficiently small. The remainder of this subsection is dedi-
cated to understanding why these two properties hold under a monopoly, and what they
imply about the firm’s reporting behavior.

Let us begin by understanding why credibility must be constant in equilibrium. Recall
that a firm mixes between faking at all times in which its credibility is less-than-perfect
(Lemma 1(b)). Thus, whenever αn(p) < 1, the firm must find it optimal to both fake imme-
diately and after some short wait dt.11 By the martingale property of firm’s belief p about
the state, both of these strategies will yield the same expected penalty from error β(1− p).
Then, in order to ensure that both strategies are optimal, the firm’s prize from reporting
must be the same as well. I.e., credibility must be constant. What is implicit in this rea-
soning is that waiting is not costly to a monopolist. In part this is because waiting is not
intrisically costly to the firm, i.e., future payoffs are not discounted. This is also due to the
fact that a monopolist does not face competitors, and thus does not incur the implicit cost
to waiting that comes from being preempted. In fact, we will later illustrate that a cost of
preemption precludes α from being constant to equilibrium (Subsection 4.1).

The constant nature of the monopolist’s credibility implies that its reporting behavior
will often not be static: the hazard rate of faking (b) strictly decreases over time and tends
to zero whenever credibility is less-than-perfect. That is, even when a firm fakes, it will
become gradually more truthful over time. This is illustrated by Figure 1, which graphs b
over time. While the decreasing nature of b follows directly from (3), there is also an in-
tuition behind this. The more time passes without observing a report, the more skeptical
the consumer becomes that the story is true. This declining belief an artifact of the firm’s
one-sided Poisson learning process: the absence of a report means that the firm has not
received a conclusive signal, and thus the common belief p(t) that the story is true decays

11 Implicitly, this relies on the assumption that αn(p(t)) is continuous over time: this ensures that if αn(p) <
1, then αn(p(dt)) < 1 for dt sufficiently small. While I do not discuss this here, I formally establish continuity
in Subsection B.2 (see Lemma 4).
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Figure 1: Hazard rate of fake reports in monopoly case
when β < kn.

over time.12 This means that the consumer believes that truthful reports will become in-
creasingly less probable. To ensure that the firm’s credibility remains constant, the hazard
rate of fake reports must decline as well, and eventually vanish.

Let us now consider the second property mentioned above, i.e., that a monopolist will
err with positive probability as long as the penalty of error is sufficiently small. This prop-
erty demonstrates that competition alone is not responsible for errors in equilibrium. I now
argue that such errors are driven by a firm’s inability to commit to a reporting strategy.

To illustrate this point, let us first understand why truth telling cannot be sustained
when k > β. A firm that truth tells in equilibrium enjoys full credibility when making a
report. Thus, the firm’s payoff from reporting when the story is false (θ = 0) is positive: the
immediate payoff of the report, k, strictly exceeds the penalty β from error. Consequently,
faking is a profitable deviation. When θ = 1, both faking and truth telling will ensure the
firm reports eventually, earning a payoff of k. However, faking is strictly better for the firm
when θ = 0: it ensures a strictly positive payoff whereas truth telling yields nothing. The
profitability of this deviation is driven by the fact that consumers cannot discern by merely
observing a report whether it is fake. They only hold a belief about this, i.e., they assess
credibility. While this assessment is made rationally based the beliefs about the firm’s
strategy, the firm can always deviate after credibility has been determined. This is because
the firm is unable commit to a reporting strategy, i.e., to forbid itself from deviating after the

12 Formally, in the monopoly case, p(t) = pe−λt

pe−λt+(1−p) .
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credibility has been assessed. Faking is especially tempting to the firm after its credibility
has been assessed because it will not damage the firm’s immediate payoff of reporting.

Let us now consider how a monopolist firm would behave if it did have the ability to
commit. That is, suppose that the the firm could announce its strategy at the start of the
game, and was unable to deviate from it once credibility had been assessed.13 Under com-
mitment, faking is more costly for the firm: it would always damage the firm’s credibility,
and thus its immediate payoff from reporting.

One can immediately see that under commitment, the firm would always choose truth
telling over its non-commitment strategy even when β < k. By committing to truth telling,
the firm guarantees that it will earn a payoff of k if θ = 1, and 0 if θ = 0. Meanwhile, under
the no-commitment equilibrium, the firm will earn strictly less (β) when θ = 1, because
it’s credibility is strictly lower. Meanwhile, it will also earn 0 when θ = 0: though the
firm may fake, its payoff from faking is exactly equal to the penalty of error, meaning that
the firm will break even. In fact, one can show that truth telling is not only better than
the equilibrium strategy, but that it is the unique commitment solution under a monopoly.
That is, given the ability to commit, a monopolist would never commit errors. This result
is presented formally in Appendix C. We can thus conclude that a lack of commitment is
responsible for errors under a monopoly. This also illustrates an important point about a
firm’s incentives: while commitment makes faking more costly to the firm, it in fact leaves
the firm better off in equilibrium. This observation points to a larger theme that will persist
even under competition: firms fake not because it intrinsically benefits them, but because
it is a side effect of their strategic considerations.

3.3. Full model characterization

Here, I establish existence and uniqueness of an equilibrium in the full model. To this
end, I show that any equilibrium is the solution to a recursive set of boundary value prob-
lems. Specifically, whenever the firm is not truthful, its credibility must satisfy an ODE
and appropriate boundary condition. Characterizing the equilibrium in this way not only
allows one to establish existence and uniqueness, but lays the foundation for the economic
analysis that follows.

I begin by establishing the precise conditions under which a firm is truthful. I present
this result for two reasons. First, it serves as a first step towards a full characterization.
Second, while I illustrate this point more generally in the section that follows, this result
shows how competition can deteriorate credibility and exacerbate faking.

13 While we discuss the commitment solution informally here, a formal treatment is presented in Ap-
pendix C.
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Proposition 1. In equilibrium, at any (p, n) on-path, αn(p) = 1 if and only if the following two
conditions hold:

1. kn ≤ β

2. p ≤ p∗n ≡ min{ kn−β
kn

N−n+1
−β , 1}.

This result provides two conditions, on the model parameters and the common belief
about the state, that are both necessary and sufficient for the firm to truth tell. The first
condition, that kn ≤ β, was both necessary and sufficient for truth telling under a monopoly
(Claim 1). However, Proposition 1 asserts that when firms face competition, this condition
alone is not enough to ensure truth telling. A second condition is required: the common
belief about the state must be sufficently low, lying below some threshold p∗n. That is, firms
must also be sufficiently skeptical about the validity of the story.

The necessity of this second condition illustrates an important point: truth telling is harder
to sustain under competition. To understand why, note that truth telling is possible only if
the firm does not have an incentive to deviate by faking. In the monopoly case, this was
true as long as the cost of an error (β) outweighed the benefit from reporting (k). However,
competition introduces an additional cost to truth telling: the risk of being preempted. If
a firm engages in truth telling, there is a risk that its opponent learns the story is true, and
thus reports first. A firm can evade this risk by faking, which ensures that it will not be
preempted.

In the above reasoning, we took for granted that being preempted is costly for the firm
whenever it is truth telling. Let us now explain why this is true. It is most obvious in
the winner takes all case: all firms, with the exception of the first to report, are guaranteed
to earn a payoff of zero, i.e., kn = 0 for all n > 1. In this case, the costliness of being
preempted is an artifact of the model parameters: a firm who is preempted will earn noth-
ing from reporting. Generally, however, the decreasing nature of the kn alone does not
guarantee that being preempted is costly: improved credibility for succeeding firms could
endogenously counteract the decay in the kn and make being preempted costless, or even
beneficial. However, one can show that being preempted must be costly for the firm when-
ever it is truth telling. This is due to the fact that truthfulness guarantees that the firm
enjoys full credibility, which leaves no room for improvement in credibility.

Now, let us consider the significance of the second condition, i.e., that the firm will only
be truthful if it is sufficiently pessimistic about the story’s validity. While truth telling
entails a risk of being preempted, faking entails a different kind of risk: that of making
an error and incurring penalty β. Both of these risks depend on the belief p about the
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state. A higher belief p is associated with a lower risk of error and a higher risk of being
preempted, both of which make faking relatively more appealing to the firm, and thus,
make truth telling more difficult to sustain. While it is immediate that a greater p implies a
smaller risk of error, that it implies a greater risk of being preempted is less obvious. To see
why this is true, note that if the story is true, a competitor may preempt for two different
reasons: it has confirmed the story, or is faking. However, if the story is false, preemption
is triggered solely by faking, and thus the risk of being preempted is lower. Thus, a firm
who is more confident in the story will perceive its risk of being preempted to be greater.

While Proposition 1 pins down the conditions under which the firm is fully credible in
equilibrium, it remains to characterize the firm’s behavior when truth telling does not hold.
To this end, we obtain a key result: the firm is faking, credibility must satisfy a particular
ODE and limit condition.

Proposition 2. In equilibrium, at all (p, n) on-path where kn ≥ β or p > p∗n ≡
kn−β
kn/n−β , the

following ODE must be satisfied:

α′n(p) = − 1

kn(1− p)αn(p)

N − n
N − n+ 1

[knαn(p)− Vp̃,n+1 − β(1− αn(p))(1− p)] (ODE)

where p̃ ≡ αn(p) + (1− αn(p))p.

In addition, limp→0+ αn(p) = β/kn must hold if kn > β, and limp→p∗n+ αn(p) = 1 if kn ≤ β.

The proof for Proposition 2 relies critically on our above observation that whenever a
firm is less-than-fully credible, it must mix between faking immediately and faking after
some short wait, and thus must be indifferent between the two. To state this formally, let δs
denote the pure strategy distribution that places full mass on faking after s time has passed.
In particular, δ0 denotes immediate faking, while δdt denotes faking after some short wait
dt > 0. The indifference condition can then be written as follows:

Vp,n(δ0) = Vp,n(δdt)

where Vp,n(·) denotes the firm’s value from playing a particular strategy at (p, n).

To see how this indifference condition implies (ODE), note that a Taylor approximation
of the firm’s value from waiting, Vp,n(δdt), yields the following:

Vp,n(δdt)− Vp,n(δ0) = [
dp

dt
(knα

′
n(p))− λp(N − n)

αn(p)
(Vp̃,n − Vp̃,n+1)]dt+ o(dt2) (4)

(4) is intuitive. It tells us that waiting to fake, rather than faking immediately, has two
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implications for the firm’s payoff. The first is that the firm’s credibility αn(p), and thus
the payoff enjoyed from reporting, may potentially change. This change in credibility is
approximated by dp

dt
(knα

′
n(p))dt. In addition, by waiting, the firm risks being preempted.

Namely, with probability λp(N−n)
αn(p)

dt the firm is preempted, in which case its expected payoff
will decline by Vp̃,n − Vp̃,n+1. We interpret this decrease in value as the firm’s cost from being
preempted.

Let us now examine both the probability and cost of preemption more closely. As one
might expect, the probability of being preempted is increasing in the number of rival firms
(N − n) and the expected rate at which these rivals are able to confirm the story (λp). It is
also decreasing in equilibrium credibility. This is due to the fact that lower credibility firms
are more likely to fake, and thus pose a greater preemptive threat.

As for the firm’s cost of being preempted, let us begin by considering the second com-
ponent of this expression, given by Vp̃,n+1. This denotes the firm’s continuation value in the
event that it is preempted. Importantly, being preempted not only affects the firm’s order
but also the the common belief about the state. While the common belief was p prior to the
rival firm’s report, it increases to p̃ ≡ αn(p) + (1− αn(p))p following the report. This is due
to observational learning. Specifically, a rival firm’s report means one of two things: either
the report was triggered by the arrival of a conclusive signal, in which case the story is cer-
tainly true and the belief would become p, or it was not, in which case the report provides
no new information and the belief remains p. The common belief following this report is a
weighted sum of these two conditional beliefs. In particular, the weight given to the rival
firm’s report being informed by a conclusive signal is precisely its credibility at the time of
the report, αn(p). This new common belief will in turn determine the firm’s continuation
value in the event that it is preempted.

The cost of being preempted measures the impact of being preempted on the firm’s
continuation value. I.e., it measures how much the firm’s continuation value from being
preempted differs from that in which it is not. Importantly, both continuation values are
assessed at the common belief after being preempted, p̃. In this sense, we can view the cost
of being preempted as the firm’s ex-post regret from being preempted.

In order for the indifference condition to be satisfied, the linear term of (4) must equal
zero. This equality yields (ODE). That is, αn(p(t)) must change in precisely such a way that
preserves the firm’s indifference condition.

In addition to establishing (ODE), Proposition 2 imposes a limit condition on the firm’s
credibility. This limit condition always applies at the boundary of the region of beliefs
in which the firm is faking. Let us first consider the case where kn ≤ β. Recall from
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Proposition 1 that in this case, αn(p) = 1 whenever p ≤ p∗n. We must then have that αn(p)

limits to 1 as the belief approaches p∗n. If it did not, then as the belief approached p∗n, the firm
could profitably deviate by not faking immediately, and rather waiting until p∗n is reached
to do so. Thus, this limit condition is needed to sustain the firm’s indifference condition.

Let us next consider the case where kn > β. In this case, the firm never truth tells in
equilibrium, and thus the indifference condition must always be satisifed. As the common
belief p approaches zero, a firm who fakes does so being increasingly certain that its report
is erroneous, and will incur penalty β. Thus, the firm’s payoff from faking limits to the
following:

lim
p→0+

Vp,n(δ0) = kn lim
p→0+

αn(p)− β

Separately, even though the firm sometimes fakes, it must also never fake, i.e., play strategy
δ∞, with positive probability. This guarantees that the hazard rate of fake reporting remains
low enough to ensure that credibility remains sufficiently high, and thus that the firm will
indeed find it optimal to fake.14 As p → 0+, the value of truth telling tends to zero, as
it becomes increasingly likely that the firm never reports. We can thus see that the limit
condition in this case, limp→0+ αn(p) = β/kn, is precisely what is needed to ensure that the
firm is indifferent between faking and truth telling.

To take stock, Proposition 1 and Proposition 2 provide two necessary conditions on equi-
librium credibility. They establish a region under which truth telling must occur in equilib-
rium (Proposition 1), and show that otherwise, credibility must satisfy a recursive bound-
ary value problem (Proposition 2). I further show that these two conditions are not only
necessary, but also sufficient, for an equilibrium.15 There is some intuiton behind this suffi-
ciency result. First, consider the region where truthfulness is necessary. Let us suppose by
contradiction that is not an equilibrium strategy. Then, even though the firm’s credibility
would be 1 on this region, it could profitably deviate by choosing a strategy that involves
faking. However, such a strategy could never occur in equilibrium, and thus would be
less profitable than truth-telling even the firm’s opponents are also faking (i.e., the risk of
being preempted is higher) and credibility is less-than-perfect (i.e., the benefit of reporting
is lower). Such a strategy would thus not be more profitable than truth telling when the
firm’s opponents are not faking, and credibility is perfect. Meanwhile on the region where
αn(p) < 1, the firm’s strategy involves faking. Faking is optimal on this region because
(ODE) guarantees it. In particular, it ensures the firm’s indifference condition holds, i.e.,
that faking at any such time is optimal.

14 I formalize this result in the Appendix as Lemma 2.
15 This result is stated in the Appendix as Lemma 5.
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I thus establish that the equilibrium is fully characterized by the solution to a recursive
boundary value problem. While I do not have a closed-form solution to this problem on
the region where αn(p) < 1, use the Picard Theorem to establish both existence and. This
result is stated formally as Theorem 1.

Theorem 1. There exists a unique equilibrium (where uniqueness applies at (p, n) on-path).

4. Economic Implications

In this section, I consider key the economic implications of this equilibrium. In par-
ticular, I explore two notions: (1) the dynamics of firm behavior and (2) the impact of
competition on both credibility and the prevalence of errors.

4.1. Equilibrium dynamics

Let us consider how a firm’s credibility and reporting behavior evolves over the course
of time. These results will not only illustrate when firms are most prone to erring, but will
also allow us to better understand the endogenous nature of the firm’s incentives.

Dynamics take two separate forms in equilibrium: continuous changes and discrete changes.
As I will show, continuous changes occur in the absence of any new reports, while discrete
changes are triggered by a new report. More formally, let us denote a subgame by a pair
(p, n), where p denotes a starting belief and n the order of the next firm to report. I claim
that fixing a subgame, i.e., assuming that no new reports are made, the firm’s credibility
will change continuously over time. In particular it will gradually improve whenever pre-
emptive concerns are present. This result is stated formally as Proposition 3.

Proposition 3. For all (p, n) on-path, αn(p(t)) is weakly increasing in t. Furthermore,

1. If β > kN , then α′n(p(t)) > 0 whenever αn(p(t)) < 1.

2. If β ≤ kN , then αn(p(t)) is constant in t.

While αn(p(t)) must be constant under a monopoly, competition can introduce dynam-
ics. Proposition 3 asserts that as long as αn(p(t)) has not reached its upper bound of 1, it is
strictly increasing precisely when being preempted is costly to the firm.

Formally, this follows from (ODE). It is especially clear when we write (ODE) in the
following form:

d

dt
αn(p(t)) =

λp(N − n)

αn(p(t))kn
[Vp̃,n − Vp̃,n+1]
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We can see that αn(p(t)) must strictly increase over time whenever the cost of preemption
is strictly positive.

There is also a clear intuition for this result. Whenever the firm is less-than-fully cred-
ible, it must be indifferent between faking immediately and waiting some period of time
before doing so. However, if credibility remained constant, this indifference would fail
whenever preemption is costly: the firm would obtain the same expected payoff from re-
porting in both cases, but by reporting immediately would avert being preempted. To
ensure that indifference is preserved, the firm must somehow be compensated for wait-
ing. This can only be achieved by means of strictly increasing credibility. While waiting
presents a cost to being preempted, a strictly increasing αn(p(t)) ensures that the firm’s
report will be rewarded more in the event that it is not preempted. Thus, the increasing
nature of αn(p(t)) is crucial to balancing the firm’s equilibrium incentives: it endogenously
mitigates the haste-inducing effects of preemptive risk.

Let us now consider the implications of this result. It asserts that news reports that are
made with greater delay for research are generally more trustworthy in the eyes of con-
sumers. That is, all else equal, consumers will have greater trust in a firm’s journalistic
standards when a report is not made quickly. In this sense, this result conforms with con-
sumers’ stated concerns about hasty reporting. This model provides a justification for such
concerns that are grounded in the firm’s incentives. Furthermore, by the same reasoning
presented in the monopoly section, the increasing nature of credibility within a subgame
implies that firms become gradually more truthful over the course of the game. That is,
bn(p(t)) is strictly decreases over time whenever the firm is not fully credible.

Finally, while Proposition 3 asserts that αn(p(t)) must be strictly increasing when there
is a cost to being preempted, this is not always the case. Specifically, when kN ≥ β, being
preempted is costless in equilibrium (i.e., Vp̃,n − Vp̃,n+1 = 0), and thus αn(p(t)) is constant.
In other words, preemptive concerns endogenously disappear whenever the ex-post cost
of error, β, is sufficiently small. Formally, the credibility function will adjust in such a
way that ensures knαn(p) = kn+1αn+1(p) for all p. This highlights an notable feature of
our model: competition alone does not imply preemptive concerns. Even if competition is
present, credibility can change in such a way that makes preemption costless.

Let us now consider discrete changes in the firm’s credibility and faking. While credibil-
ity changes continuously within a subgame, a rival report will cause the firm’s subgame to
change. That is, a report made at (p, n) will cause the order of the next reporter to increase
to n + 1 and the common belief to increase to p̃. This will in turn result in discrete jumps
in the firm’s credibility and hazard rate of faking (b). These discrete jumps are apparent in
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Figure 2: Simulations of crediblity and the hazard rate of fake reports, respectively, over the course
of the game. Discrete jumps in both graphs signify that a firm has made a report.

Figure 2, which plots a simulation of α and b over the course of the game. As these graphs
illustrate, jumps in both α and b are not monotonic. An opponent report may trigger either
a boost or decline in α and b. This can be seen in Figure 2, while the first four reports cause
credibility to decrease and faking to increase, the fifth report causes credibility to decrease
and faking to increase.

These first four reports illustrate a copycat effect, in which one firm’s report causes an
immediate a surge in the rate at which others fake.

Let us now consider what is responsible for this copycat effect. To do so, first note that
the discrete change in credibility that happens when a firm makes the nth report under
common belief p is given by the following:

αn+1(p̃)− αn(p)

where again p̃ > p denotes the common belief in the immediate aftermath of the report.
This expression shows that a report by one firm affects credibility by imposing two differ-
ent changes to the environment. First, it impacts the order of the next firm, i.e., by ensuring
that the next firm to report will be the n + 1th firm to report, rather than the nth. Second,
it causes a discrete upwards jump in the common belief: firms will learn observationally
from the report of their opponent, and thus become more confident that the story is true.
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The following decomposition isolates the respective impacts of these two changes:

αn+1(p̃)− αn(p) = [αn+1(p̃)− αn+1(p)]︸ ︷︷ ︸
change in belief

+ [αn+1(p)− αn(p)]︸ ︷︷ ︸
change in order

The effects of a change in order alone, αn+1(p) − αn(p), can have an ambiguous impact on
firms’ credibility in equilibrium. In particular, it hinges on the way in which the maximal
prize kn changes with a firm’s order.

However, the effect observational learning is not ambiguous: it will always cause a dete-
rioration in credibility. Formally, αn+1(p̃)− αn+1(p) will always be negative in equilibrium,
and strictly so whenever premeptive concerns are present (i.e., whenever kN < β). The
negative correlation between credibility and the firm’s belief that the story is true is also
apparent in Proposition 3: later reports are associated with lower common beliefs about
the story being true, and also with higher credibility. There is also a clear intuition to this:
the more pessimistic the firm is about the story’s validity, the higher its expected penalty
from faking will be. This in turn yields the firm less willing to fake, and thus more credible
in equilibrium. We thus see that the downwards jumps in credibility are caused, at least in
part, by observational learning.

4.2. Effects of Competition

In this section, I consider the impact of competition on both credibility and faking in
equilibrium. I assess the impact of competition by comparing the equilibrium under com-
petition (n ≥ 2) to that under the monopoly benchmark.

In order to isolate the effects of competition, I assume that the total ability of the market
to learn is constant across these two cases. In particular, I assume that if each firm has abil-
ity λ under competition, then the firm has ability nλ under the monopoly benchmark. In
making this normalization, one ensures that our comparison accounts for only the impact
of competition per se and does not confound this with the effects of an increased aggregate
ability to learn that firm entry may entail. I do however consider the effects of market entry
in the comparative statics section below, in which we do not normalize the total ability to
learn.

These findings are shown in Figure 3, which depicts both credibility and the hazard rate
of faking in the market (nbn(p(t))) within a subgame, i.e., fixing a p and an n. The top and
bottom row show the case where β ∈ (kN , kn) and β > kn, respectively. In both cases,
we see that competition causes a deterioration in credibility and an increase in faking. The effect
of competition in this case is driven by the cost of preemption that it induces. Firms are
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Figure 3: Credibility αn(p(t)) (left) and the hazard rate of faking in the market nbn(p(t)) (right)
under competition and a monopoly. Top row depicts case where kn > β, while bottom row depicts
case where β ∈ (kN , kn).
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more inclined to fake, and thus less credible because the cost of preemption makes truth
telling more costly. When β ∈ (kN , kn), faking occurs even under a monopoly, but moreso
under competition. That being said, the effects of competition dissipate over time, as the
competition level of credibility limits to the monopoly level as time passes. Meanwhile,
in the case where β > kn, a monopolist firm will never fake, faking does temporarily occur
under competition. Again, the effects of competition are greatest early on with firms faking
gradually less as time passes.

5. Comparative Statics

In this section, I consider how the equilibrium changes with the parameters of the
model. This will shed light on how various features of the news market can either ex-
acerbate or curb erroneous reporting. These findings are stated as Proposition 4.

Proposition 4. In any equilibrium, for any n, αn(p(t)) is

(a) weakly increasing in β, and strictly so whenever αn(p(t)) < 1.

(b) weakly increasing in λ, and strictly so for t > 0 whenever αn(p(t)) < 1 and kN < β.

(c) weakly decreasing in N , and strictly so whenever αn(p(t)) < 1, when t ∈ [0, t] for some
t > 0.

Part (a) states that no matter when a firm reports, it will be more credible under high
β. This result is intuitive: a higher ex-post cost of error means firms are less likely to fake,
and thus more credible. This result is a consequence of the firm’s equilbrium incentives: a
higher β makes faking more costly. This will either induce the firm to resort to truth telling
instead, or require that it is compensated for this coster faking with greater credibility.

Now, let us consider the comparative static on λ. This result is also intuitive: it states that
credibility is higher whenever firms have a greater ability to learn. Let us now understand
what is driving this result. We first note that at any belief p the firm may hold, a change
in λ will have no effect on αn(p) in equilibrium. This is due to the fact that λ does not enter
the boundary value problem which dictates the firm’s credibility, and thus changes in λ

have no effect αn(p). However, changes in λ will have an effect on the time path of the
common belief p(t). Under a higher λ, firms learn about the state more quickly, and thus
p(t), the belief that θ = 1 conditional on no reports, will decay faster. That is, firms will
be more pessimistic about the story’s validity at any time t > 0 when λ is higher. This
greater pessimism about the story translates to a higher expected cost of erring, which thus
makes faking more costly. As was true of the comparative static on β, this increased cost
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Figure 4: A simulation of αn(p(t)) when λ = 1 (blue line)
and λ = 0.5 (red line). For the remaining parameter values,
the following specifications were made: β = 0.5, p0 = 0.7,
N = 8, kn = 0.7(N−n).

of faking must be counterbalanced by a higher credibility α1(p(t)) at every time t > 0.
This comparative static is illustrated by Figure 4, which shows simulations of the firm’s
credibility function under both high and low values of λ.

Let us finally consider the comparative static on the total number of firms, N . While it
pertains to the level of competition, this exercise is notably distinct from our analysis in
the previous section. Therein, we studied the overall impact of competition on equilibrium
outcomes. This was done by comparing the case where competition is present (N > 1) to
the monopoly case (N = 1) while holding constant the total learning ability of the market,
Nλ. With this comparative static, we are instead considering the marginal impact of an
additional firm entering the market. In particular, we do not hold fixed the total learning
ability of the market. Rather, I assume that this additional firm adds to the total learning
ability of the market. In doing so, one can study the effect of proliferation in the news
industry.

Proposition 4 states that adding a firm to the market will guarantee a deterioration in
credibility, but only for a limited amount of time. In fact, the addition of a firm may result
in an improvement in credibility during later periods. This phenomenon is captured by
Figure 5. This figure plots simulations of αn under N = 5 and N = 6, respectively, holding
all other parameters fixed. While the addition of a firm lowers credibility in early periods,
it improves credibility in later periods.
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Figure 5: A simulation of αn(p(t)) when N = 5 (blue line)
and N = 6 (red line). For the remaining parameter values,
the following specifications were made: β = 0.5, p0 = 0.7,
λ = 1, kn = 0.7(N−n).

To understand this result, note that an additional firm will effect two separate changes
to the market. First, each firm faces greater competition, and thus a greater risk of being
preempted. This change is precisely what was captured in our earlier exercise regarding
the effects of competition. As illustrated by Figure 3, this change will cause a deteriora-
tion in credibility. However, an additional firm also increases the market’s total ability to
learn. This change is captured by our comparative static on λ, which shows that an in-
crease in learning ability will cause an improvement in credibility. Thus, the effect of an
additional firm can be understood as the combination of two countervailing forces: higher
competition and a higher ability to learn within the market.

To understand why the credibility-diminishing effect of higher competition must dom-
inate in early periods, we must compare the relative magnitudes of these the two counter-
vailing forces. Figure 4 illustrates that while credibility is pointwise higher at every t > 0

under high λ, this difference is negligible in early periods. This is due to the fact that
firms learn gradually over time, and thus it takes time for differences in learning ability
to substantially impact firms’ beliefs. Meanwhile, as illustrated by Figure 3, an increase
in competition will have a non-negligible impact on credibility even when t = 0. For this
reason, the impact of higher competition must dominate in early periods, resulting in a net
reduction in credibility. However, as time passes and the effect of faster learning grows, a
reversal may take place, i.e., there may be a net improvement in credibility. Such a scenario
is precisely what is depicted by Figure 5.
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6. Extension: Heterogeneous Ability

In this section, I consider an extension in which firms are heterogeneous in their abilities
to learn. Doing so will shed light on how a firm’s credibility correlates with it’s ability in
equilibrium.

Formally, this extended model is identical to the model above except for three changes.
First, rather than assuming that each firm is endowed with the same ability λ, I assume that
each firm i is endowed with an individual-specific ability λi. As with all other parameters, I
assume that these individual-specific abilities are common knowledge. Second, to simplify
our analysis for this exercise, I will restrict attention to a winner-takes-all setting: i.e., I
assume that kn = 0 for all n > 1. Finally, I relax our assumption that the equilibrium is
symmetric. Thus, different firms (and in particular, firms with different abilities) may play
different strategies in equilibrium and are thus a firm’s credibility is individual-specific.
Accordingly, I let αi denote the credibility of firm i.

I obtain an intuitive result: a firm’s ability correlates positively with its credibility in
equilibrium. This is stated formally as Proposition 5.

Proposition 5. For all (i, j) such that λi < λj , αi1(p(t)) ≤ αj1(p(t)). Furthermore, this inequality
is strict whenever αi1(p(t)) < 1.

Proposition 5 states that regardless of when a report is made, a firm with higher ability
will be more credible.16 Furthermore, a high ability firm will be strictly more credible than
a low ability firm whenever firms are not fully truthful.

Let us now consider why this correlation arises. First, note that high ability firms are
able to confirm a story more quickly and thus, all else equal, pose a greater preemptive
threat in equilibrium. This in turn implies that in comparison to a high-ability firm, a low-
ability firm faces a greater preemptive threat. Thus, the low-ability firm finds immediate
faking more advantageous. In light of this, the firms’ credibilities must adjust in such a
way to preserve their respective indifference conditions. This is achieved endogenously by
means of a lower credibility for the low-ability firm, which ensures that it has less to gain
from faking immediately.

16 This claim restricts attention to the first firm to report, because by the winner-takes-all assumption, all
following senders will never fake, i.e., αi

n(p) = 1 whenever n > 1.
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7. Conclusion

In this paper, I presented a dynamic model of breaking news to understand the nature of
reporting errors. I sought to explain how strategic forces that could induce firms to err. In
this setting, errors were driven by two qualities of the breaking news environment: a firm’s
lack of commitment power as well as competition. I find that competition induces firms to
err through two separate channels: preemptive motives and observational learning. While
preemptive motives can give rise to errors by encouraging firms to report hastily, observa-
tional learning can cause an existing error to propagate through the market.

The second key objective was to understand the dynamics of reporting errors. In equi-
librium, these dynamics take two forms. First, firms become gradually more truthful over
time as long as no new reports are made. Furthermore, a firm’s credibility gradually in-
creases whenever preemptive motives are at play. Importantly, this improvement in cred-
ibility incentivizes firms to take their time, and thus counteracts the haste-inducing effects
of preemption. Dynamics also take the form of discrete changes in the firm’s behavior and
credibility which are triggered by a rival report. In particular, I document a copycat effect,
where a report by one firm can induce a surge in faking by other firms in the market.

While I consider breaking news specifically, this model provides broader insight into
how preemptive concerns can affect the quality of information provided by experts. To
understand how preemption impacts information provision more broadly is a topic that
warrants further investigation.

References

Dilip Abreu and Markus K Brunnermeier. Bubbles and Crashes. Econometrica, 71(1):173–
204, 2003.

Michael R Baye, Dan Kovenock, and Casper G De Vries. The All-Pay Auction with Com-
plete Information. Economic Theory, 8(2):291–305, 1996.
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Appendix A Beliefs in equilibrium

In this section, I will present certain properties and notation regarding the players’ be-
liefs. These will be relevant to the analysis that follows.

First, I remark that at all times t and histories H , all players, with the exception of those
who have already reported, must hold a common belief about the state. I omit a formal
proof as this follows directly from the selection assumption (SC). This assumption implies
that it is common knowledge that all firms who have not yet reported have not observed a
conclusive signal. Thus, all such firms, as well as the consumer, share the same information
set, and thus a common belief about the state.

Next, fixing an initial common belief p, and number of remaining firms n, let us define
two conditional beliefs: p(s) and pi(s). First, let p(s) denote the common updated belief,
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conditional on no new reports being made after s time passes. It follows from Bayes Rule
that

p(s) =
pe−nλs

pe−nλs + (1− p)
(5)

Next, let pi(s) denote the common belief, conditional on the event that player i reported
after s time has passed, and no other reports were made. Again, pi(s) follows directly from
Bayes Rule, given belief α:

pi(s) = αn(p(s)) + (1− αn(p(s))p(s) (6)

To understand how pi(s) is computed, note that if a report is made after time s has passed,
conditioning on the event that i’s report was informed, the common belief will update to
1. However, conditioning on the event that i was uninformed when making the report,
the report would have no impact on the common belief, which would thus be given by
p(s). Thus, pi(s) is given by the weighted sum of these two beliefs, where the weighting is
specified by the belief that the report was informed, i.e., αn(p(s)).

Next, I formally justify equation (3) by showing that it is the limit of Bayes-consistent
beliefs under a discretized version of the game presented in Section 2. To this end, for any
ε > 0, let the ε-approximation of the game be identical to the game presented in section (2),
except with the following modification: any report made by a firm on [0, ε] is observed
by all other players (including the consumer) at ε. Formally, rather than observing ti, the
players observe t̃i, where

t̃i ≡ max{ti, ε}

At any (p, n) that is on-path, let αεn(p) denote the firm’s credibility, i.e., the consumer’s
belief that si ≤ ε given that t̃i = ε, under the ε approximation of the game. Let αεn denote
the right-limit of the αε. Formally:

αn(p) ≡ lim
ε→0+

αεn(p)

I now establish that αn(p) is given by (3) at any (p, n) on-path.

Claim 2. For any (p, n) on-path,

αn(p) =


λp

λp+F ′p,n(0+)
if Fp,n(0) = 0

0 if Fp,n(0) > 0
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Proof. For any ε > 0, αεn(p) is uniquely determined by Bayes Rule and given by

αεn(p) =
p(1− e−λε)

p(1− e−λε) + Fp,n(ε)e−λε
.

First, consider the case where Fp,n(0) = 0. In this case, it follows from L’Hôpital’s Rule that:

lim
ε→0+

αεn(p) =
λp

λp+ F ′p,n(0+)

Next, consider the case where Fp,n(0) > 0. In this case, we obtain

lim
ε→0+

αεn(p) =
0

0 + limε→0+ Fp,n(ε)
= 0

where the final equality follows from the fact that limε→0+ Fp,n(ε) = Fp,n(0) > 0. �

Appendix B Equilibrium characterization

B.1 The firm’s problem

Here, I formally define the firm’s problem. Before proceeding, I define a useful object,
the first report distribution Ψ. Formally, fixing a (p, n), let us index the players who have not
yet reported by i ∈ {1, ..., n}. Then, Ψi(s) denotes the probability that player i reported
at or before s and was not preceded by any of the remaining firms in doing so. Fixing a
strategy profile (F 1

p,n, ..., F
n
p,n), this is given by:

Ψi(s) = p

∫ s

0

e−λr(N−n)
∏
j 6=i

(1−F j
p,n(r))d(e−λr(F i

p,n(r)−1))+(1−p)
∫ s

0

∏
j 6=i

(1−F j
p,n(r))dF i

p,n(r)

The first integral of the expression denotes the probability that i reports before s time has
passed, and was the first of the remaining firms to do so, conditional on θ = 1. Meanwhhile
the second integral denotes the same probability conditional on θ = 0. Ψi(s) is then the
weighted sum of these two probabilities, where the weight is given by the common belief p
about θ. Note that while Ψ is a function of F , p, and n, I omit this dependences for brevity.

The firm’s problem is defined recursively as follows. Fix an n, p, i, α, and continuation
value Vp,n+1 for each p. Trivially, Vp,0 = 0 for all p. Assume all firms j 6= i play the same
strategy F , and let −i refer to a generic j 6= i. Then i’s expected payoff from playing
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strategy F i at (p, n) is given by:

Vp,n(F i) =

∫ ∞
0

[knαn(p(s))− β(1− pi(s))]dΨi(s) + (N − n)

∫ ∞
0

Vp−i(s),n+1dΨ−i(s) (7)

Note that first integral of this expression is firm i’s expected payoff from reporting, when
it is the first of the remaining firms to do so. Meanwhile, the second integral is the firm’s
expected payoff conditional on being preempted. The firm’s problem at (p, n) is then given
by the following:

max
F i∈F

Vp,n(F i),

where F denotes the set of permissible distributions, i.e., those that are piecewise con-
tinuously differenetiable, right-differentiable, and that satisfy the selection criterion (SC).
Further, let Vp,n ≡ supF i∈F Vp,n(F i).

B.2 Proofs

Proof of Lemma 1. Let us begin by showing that at all (p, n) on-path such that p < 1, Fp,n
is continuous at 0. To this end, suppose by contradiction that Fp,n is discontinuous at 0. By
the right-continuity of Fp,n, this implies that Fp,n(0) > 0. Because (p, n) is on path, by (3),
αn(p) = 0. Furthermore, it follows by (6) that pi(0) = p. Recalling that we are restricting
attention to symmetric equilibria, let Ψ denote the first-report distribution at (p, n) under
the equilibrium strategy profile Fp,n. Because Fp,n(0) > 0, Ψj(0) > 0 for all j who have not
yet reported.

Now define the following deviation F̂p,n. This strategy is identical to Fp,n, except that all
the mass that Fp,n places on 0 is shifted to∞:

F̂p,n(s) =

Fp,n(s)− Fp,n(0) if s <∞

1 if s =∞

Now, fix some iwho has not yet reported. Let Ψ̂ denote the first-report distribution at (p, n)

under the strategy profile where i plays F̂p,n and all j 6= i play Fp,n. By definition, for all
s ≥ 0,

Ψ̂i(s) = Ψi(s)−Ψi(0).
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Then,∫ ∞
0

[knαn(p(s))− β(1− pi(s))]dΨ̂i(s) =

∫ ∞
0

[knαn(p(s))− β(1− pi(s))]dΨi(s) + β(1− pi(0))Ψi(0)

>

∫ ∞
0

[knαn(p(s))− β(1− pi(s))]dΨi(s).

Again by definition, for all s ≥ 0,

Ψ̂−i(s) = Ψ−i(s) +X(s),

where

X(s) ≡ Ψi(0)[p

∫ s

0

(1− Fp,n)n−2(1− F̂p,n(r))e−λrd(e−λr(Fp,n(r)− 1))

+(1− p)
∫ s

0

(1− Fp,n(r))n−2(1− F̂p,n(r))dFp,n(r)]

Then, we have∫ ∞
0

Vp−i(s),n+1dΨ̂−i(s)−
∫ ∞

0

Vp−i(s),n+1dΨ−i(s) =

∫ ∞
0

Vp−i(s),n+1dX(s) ≥ 0.

where the final inequality follows from the fact that X(s) is increasing in s and Vp−i(s),n+1 ≥
Vp−i(s),n+1(δ∞) ≥ 0.

Combining the above two inequalities we have

Vp,n(F̂p,n) =

∫ ∞
0

[knαn(p(s))− β(1− pi(s))]dΨ̂i(s) + (N − n)

∫ ∞
0

Vp−i(s),n+1dΨ̂−i(s)

>

∫ ∞
0

[knαn(p(s))− β(1− pi(s))]dΨi(s) + (N − n)

∫ ∞
0

Vp−i(s),n+1dΨ−i(s) = Vp,n(Fp,n)

Thus, i can profitably deviate at (p, n). Contradiction.

We will now show that for all (p, n) on-path such that p < 1, Fp,n must be continuous at
all t. Suppose by contradiction that it is not. Let t denote the time at which a discontinuity
occurs. Because Fp,n is increasing and right-differentiable by assumption, this must be a
jump discontinuity, i.e.,

lim
r→t−

Fp,n(r) < Fp,n(t)

By (2),

Fp(t),n(0) =
Fp,n(t)− limr↑t Fp,n(r)

1− limr↑t Fp,n(r)
> 0.
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But then, this implies that Fp(t),n is discontinuous at 0, contradicting the above.

Part (b) of the statement follows directly from (3). �

Lemma 2. For any (p, n) on-path,

• αn(p) ≥ αn(p) ≡ min{β(1− p)/kn, 1}

• F ′p,n(0+) ≤ f ≡ λp( 1
αn(p)

− 1)

Proof of Lemma 2. We begin by showing the first point above. The second point follows
by definition of αn(p).

First, suppose by contradiction that there exists a (p, n) on-path such that

αn(p) < min{β(1− p)/kn, 1}

Recalling that p(s) is given by (5), we begin by claiming that for all s sufficiently small,
(p(s), n) is on-path. Suppose not by contradiction. Since (p, n) is on-path by assumption,
this implies that Fp,n(s) = 1, which contradicts Lemma 1. It thus follows from (3), combined
with the piecewise twice differentiability and right-differentiability of Fp,n, that αn(p(s)) is
continuous in some right-neighborhood of s = 0. Formally, there exists an ε > 0 such that
for all s ∈ [0, ε],

knαn(p(s)) < β(1− p).

Next, I claim that Fp,n(ε) > 0. Suppose this is not true by contradiction. Then, it follows
that Fp,n(s) = 0 for all s ∈ [0, ε], implying by definition of α that αn(p) = 1, contradicting
our assumption that αn(p) < 1.

Now, define the following deviation F̃p,n, which shifts the mass Fp,n places on [0, ε] to∞:

F̃p,n(s) =


0 if s ∈ [0, ε]

Fp,n(s)− Fp,n(ε) if s ∈ (ε,∞)

1 if s =∞

The admissibility (i.e., right-continuity and piecewise twice-differentiability) of F̃p,n fol-
lows from the admissibility of Fp,n. We now wish to show that F̃p,n is a profitable deviation
at (p, n). Let Ψ denote the first-report distribution under the strategy profile where all play-
ers play Fp,n, and let Ψ̃ denote the first-report distribution under the strategy profile where
i plays F̃p,n and all j 6= i play Fp,n.
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By definition of Ψ,
Ψ̃i(s) = Ψi(s)−X(s)

where

X(s) =

p
∫ s

0
e−λr(N−n)(1− Fp,n(r))N−nd(e−λr(Fp,n(r)− 1)) + (1− p)

∫ s
0

(1− Fp,n(r))N−ndFp,n(r) if s ∈ [0, ε]

X(ε) if s > ε

Now, note that X(s) is weakly increasing in s. Note further that because Fp,n(ε) ∈ (0, 1],
it follows that Fp,n(s) strictly increases on [0, ε]. Thus, X(s) is strictly increasing at some
s ∈ [0, ε]. Now, by the above definition:∫ ∞

0

[knαn(p(s))− β(1− pi(s))]dΨ̃i(s)−
∫ ∞

0

[knαn(p(s))− β(1− pi(s))]dΨi(s)

=

∫ ε

0

[knαn(p(s))− β(1− p(s))]dX(s) > 0

where the strict inequality follows from the fact that X(s) is strictly increasing on [0, ε] and
the above-established fact that knαn(p(s)) < β(1− p(s)) for all s ∈ [0, ε].

Next, let us consider Ψ̃−i(s). It again follows from the definition of Ψ that

Ψ̃−i(s) = Ψ−i(s)− Y (s)

where

Y (s) = p

∫ s

0

[e−λr(1− Fp,n(r))]n−2F (min{r, ε})d(e−λr(Fp,n(r)− 1))+

(1− p)
∫ s

0

(1− Fp,n(r))n−2Fp,n(min{r, ε})dFp,n(r)

Thus, ∫ ∞
0

Vp−i(s),n+1dΨ̃−i(s)−
∫ ∞

0

Vp−i(s),n+1dΨ−i(s) =

∫ ∞
0

Vp−i(s),n+1dY (s) ≥ 0

where the final inequality follows for from the fact that Y (s) is increasing in s and Vp−i(s),n+1 ≥
0. Combining the previous two inequalities, we obtain that

Vp,n(F̃p,n) > Vp,n(Fp,n)

and thus i can profitably deviate at (p, n). Contradiction. �
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Lemma 3. If αn(p) < 1 and (p, n) is on-path, then there exists an ε > 0 such that

Vp,n = Vp,n(δs) for all s ∈ [0, ε) ∪∞.

Proof of Lemma 3. Assume that αn(p) < 1. Note that by the right twice-differentiability of
Fp,n, and by (3), that αn(p(s)) is right-continuous in s. Thus, there exists an ε > 0 and d > 0

such that
αn(p(s)) < 1− d for all s ∈ [0, ε].

I claim that for all s ∈ [0, ε), Vp,n = Vp,n(δs). Suppose to the contrary that for some s ∈ [0, ε),

Vp,n(δs) < Vp,n

Now, I claim that Vp,n(δs) is right-continuous in s. To see why this is the case, note that by
definition,

Vp,n(δs) =

∫ s

0

knαn(p(r))dΨi(r) + (N − n)

∫ s

0

Vpi(r),ndΨ−i(r)+

(1−
∑
j

Ψj(s))[knαn(p(s))− β(1− p(s))]

Where Ψj(s) is the first-report distribution that arises when i plays δ∞ and all j 6= i play
Fp,n. The right-continuity with respect to s then follows from the absolute continuity of Ψj

(which follows from Lemma 1), as well as the right-continuity of αn(p(s)) with respect to s,
which follows from the right-continuity of Fp,n(s) by assumption.

Given the right continuity of Vp,n(δs), there exists some ε′ ∈ (0, ε− s) and x > 0 such that

Vp,n − Vp,n(δr) > x for all r ∈ [s, s+ ε′]

Now I claim that there must exist some s∗ ∈ [0,∞] such that Vp,n = Vp,n(δs∗). Suppose
by contradiction that Vp,n > Vp,n(δs∗) for all s∗ ∈ [0,∞]. Letting Fp,n denote the firm’s
equilibrium strategy, it follows that Vp,n = Vp,n(Fp,n). It follows from (7) that

Vp,n(Fp,n) =

∫ ∞
0

Vp,n(δs)dFp,n(s) + (1− lim
s→∞

Fp,n)Vp,n(δ∞) < Vp,n

where the strict inequality follows from the assumption that Vp,n > Vp,n(δs∗) for all s∗.
Contradiction.

Now, define the following deviation F̃p,n which shifts all the mass from [s, s + ε′] to s∗.
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Specifically, when s∗ < s:

F̃p,n(t) =


Fp,n(t) + Fp,n(s+ ε)− Fp,n(s) if t ∈ [s∗, s]

Fp,n(s+ ε) if t ∈ (s, s+ ε′]

Fp,n(t) otherwise.

Meanwhile, when s∗ > s+ ε:

F̃p,n(t) =


Fp,n(s) if t ∈ [s, s+ ε]

Fp,n(t)− [Fp,n(s+ ε′)− Fp,n(s)] if t ∈ (s+ ε′, s∗)

Fp,n(t) otherwise.

Now, by definition:

Vp,n(F̃p,n) = Vp,n(Fp,n) +

∫ s+ε′

s

[Vp,n(δs∗)− Vp,n](δr)dFp,n(r) ≥ Vp,n(Fp,n) + xε′ > Vp,n(Fp,n)

Thus, F̃p,n is a profitable deviation. Contradiction.

It remains to show that Vp,n = Vp,n(δ∞). Suppose by contradiction that Vp,n > Vp,n(δ∞).
It follows that limt→∞ Fp,n(t) = 0, because otherwise, the firm could profitably deviate by
placing no mass on t =∞. But this implies that for some s ∈ (0,∞],

lim
t→s−

bn(p(t)) =∞⇒ lim
t→s−

αn(p(t)) = 0,

which contradicts Lemma 2. �

Lemma 4. αn(p(s)) is continuous in s for all (p, n) on path such that s > 0.

Proof of Lemma 4. Fix a (p, n) on-path. I first claim that for all s ≥ 0,

αn(p(s)) =
λp(s)

λp(s) +
F ′p,n(s+)

1−Fp,n(s)

(8)

To see why, note that it follows from Lemma 2 that (p(s), n) is on-path for all s ≥ 0. Thus,
by Lemma 1, Fp(s),n(0) = 0, and by (3)

αn(p(s)) =
λp(s)

λp(s) + F ′p(s),n(0+)
.
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Next, it follows from (2) that

F ′p(s),n(0+) =
F ′p,n(s+)

1− Fp,n(s)
.

Combining the previous two equations yields (8). It thus follows from the right-differentiability
and piecewise twice-differentiability of Fp,n that αn(p(s)) is right-continuous in s. It re-
mains to show that it is left-continuous. Suppose by contradiction there exists an s such
that αn(p(s)) is left-discontinuous. Then there exists some d > 0 such that for all ε > 0,
there exists an sε ∈ (s− ε, s) such that

|αn(p(sε))− αn(p(s))| > d.

First consider the case where for all ε > 0, there exists an sε ∈ (s−ε, s) such that αn(p(sε))−
αn(p(s)) > d. I begin by claiming that for all ε > 0,

Vp(sε),n = Vp(sε),n(δs−sε). (9)

To this end, first note that there exists some s∗ ∈ (s,∞] such that Vp(sε),n = Vp(sε),n(δs∗). To
see why this must hold, suppose not, by contradiction. Then it must be that Fp(sε),n places
full mass on [sε, s], and thus, either Lemma 1 or (2) would be violated. Thus, we have

Vp(sε),n =

∫ s−sε

0

knαn(p(r))dΨi(r) + (N − n)

∫ s−sε

0

Vpi(r),n+1dΨ−i(r)+

(1−
∑
j

Ψj(s− sε))Vp(s),n(δs∗−s) =

∫ s−sε

0

knαn(p(r))dΨi(r) + (N − n)

∫ s−sε

0

Vpi(r),n+1dΨ−i(r)

+(1−
∑
j

Ψj(s− sε))Vp(s),n(δ0) = Vp(sε),n(δs−sε)

where Ψ is the first-report distribution associated with the strategy profile in which i plays
δ∞ and all j 6= i play Fp(sε),n. Note that the equality follows from the fact that αn(p(s)) < 1,
and thus by Lemma 3, Vp(s),n = Vp(s),n(δ0). However, note that for all ε > 0,

Vp(sε),n(δs−sε) =

∫ s−sε

0

knαn(p(r))dΨi(r) + (N − n)

∫ s−sε

0

Vpi(r),n+1dΨ−i(r)

+(1−
∑
j

Ψj(s− sε))[knαn(p(s), n)− β(1− p(s))]
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Because the Ψj are absolutely continuous,

lim
ε→0

Vp(sε),n(δs−sε) = knαn(p(s), n)− β(1− p(s))

Then, by the assumption that αn(p(sε)) − αn(p(s)) < d, for all ε > 0 sufficiently small
Vp(sε),n(δ0) = knαn(p(sε), n)− β(1− p(sε)) > Vp(sε),n(δs−sε), contradicting (9).

Next, consider the case where for all ε > 0, αn(p(s)) − αn(p(sε)) > d. As noted above,
limε→0 Vp(sε),n(δs−sε) = Vp(s),n(δ0). Thus, for ε sufficiently small,

Vp(sε),n(δs−sε) > knαn(p(sε))− β(1− p(sε)) = Vp(sε),n(δ0)

However, since αn(p(sε)) < 1 for all ε > 0, by Lemma 3, Vp(sε),n = Vp(sε),n(δ0). Contradiction.
�

Proof of Proposition 1. I begin by showing that αn(p) = 1 whenever kn < β and p ≤ p∗n ≡
kn−β
kn/n−β . To this end, fix an n, and suppose that kn < β. I first show that for all q < β−kn

β
,

αn(q) = 1. Note that for all such q

Vq,n(δ0) = knαn(q)− β(1− q) ≤ kn − β(1− q) < kn − β(1− β − kn
β

) = 0.

Since Vq,n ≥ Vq,n(δ∞) ≥ 0, it follows Vq,n > Vq,n(δ0). Thus, by Lemma 3, αn(q) = 1. Now, let

q∗n ≡ sup{p|αn(q) = 1 for all q < p}

It follows from the above that q∗n ≥
β−kn
β

> 0. Now suppose by contradiction that q∗n < p∗n.
By Lemma 4, there exists an ε > 0 such that for all p ∈ (q∗n, q

∗
n + ε), αn(p) < 1, and thus, by

Lemma 3
Vp,n = Vp,n(δ0) = knαn(p)− β(1− p)

Thus, it follows from Lemma 4 that

lim
p→q∗n+

Vp,n = kn − β(1− q∗n) (10)

By definition of V , because by Lemma 1 Fp,n is absolutely continuous, it follows that
Vp,n(δ∞) is as well, and thus:

lim
p→q∗n+

Vp,n(δ∞) = Vq∗n,n(δ∞) =
knq

∗
n

n
(11)

40



In order for δ∞ to not serve as a profitable deviation for p ∈ (q∗n, q
∗
n + ε), it must be that for

all such p, Vp,n(δ0) ≥ Vp,n(δ∞). Taking a limit we obtain that

lim
p→q∗n+

Vp,n(δ0) ≥ lim
p→q∗n+

Vp,n(δ∞)

Substituting (10) and (11) above, we obtain that knq∗n
n
≤ kn − β(1 − q∗n). However, kn ≤ β

and q∗n < p implies that knq∗

n
> kn − β(1− q∗). Contradiction.

Next, we show that αn(p) < 1 whenever β ≤ kn or p > p∗n. To this end, assume β ≤ kn or
p > p∗n. Assume by contradiction that αn(p) = 1. Also assume by induction that if n < N ,
then the statement holds for n+ 1.

First, consider the case where αn(q) = 1 for all q < p. By (3), this implies that F ′(q, n) = 0.
Furthermore, by Lemma 1, this implies that Fp,n(s) = 0 for all s > 0, i.e., Fp,n = δ∞.
However,

Vp,n(δ0) = kn − β(1− p) > knp

n
= Vp,n(δ∞),

where the above strict inequality follows from the above assumption that either β ≤ kn or
p > p∗n. Contradiction.

Next, consider the case where αn(q) < 1 for some q < p. By Lemma 4, for all ε > 0

sufficiently small, there exists some p < p and s > 0 such that αn(p) ∈ (1 − ε, 1) and αn(q)

is strictly increasing on [p(s), p]. By Lemma 3, there exists some ∆ ∈ (0, s) such that

Vp,n(δ∆) = Vp,n(δ0).

By definition,

Vp,n(δ∆) =

∫ ∆

0

knαn(p(s))dΨi(s) + (N − n)

∫ ∆

0

Vpi(s),n+1dΨ−i(s)+

(1−
∑
j

Ψj(∆))(knαn(p(∆))− β(1− p(∆))

where Ψ is the first-report distribution associated with the strategy profile where i plays δ∆

and all j = i play Fp,n. Meanwhile,

Vp,n(δ0) = knαn(p)− β(1− p)

=

∫ ∆

0

knαn(p)dΨi(s) + (N − n)

∫ ∆

0

knαn(p)− β(1− pi(s))dΨ−i(s)

+ (1−
∑
j

Ψj(∆))(knαn(p)− β(1− p(∆))
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Thus, in order to preserve the above equality, for some r ∈ (0, s),

knαn(p)− β(1− pi(r)) < Vpi(r),n+1. (12)

First, consider the case where αn+1(pi(r))) < 1. Then, for ε > 0 sufficiently small

Vpi(r),n+1 = Vpi(r),n+1(δ0) = kn+1αn+1(pi(r))− β(1− pi(r)) < knαn(p)− β(1− pi(r))

where the first equality follows from Lemma 3. Thus, equation (12) is violated. Contradic-
tion.

Next, consider the case where αn+1(pi(r)) = 1 and β < kn. By the inductive assumption,
it follows that αn+1(q) = 1 for all q ≤ pi(s). Thus, Fpi(s),n+1 = δ∞. So, we have that for ε
sufficiently small:

Vpi(r),n+1 = Vpi(r),n+1(δ∞) =
kn+1p

i(r)

N − n
≤ pi(r)knαn(p) + (1− pi(s))knαn(p)− β)

= knαn(p)− β(1− pi(s))

Again, this is a contradiction of (12).

Finally, consider the case where αn+1(pi(r)) = 1 and β ≥ kn. Recall by Proposition 1 that
αn(q) = 1 for all q ≥ p∗n. Thus, because αn(p) < 1, it follows from (4) that αn(p(s)) must be
strictly increasing in s for some s > r. Formally, let

r′ ≡ inf{s > r|αn(p(s)) is strictly increasing}.

First, I claim that
knαn(p(r′))− β(1− pi(r)) < Vpi(r),n+1 (13)

By the inductive assumption, since αn+1(pi) = 1, it must be that αn+1(q) = 1 for all q < pi(r).
Because αn(p(s)) is weakly decreasing for s ∈ [r, r′], it follows by definition of pi(s) that
pi(s) < pi(r) for all s ∈ [r, r′]. Thus, for all s ∈ [r, r′]

Vpi(s),n+1 =
kn+1p

i(s)

N − n
.
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It follows from this that for all s ≥ r,

knαn(p(s))− β(1− pi(s)) < Vpi(s),n+1

⇔ knαn(p(s))− β(1− pi(s)) < kn+1p
i(s)

N − n

⇔ pi(s) <
β − knαn(p(s))

β − kn+1/(N − n)

Now, because αn(p(s)) is strictly decreasing on s ∈ [0, r],

knαn(p(r))− β(1− pi(r)) < knαn(p)− β(1− pi(r)) < Vpi(r),n+1

where the second inequality holds by the same reasoning presented in the explanation for
(12). Thus we have

pi(r′) < pi(r) <
β − knαn+1(p(r))

β − kn+1/(N − n)
<
β − knαn+1(p(r′))

β − kn+1/(N − n)

which implies (13).

It follows from this that there exists an r′′ > r′ such that for all s ∈ [r′, r′′], αn(p(s)) is
weakly decreasing and Vpi(s),n+1 > knαn(p(r′))− β(1− pi(s)). I now claim that

Vp(r′),n(δ0) < Vp(r′),n(δr′′−r′).

To see why, note that by definition,

Vp(r′),n(δr′′−r′)− Vp(r′),n(δ0) =

∫ r′′

r′
kn[αn(p(s))− αn(p(r′))]dΨi(s)+∫ r′′

r′
[Vpi(s),n+1 − (knαn(p(r′))− β(1− pi(s)))]dΨ−i(s)

+
∑
j

(Ψj(r′′)−Ψj(r′))kn(αn(p(r′′))− knαn(p(r′)))

Since αn(p(s)) ≥ αn(p(r′)) and Vpi(s),n+1 > knαn(p(r′)) − β(1 − pi(s)) s ∈ [r′, r′′], it follows
that Vp(r′),n(δr′′−r′)− Vp(r′),n(δ0) > 0. However, this contradicts Lemma 3. �

Proof of Proposition 2. Proof by induction. Fix an n, and assume that αm(p) satisfies the
above for all m > n such that (p,m) is on-path.

We begin by showing that (ODE) must hold whenever αn(p) < 1. To this end, assume
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that αn(p) < 1. Then, by Lemma 3, there exists an ε > 0 such that for all ∆ ∈ (0, ε),

Vp,n(δ∆)− Vp,n(δ0)

∆
= 0 (14)

Recall that by definition of V , that

Vp,n(δ0) = knαn(p)− β(1− p).

Meanwhile

Vp,n(δ∆) =

∫ ∆

0

knαn(p(s))Ψi(s)ds+ (N − n)

∫ ∆

0

Vp−i(s),n+1Ψ−i(s)ds+

(1−
∑
j

lim
s→∆−

Ψj(s))[knαn(p(∆))− β(1− p(∆))]

where Ψ is the first-report distribution associated with the strategy profile in which i plays
δ∞ and all j 6= i play F j

p,S . Specifically, for all s > 0,

Ψi(s) = pλ

∫ s

0

e−λrn(1− Fp,n(r))N−ndr

Ψ−i(s) = p

∫ s

0

e−λr(N−n)(1−Fp,n(r))n−2d(−e−λr(1−Fp,n(r)))+(1−p)
∫ s

0

(1−Fp,n(r))n−2dFp,n(r)

It follows from Lemma 1 that, for all j, Ψj is also absolutely continuous, I.e., there exists a
function ψj such that:

Ψj(s) =

∫ s

0

ψj(r)dr.

Specifically, according to Lemma 1, one such ψi and ψ−i are given by the following:

ψi(s) = pλe−λsn(1− Fp,n(s))N−n

ψ−i(s) = pe−λsn(λ+ F ′p,n(s+)− λFp,n(s))(1− Fp,n(s))n−2 + (1− p)(1− Fp,n(s))F ′p,n(s+)

Substituting these expressions for both Vp,n(δ0) and Vp,n(δ∆) into (14) and rearranging, we
obtain that for all ∆ ∈ (0, ε),

K1(∆) +K2(∆) +K3(∆) = 0 (15)

where

K1(∆) ≡
∫ ∆

0
kn[(αn(p(s))− αn(p)) + β(1− p)]ψi(s)ds

∆
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K2(∆) ≡
(N − n)

∫ ∆

0
[Vp−i(s),n+1 − knαn(p) + β(1− p)]ψ−i(s)ds

∆

K3(∆) ≡
(1−

∑
j lims→∆− ψ

j(∆))[kn(αn(p(∆))− αn(p)) + β(p(∆)− p)]
∆

Now, we consider lim∆→0+ of K1(∆), K2(∆), and K3(∆) separately.

For K1(∆), it follows from L’Hôpital’s Rule, together with the continuity of αn(p(∆))

(i.e., Lemma 4) and ψi(∆) in ∆ that

lim
∆→0+

K1(∆) = lim
∆→0+

[kn(αn(p(∆))− αn(p)) + β(1− p)]ψi(∆) = β(1− p)ψi(0) = β(1− p)pλ.

For K2(∆), it again follows from L’Hôpital’s Rule, together with the right-continuity of
Vp−i(∆),n+1 in ∆ that

lim
∆→0+

K2(∆) = (N − n) lim
∆→0+

[Vp−i(∆),n+1 − knαn(p) + β(1− p)]ψ−i(∆)

= (N − n)[Vp−i,n+1 − knαn(p) + β(1− p)]( λp

αn(p)
)

where the final inequality follows from the fact that at all (p, n) on-path, αn(p) = λp
λp+F ′p,n(0)

.

For K2(∆), first note that by the continuous differentiability of Ψj(s) that

lim
∆→0+

∑
j

lim
s→∆−

Ψj(s) = 0.

Thus, it follows from the right-differentiability of αn(p(∆)) in ∆ that

lim
∆→0+

K3(∆) = kn lim
∆→0

αn(p(∆))− αn(p)

∆
+ β lim

∆→0+

p(∆)− p
∆

= kn
d

d∆
αn(p(∆))

∣∣∣
∆=0+

+ βp′(∆)
∣∣∣
∆=0+

= p′(∆)
∣∣∣
∆=0+

[knα
′
n(p) + β] = −λpn(1− p)[knα′n(p) + β]

Since we have shown that lim∆→0+ K1(∆), lim∆→0+K2(∆), and lim∆→0+K3(∆) exist, and
are given by the above expressions, it follows from (15) that

lim
∆→0+

K1(∆) + lim
∆→0+

K2(∆) + lim
∆→0+

K3(∆) = 0.

Substituting in the above expressions for K1(∆), K2(∆) and K3(∆), we obtain (ODE).

Now, we wish to establish that (ODE) must hold whenever kn ≥ β or p > p∗n. It follows
from Proposition 1 that αn(p) < 1, and thus by the above, (ODE) must hold.
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Finally, we establish the two limit conditions presented in the proposition. We begin by
establishing that when kn ≥ β, limp→0+ αn(p) = β/kn. To this end, first note by Lemma 3
that for all p > 0, Vp,n(δ0) = Vp,n(δ∞). Note further that

lim
p→0+

Vp,n(δ∞) = 0.

Thus,
lim
p→0+

Vp,n(δ0) = lim
p→0+

knαn(p)− β = 0,

and therefore, limp→0+ αn(p) = β
kn

. Next, let us consider the case where kn < β. That
limp→p∗n+ αn(p) = 1 follows from Lemma 4, since by Proposition 1, αn(p∗n) = 1. �

Before proceeding with the rest of the characterization, I define a problem (P) on α. I then
show that α consistutes an equlibrium if and only if it satisfies (P) (Lemma 5). Thus, exis-
tence and uniqueness of an equilibrium (Theorem 1) will reduce to establishing a unique
solution to (P).

Definition 2. α is a solution to (P) if it satisfies the following for all n ≤ N and p ∈ (0, 1]:

• If kn < β and p ≤ p∗n ≡
kn−β
kn/n−β , then αn(p) = 1.

• If kn ≥ β or p < p∗n, then α satisfies (ODE), with limit condition limp→0+ αn(p) = β/kn

if kn ≥ β and limp→pn∗+ αn(p) = 1 if kn < β.

• αn(1) = 0.

Lemma 5. (α, F ) is an equilibrium if and only if at all (p, n) on-path, α is both consistent with F
and a solution to (P).

Proof of Lemma 5. Fix an (α, F ). I begin by establishing the necessity of the three condi-
tions specified in Definition 2 for (α, F ) to be an equilibrium. First we establish the neces-
sity of the first bullet of Definition 2. To this end, recall that by the selection assumption,
F1,n(0) = 1. Thus, it follows from (3) that αn(1) = 0 if (p = 1, n) is on-path. Bullets two and
three of Definition (2) follow immediately from Proposition 1 and Proposition 2, respec-
tively.

Next, we establish the sufficiency of the above conditions for (α, F ) to be an equilibrium.
We begin by considering the case in which kn < β and p ≤ p∗n. It follows from (P) that
αn(q) = 1 for all q ≤ p. Thus, by (3), Fp,n = δ∞. We wish to show that there exist no
profitable deviations in this case, i.e., that Vp,n = Vp,n(δ∞). It suffices to show that

Vp,n(δ∞) ≥ Vp,n(δs) for all s ∈ [0,∞). (16)
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First, note that for all s ∈ (0,∞),

Vp,n(δs) = kn(1− p(1− e−λsn)(
N − n

N − n+ 1
))− β(1− p) ≤ kn − β(1− p) = Vp,n(δ0).

Further, kn ≤ β and p ≤ p∗n implies that

Vp,n(δ0) = kn − β(1− p) ≤ kn
n

= Vp,n(δ∞)

Thus, Vp,n(δ∞) ≥ Vp,n(δs) for all s ∈ [0,∞)

Next, we show that Fp,n is optimal when kn ≥ β or p < p∗n. To this end, we begin by
showing that

d

d∆
Vp,n(δ∆) = 0 for all ∆ ∈ [0,∞) if kn ≥ β and for all ∆ ∈ [0, t∗) if kn < β (17)

where t∗ is the unique value such that p(t∗) = p∗n. Note that

Vp,n(δ∆) =

∫ ∆

0

knαn(p(s))dΨi(s) +

∫ ∆

0

Vpi(s),n+1dΨ−i(s)+

(1−
∑
j

Ψj(∆))(αn(p(∆))− β(1− p(∆)))
(18)

where Ψ is the first-report distribution associated with the strategy profile in which i plays
δ∞ and all j 6= i play Fp,n. Then, it follows that

d

d∆
Vp,n(δ∆)

= knαn(p(∆))Ψi′(∆) + (N − n)Vpi(∆),n+1Ψ−i′(∆) + (1−
∑
j

Ψj(∆))p′(∆)[α′n(p(∆))− β]

−
∑
j

Ψj′(∆)(knαn(p(∆))− β(1− p(∆)))

= (N − n)[Vpi(∆),n+1 − knαn(p(∆)) + β(1− p(∆))]Ψ−i′(∆)− β(1− p(∆))Ψi′(∆)

+ (1−
∑
j

Ψj(∆))p′(∆)(knα
′
n(p(∆))− β),

where Ψi′(t) ≡ d
dt

Ψi(t).

In the above, the existence of Ψj′(∆) follows from the differentiability of αn at p(∆), and
thus, the differentiability of Fp,n at ∆. We wish to show that d

d∆
Vp,n(δ∆) = 0. To this end,

we begin by deriving expressions for Ψi′(∆) and Ψ−i′(∆). First, it follows by definition of
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the first-report distribution that:

Ψi(∆) = pλ

∫ ∆

0

(1− Fp,n(s))N−ne−λnsds.

Differentiating this, we obtain:

Ψi′(∆) = pλ(1− Fp,n(∆))N−ne−λn∆

Meanwhile:

Ψ−i(∆) = p

∫ ∆

0

(1−Fp,n(s))n−2e−λ(N−n)sd((Fp,n(s)−1)e−λs)+(1−p)
∫ ∆

0

(1−Fp,n(s))n−2F ′p,n(s)ds

where the existence of F ′p,n(s) again follows from the assumption that αn is differentiable
at p(s). Differentiating this, we obtain:

Ψ−i′(∆) = p(1− Fp,n(∆))n−2e−λ∆n[F ′p,n(∆) + λ(1− Fp,n(∆))] + (1− p)(1− Fp,n(∆))n−2fp,n(∆)

= (1− Fp,n(∆))N−n[
fp,n(∆)

1− Fp,n(∆)
(pe−λ∆n + (1− p)) + pe−λ∆nλ]

It follows from (3) and (2) that

F ′p,n(∆)

1− Fp,n(∆)
= λp(∆)(

1

αn(p(∆))
− 1).

Substituting this, along with the definition of p(∆) (5), we obtain:

Ψ−i′(∆) = λ(1− Fp,n(∆))N−n(pe−λ∆n + (1− p)) p(∆)

αn(p(∆))

Note further that

1−
∑
j

Ψj(∆) = (1− F (∆))N−n(pe−λ∆n + (1− p)) (19)

Substituting equations the expressions for Ψi′(∆), Ψ−i′(∆), and 1 −
∑

j Ψj(∆) into the
above equation for d

d∆
Vp,n(δ∆), and simplifying, we obtain:

d

d∆
Vp,n(δ∆) = K[

(N − n)

αn(p(∆))
(V i

p(∆),n+1 − knαn(p(∆)) + β(1− p(∆))(1− αn(p(∆))))

−knα′n(p(∆))(1− p(∆))n]
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whereK ≡ λ(1−Fp,n(∆))N−n(pe−λ∆n+(1−p))p(∆). Because (ODE) is satisfied at (p(∆), n),
using it to substitute in for α′n(p(∆), we obtain (17).

Now, consider the case where kn ≥ β. To show Fp,n is optimal, it suffices to show that
all pure strategies δ∆ yield the same payoff, i.e., that

Vp,n(δ0) = Vp,n(δ∆) (20)

for all ∆ ∈ [0,∞]. It follows directly from (17) that (20) holds for all ∆ ∈ [0,∞). It remains
to show that (20) holds for ∆ =∞. To this end, first note that by (17),

Vp,n(δ0) = lim
∆→∞

Vp,n(δ∆)

= lim
∆→∞

∫ ∆

0

knαn(p(s))dΨi(s) + (N − n) lim
∆→∞

∫ ∆

0

Vpi(s),n+1dΨ−i(s)+

lim
∆→∞

(1−
∑
j

Ψj(∆))(knαn(p(∆))− β(1− p(∆)))

=

∫ ∞
0

knαn(p(∆))dΨi(s) + (N − n)

∫ ∞
0

Vpi(∆),n+1dΨ−i(s) = Vp,n(δ∞)

where the third equality follows from the limit condition limp→0+ αn(p) = β/kn:

lim
∆→∞

knαn(p(∆))− β(1− p(∆)) = lim
p→0+

knαn(0)− β = 0.

Finally, consider the case where kn < β and p > p∗n. Because αn(p(s)) = 1 for all s > t∗, by
(3), it follows that F ′p,n(s) = 0 for all such s. Then, the support of Fp,n lies within [0, t∗] ∪∞.
Thus, to show Fp,n is optimal, it suffices to show that δ∆ is optimal for ∆ ∈ [0, t∗] ∪∞. To
this end, I first show that

Vp,n(δ∆) = Vp,n(0) for all ∆ ∈ [0, t∗] ∪∞ (21)

and then show
Vp,n(δt∗) ≥ Vp,n(δ∆)for all ∆ ∈ (t∗,∞). (22)

To show (21), first recall that it follows from (17) that

Vp,n(δ0) = Vp,n(δ∆) for all ∆ ∈ [0, t∗).

It remains to show Vp,n(δ0) = Vp,n(δs) for s ∈ {t∗,∞}. For s = t∗, it follows from the above
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that
Vp,n(δ0) = lim

∆→t∗−
Vp,n(δ∆) = Vp,n(δt∗)

where the final inequality follows from (18), observing that αn is continuous at p∗n and Ψj

is continuous at t∗. I will now show Vp,n(δt∗) = Vp,n(δ∞). To this end, note that for all
∆ ∈ [t∗,∞]:

Vp,n(δ∆) =

∫ t∗

0

knαn(p(s))dΨi(s)+(N −n)

∫ t∗

0

Vpi(s),n+1dΨ−i(s)+(1−
∑
j

Ψj(t∗))Vp∗n,n(δ∆−t∗)

Thus, to show Vp,n(δ∗t ) = Vp,n(δ∞), it suffices to show that Vp∗n,n(δ0) = Vp∗n,n(δ∞). But it
follows from the definition of p∗n that:

Vp∗n,n(δ0) = kn − β(1− p∗n) =
knp

∗
n

n
= Vp∗n,n(δ∞).

Similarly, to show (22), it suffices to show that Vp∗n,n(δ0) ≥ Vp∗n,n(δ∆) for all ∆ ∈ (0,∞),
which we have established in (16). �

Proof of Theorem 1. Fix an n. Assume by induction that there exists a unique solution to
(P) for all m > n. We wish to show that there exists a unique solution to (P) for n. To
establish this, it suffices to show there exists a unique solution to the following two limit
problems, when β ≤ kn and β > kn, respectively:

(ODE) is satisfied on (0, 1), and lim
p→0+

αn(p) = β/kn (LP: β ≤ kn)

(ODE) is satisfied on (0, p∗), and lim
p→p∗n+

αn(p) = 1. (LP: β > kn)

To establish existence and uniqueness to the two above problems, we proceed by extend-
ing them to two boundary value problems. To this end, we begin by defining an extension
of (ODE’) of (ODE), which is identical to (ODE), except that it is well-defined when pi ≥ 1.
Specifically, define:

α′n(p) = − 1

kn(1− p)αn(p)

N − n
N − n+ 1

[knαn(p)− Ṽpi,n+1 − β(1− αn(p))(1− p)] (ODE’)

where

Ṽpi,n+1 =

Vpi,n+1 if pi ∈ (0, 1)

0 if pi ≥ 1
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Now let us define two boundary value problems on (ODE’):

(ODE’) is satisfied on [0, 1), and αn(0) = β/kn (BVP: β ≤ kn)

(ODE’) is satisfied on (0, p∗n], and αn(p∗) = 1. (BVP: β ≥ kn)

Now we claim that the existence and uniqueness of a solution to (BVP: β ≤ kn) and
(BVP: β ≥ kn) implies the existence and uniqueness of a solution to (LP: β ≤ kn) and (LP: β > kn),
respectively. Let us begin by considering the case where kn ≥ β. Assume that there exists
a unique solution αn to (BVP: β ≤ kn). Note that order for αn to satisfy (BVP: β ≤ kn), it
must be that limp→0+ αn(p) = kn/β. Furthermore, (ODE) and (ODE’) are equivalent on
(0, 1). It follows that αn is a solution to (LP: β ≤ kn), thus establishing existence. To estab-
lish uniqueness, assume by contradiction there exists some α̃n defined on p ∈ (0, 1) that is
a solution to (LP: β ≤ kn) where α̃n(p) 6= αn(p). Now, define α̂n, which extends the domain
of α̃n, as follows:

α̂n(p) =

α̃n(p) if p ∈ (0, 1)

kn/β if p = 0

Because limp→0+ α̃n(p) = kn/β, it follows that α̂n(p) satisfies (ODE’) on p ∈ [0, 1] and is
thus a solution to (BVP: β ≤ kn). Thus, (BVP: β ≤ kn) does not have a unique solution, a
contradiction. Note that the argument in the case where kn < β is analogous.

It remains for us to establish that there exist unique solutions to both (BVP: β ≤ kn) and
(BVP: β ≥ kn). We do this by invoking the Picard existence and uniqueness theorem, and
thus begin by establishing that the right-hand side of (ODE’) is Lipschitz continuous in
αn(p) and continuous in p for p ∈ [−ε, 1) and αn(p) ∈ [c, 1 + ε] for any c > 0 and some ε > 0.
Since pi ≡ αn(p)+(1−αn(p))p, it suffices to show that Ṽ·,n+1 is Lipschitz continuous in pi for
pi ≥ 0. In the case where n = 1, Ṽpi,n+1 = 0 for all pi, and this is immediate. Next, suppose
n > 1. First, consider the case where kn+1 ≥ β. It follows from Lemma 3 that:

Ṽpi,n+1 =

knαn+1(pi)− β(1− pi) if pi < 1

0 if pi > 1

Because Ṽpi,n+1 is continuously differentiable in pi when pi 6= 1, to establish that it is Lips-
chitz continuous it suffices to show that limpi→1− Vpi,n+1 = 0. Suppose this does not hold,
by contradiction. Because αn+1(·) satisfies (ODE), this implies that limpi→1− α

′
n+1(pi) = ∞.

This in turn implies that limpi→1 αn+1(pi) =∞, and thus that (ODE) is not satisfied at pi = 1.
Contradiction.
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Next, consider the case where kn+1 < β. In this case:

Ṽpi,n+1 =


kn+1p

i/n if pi < p∗n+1

knαn+1(pi)− β(1− pi) if pi ∈ (p∗n+1, 1)

0 if pi = 1

By the reasoning from the case where kn+1 ≥ β, Ṽpi,n+1 is Lipschitz continuous for all
pi > p∗n+1. Furthermore, Lipschitz continuity holds on pi < p∗n+1. To show that Lipschitz
continuity holds across all pi, it suffices to show that Ṽ·,n+1 is differentiable at p∗n+1. To this
end, we take the left- and right- derivative of Ṽ·,n+1 at p∗n+1 and show that they are equal:

d

dp
Ṽp∗−,n+1 =

kn+1

N − n

d

dp
Ṽp∗+,n+1 = −kn+1α

′
n+1(p∗n+1) + β =

kn+1

1− p∗n+1

N − n
N − n+ 1

− β =
kn+1

N − n

Now, we show that there exists a unique solution for both (BVP: β ≤ kn) and (BVP: β ≥ kn)
in some neighborhood of their respective boundary conditions. By the Picard Theorem, this
follows immediately from our above-established result that the right-hand side of (ODE) is
Lipschitz continuous in αn(p) and continuous in p in some neighborhood of the boundary
conditions (αn(p) = 1, p = p∗) and (αn(p) = β/kn, p = 0).

Next, we seek to establish global existence and uniqueness of solutions to both (BVP: β ≤ kn)
and (BVP: β ≥ kn). First, consider (BVP: β ≥ kn). The argument for (BVP: β ≤ kn) fol-
lows analogously. Let [p∗, p) denote the largest right-open interval such that existence and
uniqueness are both satisfied. Assume by contradiction that p < 1. Let αn(p) denote the
solution along this interval.

We begin by showing that on this interval, αn(p) ∈ (α, 1], where α > 0 is some constant.
The upper bound is established as follows: suppose by contradiction that αn(p) > 1 some-
where on the interval. By the continuous differentiability of αn along the interval, there
must exist some q < p such that αn(q) = 1 and α′n(q) ≥ 0. However, it follows from (ODE’)
that

α′n(q) = − 1

kn(1− q)
N − n

N − n+ 1
[kn − Ṽpi,n+1] < 0

where the strict inequality follows from the fact that Ṽpi,n+1 ≤ kn+1 < kn. Contradiction.
The lower bound is established as follows: suppose by contradiction that such a lower
bound does not exist. Then, again by the continuous differentiability of αn along the inter-
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val, there exists some p̂ ∈ [p∗, p) such that

lim
p→p̂−

αn(p) = 0 and αn(p) > 0 for all p < p̂

However, it then follows from (ODE) that limp→p̂− α
′
n(p) =∞. Thus, (ODE’) is not satisfied

on [p∗, p). Contradiction.

Having established that on [p∗, p), 1 ≤ αn(p) > α > 0, it follows from (ODE’), and the
observation that Vpi,n+1 is bounded, that α′n is also bounded on this range. Thus, it follows
that limp→p− αn(p) ≡ α > 0 exists.

Now, consider the following modified boundary value problem, which is identical to
(BVP: β ≥ kn), except with boundary condition (p, α). by our prior-established result, we
recall that (ODE’) is Lipschitz continuous in αn(p) and continuous in p in some neighbor-
hood of the boundary condition. Thus, we can again apply the Picard Theorem to obtain
that there exists a unique solution to the modified boundary value problem in some neigh-
borhood of (p, α). Formally, there exists some ε > 0 such that there is a unique solution
α̃n(p) on interval (p− ε, p+ ε). We can “paste” this solution α̃n, with our prior solution αn.
Formally, let

α̂n(p) =

αn(p) if p ∈ [p∗n, p)

α̃n(p) if p ∈ [p, p+ ε)

Now, note that α̂n(p) is a unique solution to (BVP: β ≥ kn) on [p∗n, p+ε), which contradicts
our earlier assumption that [p∗, p) was the largest right-open interval such that existence
and uniqueness are satisfied. Contradiction. �

Proof of Proposition 3. Let us begin by showing that αn(p) is decreasing in p for all (p, n)

on-path. By Lemma 5, it follows that when kN < β, αN(p) = 1 for all p, and otherwise,
α′N(p) = 0 for all p. Thus we have shown that αN(p) is constant in p. Now, consider the
case where n < N . Assume by induction that αn+1(p) is weakly decreasing in p whenever
(p, n+ 1) is on path.

Assume by contradiction that there exists some p such that αn is strictly increasing. Note
that Lemma 5, α′n(p) = 0 whenever β ≥ kn and p < p∗n. Thus it must be that β > kn or p > p∗n.
In this case, it again follows from Lemma 5 that (ODE) must be satisfied. Now define the
function X(p) as follows:

X(p) ≡ knαn(p)− β(1− pi)− Vpi,n+1 (23)
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Note that whenever (ODE) is satisfied, the following holds:

α′n(p) > (=)0 if and only if X(p) < (=)0 (24)

Thus, X(p) < 0. Now, I claim that there exists p < p such that limp→p+X(p) ≥ 0. To
establish this, first consider the case where kn ≥ β. In this case,

lim
p→0+

X(p) = kn lim
p→0+

αn(p)−β(1− lim
p→0+

)− lim
p→0+

Vαn(p),n+1 = (kn+β) lim
p→0+

αn(p)−β− lim
p→0+

Vαn(p),n+1

When limp→0+ αn+1(αn(p)) < 1, it follows from Lemma 3 that

lim
p→0+

Vαn(p),n+1 = lim
p→0+

Vαn(p),n+1(δ0) = kn+1 lim
p→0+

αn+1(αn(p))− β(1− lim
p→0+

αn(p))

= kn+1αn+1(β/kn)− β(1− β/kn)

Because kn ≥ β, the final equality follows from Lemma 5. Substituting this into our above
expression for limp→0+X(p), we obtain

lim
p→0+

X(p) = β − kn+1αn+1(β/kn)

In the case where kn+1 < β, it follows directly that limp→0+ X(p) > 0. Otherwise, if kn+1 ≥
β, then because limp→0+ αn+1(p) = β/kn+1, it follows from the inductive assumption that
αn+1(p) ≤ β/kn+1 for all p, and thus that limp→0+X(p) > 0.

Meanwhile, when limp→0+ αn+1(αn(p)) = 1, it follows from the inductive assumption
that αn+1(q) = 1 for all q ≥ limp→0+ αn(p). It thus follows that

lim
p→0+

Vpi,n+1 = lim
p→0+

Vpi,n+1(δ∞) =
kn+1

N − n
β

kn

Substituting into the above expression for limp→0+X(p) and simplifying, we obtain

lim
p→0+

X(p) = (β/kn)(β − kn+1/(N − n)) ≥ 0,

where the inequality follows from the fact that αn+1(β/kn) = 1, implying by Lemma 5 that
kn+1 ≥ β.

Next, consider the case where kn < β. In this case,

lim
p→p∗n+

X(p) = kn − lim
pi→1−

Vpi,n+1
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If limpi→1− αn+1(pi) < 1, then by Lemma 3,

lim
pi→1−

Vpi,n+1 = lim
pi→1−

Vpi,n+1(δ0) = kn+1 lim
pi→1−

αn+1(pi) < kn.

Thus, in this case, we obtain that limp→p∗n+X(p) > 0. Meanwhile, if limpi→1− αn+1(pi) = 1,
by the inductive assumption, αn+1(p) = 1 for all p. Thus,

lim
pi→1−

Vpi,n+1 = lim
pi→1−

Vpi,n+1(δ∞) = lim
pi→1−

kn+1p
i

N − n
=

kn+1

N − n
.

We once again obtain limp→p∗n+X(p) > 0. We have thus shown that there always exists
p < p such that limp→p+X(p) ≥ 0.

Because X(p) < 0 by assumption, there must exist some q ∈ [p, p] X(q) < 0 and X ′(q) <

0. Note that differentiating our above expression for X , we have

X ′(q) = knα
′
n(q) + β((1− q)α′n(q) + (1− αn(q)))− d

dq
Vαn(q)+(1−αn(q))q,n+1. (25)

First, consider the case where αn+1(qi) < 1. By Lemma 3,

Vqi,n+1 = Vqi,n+1(δ0) = kn+1αn+1(qi)− β(1− qi).

Substituting this into (25), we obtain

X ′(q) = knα
′
n(q)− kn+1α

′
n+1(qi)((1− q)α′n(q) + (1− αn(q))).

Note that because X(q) < 0 it follows from (24) that α′n(q) > 0. Furthermore, by the
inductive assumption, α′n+1(qi) ≤ 0. Thus, in this case, X ′(q) > 0. Contradiction.

Next, consider the case where αn+1(qi) = 1. By the inductive assumption, αn+1(p) = 1

for all p ≤ qi. Thus,

Vqi,n+1 = Vqi,n+1(δ∞) =
kn+1q

i

N − n
.

Substituting this into (25), we obtain

X ′(q) = knα
′
n(q) + (β − kn+1

N − n
)((1− q)α′n(q) + (1− αn(q)))

Because αn+1(qi) = 1, by Proposition 1 (if n < N − 1) and Lemma 5 (if n = N − 1), it must
be that β ≥ kn+1. Thus, X ′(q) > 0. Contradiction.

Next, we will show that if kN ≥ β, then αn(p) = β/kn. Assume that kN ≥ β. First
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consider the case where n = N . By Lemma 5, α′n(p) = 0 for all p on-path, and thus, αN(p)

is constant in p. Since Lemma 5 also asserts that limp→0+ kNαN(p) = β, it must be that
αN(p) = β/kN for all p. Now, consider n < N . Assume by induction that αn+1(p) = β/kn+1

for all p. We begin by showing that αn(p) is constant in p. Since kn > β, by Lemma 5,
(ODE) must hold at all p. By (24), showing αn(p) is constant in p is equivalent to showing
that X(p) = 0. To establish this, I begin by claiming that Vpi,n+1 = Vpi,n+1(δ0). In the case
where kn+1 > β, it follows from Proposition 1 that αn+1(pi) < 1, and thus this follows from
Lemma 3. In the case where kn+1 = β, because km > kN ≥ β for all m < N , it follows that
n+1 = N . In this case, all pure strategies δs must yield the same value. In particular, for all
s ∈ [0,∞], Vp,N(δs) = kNp. Thus, δ0 is optimal. Having established that Vpi,n+1 = Vpi,n+1(δ0),
we have:

Vpi,n+1 = kn+1αn+1(pi)− β(1− pi) = βpi

Substituting this into (23), we obtain X(p) = knαn(p) − β. Since we established above that
αn(p) is weakly decreasing, αn(p) ≤ kn/β for all p, and thus X(p) ≤ 0. Separately, by (24)
αn(p) weakly decreasing implies that X(p) ≥ 0. Combining these inequalities, we have
X(p) = 0.

Finally, I will show that kN < β implies that α′n(p) < 0 whenever αn(p) < 1. To this
end, suppose kN < β, and suppose by contradiction that at some q such that αn(q) < 1,
α′n(q) = 0. It follows from (24) that X(q) = 0.

First, consider the case where αn+1(qi) = 1. Recall from the above that in this case, we
have

X ′(q) = knα
′
n(q) + (β − kn+1

N − n
)((1− q)α′n(q) + (1− αn(q)) = (β − kn+1

N − n
)(1− αn(q)) (26)

Now, I claim that β > kn+1

N−n . In the case where n = N − 1, this follows directly from our
assumption that kN < β. Meanwhile, in the case where n < N − 1, because αn+1(qi) = 1,
this is a result of Proposition 1. It thus follows from (26) that X ′(q) > 0. Since X(q) = 0,
for some p < q, we must have X(p) < 0. By (25), α′n(p) > 0. This contradicts the above-
established assertion that αn(p) is weakly decreasing in p.

Next, consider the case where αn+1(qi) < 1. As established above, in this case:

X ′(q) = knα
′
n(q)− kn+1α

′
n+1(qi)[(1− q)α′n(q) + (1− αn(q))] = −kn+1α

′
n+1(q)[1− αn(q)] > 0.

Again, this implies that there exists some p < q such that X(p) < 0 and thus that α′(p) > 0.
Contradiction. �
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Appendix C Commitment solution
Here, we seek the optimal solution to the monopoly case of the baseline model in which

the firm has the ability to commit to a reporting strategy. Formally, the only modification
we introduce is that rather than F and α being determined simultaneously as they are in
equilibrium, the firm chooses its strategy F before α is determined. Thus, in the commit-
ment case, the credibility function is a function of the firm’s strategy. We formalize this
dependence by denoting the firm’s credibility function as αF . αF is then given by (3) as
in the non-commitment case, except that the strategy F upon which it is computed is the
firm’s choice of strategy, rather than the equilibrium strategy.

Because we are considering the monopoly case only, I will be dropping the n index from
all functions and expressions. Furthermore, for convenience, I will be writing all functions
as a function of calendar time t, rather than the common belief p as in the baseline model.
Writing the functions in this way is without loss, since under a monopoly there is a one-to-
one correspondence between the calendar time t and the common belief p.

The firm’s objective is to choose a permissible strategy F ∈ F which maximizes its
expected payoff over the course of the game. Specifically, its problem is given by the fol-
lowing:

max
F∈F

∫ ∞
0

[αF (t)− β(1− p(t))(1− αF (t))]dΨ(t) (27)

where, as in the baseline setup, Ψ(t) denotes probability that the firm reports before time
t under strategy F . Before proceeding, we highlight that the only difference between this
problem and the problem of the monopoly case of the baseline model is that the credibility
function is not taken as given, but is rather a function of the firm’s choice of strategy F .

In the analysis that follows, it will be useful for us to cast this problem as a choice of
an optimal credibility function α, rather than an optimal strategy F . To this end, I begin
with a useful observation, which is analogous to Lemma 1, except under the commitment
setting:

Lemma 6. F must be continuous in equilibrium.

We omit a proof for this claim, as it follows analogously to the proof for Lemma 1: if F
exhibits a discontinuity at some time t, reporting at this time must yield a negative expected
payoff. Thus, the firm can profitably deviate by shifting that it had placed on reporting t to
δ∞.

It follows immediately from Lemma 6 that in equilibrium, both the firm’s strategy F

and the corresponding commitment function, αF , are defined by the right-hazard rate b(t)
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of the firm’s strategy. That is,

αF (t) =
λp(t)

λp(t) + b(t)

It further follows that Ψ is continuous and can thus be written as a function of αF as follows:

Ψ(t) = 1− e−
∫ t
0 (b(s)+p(s)λ)ds = 1− e−

∫ t
0
λp(s)
αF (s)

ds

Having written Ψ in terms of αF , and noting that at any given t αF (t) is a one-to-one
function of b(t), we can cast the optimization problem given by (27) as one over αF :

max
αF

∫ ∞
0

λp(t)[1− β(1− p(t))( 1

αF (t)
− 1)]e

−
∫ t
0
λp(s)
αF (s)

ds

In the following claim, I show that the optimal strategy for the firm consists of always
truth telling (i.e., αF (t) = 1 for all t). In the proof that follows, I let V (t, αF ) denote the
firm’s value at time t given that it has chosen αF .

Proposition 6. In equilibrium, αF (t) = 1 for all t.

Proof. Assume not, by contradiction. Then there exists a t∗ such that αF (t∗) < 1. It follows
from Lemma 6, and the assumption that F is right-continuously differentiable, that αF
must be right-continuous. Thus, there must exist a α̂ < 1 and ε > 0 such that αF (t) < α̂ for
all t ∈ [t∗, t∗ + ε].

Note that for any αF , including the equilibrium αF , we can write the time-0 value as
follows:

V (0, αF ) =

∫ t∗+ε

0

λp(t)[1− β(1− p(t))]( 1

αF (t)
− 1)e

−
∫ t
0
λp(s)
αF (s)

ds
dt+ e

−
∫ t∗+ε
0

λp(s)
αF (s)

ds
V (t∗ + ε, αF )

(28)
Now, consider the following deviation α̃F , which is identical to αF , except that it is 1 on the
interval [t∗, t∗ + ε]:

α̃F (t) =

1 if t ∈ [t∗, t∗ + ε]

αF (t) otherwise
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Now, it follows from (28) that

V (0, αF ) = V (0, α̃F ) +

∫ t∗+ε

t∗
λp(t)[1− β(1− p(t))( 1

αF (t)
− 1)]e

−
∫ t
0
λp(s)
αF (s)

ds
dt−

∫ t∗+ε

t∗
λp(t)e−

∫ t
0 λp(s)dsdt

+(e
−

∫ t∗+ε
t∗

λp(s)
αF (s)

ds − e−
∫ t∗+ε
t∗ λp(s)ds)V (t∗ + ε, αF )

(29)

Now, we will note the following two inequalities:∫ t∗+ε

t∗
λp(t)[1− β(1− p(t))( 1

αF (t)
− 1)]e

−
∫ t
0
λp(s)
αF (s)

ds
dt ≤

∫ t∗+ε

t∗
λp(t)[1− β(1− p(t))( 1

α
− 1)]e−

∫ t
0
λp(s)
α

dsdt

<

∫ t∗+ε

t∗
λp(t)e−

∫ t
0 λp(s)dsdt

e
−

∫ t∗+ε
t∗

λp(s)
αF (s)

ds − e−
∫ t∗+ε
t∗ λp(s)ds ≤ e−

∫ t∗+ε
t∗

λp(s)
α

ds − e−
∫ t∗+ε
t∗ λp(s)ds < 0

Applying these two inequalites to (29) we obtain

V (0, αF ) < V (0, α̃),

and thus, α̃F serves as a profitable deviation. Contradiction. �

Appendix D Proofs: comparative statics

Proof of Proposition 4. First, we establish part (a). Fix all other parameters and let 0 < β <

β̃. Let α and α̃ denote the equilibrium credibility functions under β and β̃, respectively. Fix
an n and assume inductively that the proposition holds for n+1 if n < N . Note that for any
(p, n) and t, p(t) will be the same under β and β̃. Thus to show the above claim, it suffices
to show that for any p, αn(p) is weakly increasing in β, and strictly so whenever αn(p) < 1.

We begin by showing that αn(p) = 1 implies that α̃n(p) = 1. First, consider the case
where n = N . By Proposition 2, αN(p) = 1 implies that kN ≤ β. Thus, kN < β̃, which by
Proposition 1 implies that α̃N(p) = 1. Next, consider the case where n < N , and assume
αn(p) = 1. By Proposition 1, this implies that kn < β and p ≤ p∗n ≡

β−kn
β−kn/n . Further note that

p̃∗n ≡
β̃ − kn
β̃ − kn/n

>
β − kn
β − kn/n

≡ p∗n.

Thus, kn < β̃ and p < p̃∗n, which by Proposition 1 implies α̃n(p) = 1.
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Now, suppose that αn(p) < 1. We wish to show that α̃n(p) > αn(p). Suppose by contra-
diction that α̃n(p) ≤ αn(p). It follows from Proposition 2 that if kn > β̃,

lim
q→0+

αn(q) = β/kn < β̃/kn = lim
q→0+

α̃n(q).

Meanwhile, if kn ≤ β̃.
lim

q→p̃∗n+
αn(q) < 1 = lim

q→p̃∗n+
α̃n(q)

To see why the latter must must hold, first consider the case where n = 1. It follows from
Lemma 5 that α̃n(q) = 1 for all q. Meanwhile, it follows again from Proposition 2 that
αN(q) is constant in q, and because αN(p) < 1, limq→p̃∗n+ αN(q) < 1. In the case where
n < N , because p∗n < p̃∗n, it follows from Proposition 1 that αn(p̃∗n) < 1.

Thus, we have that both when kn > β̃ and when kn ≤ β̃, there exists some p̂ < p such
that α̃n(p̂) > αn(p̂) and α̃n, αn satisfy (ODE) on [p̂, p] , for their respective value of β. Thus,
there exists a q ∈ [p̂, p] such that αn(q) = α̃n(q) and α′n(q) ≥ α̃′n(q). It follows from (ODE)
that in order for the above two conditions to hold, it must be that

X ≡ (β − β̃)(
1− αn(q)

αn(q)
)(1− q) +

Vqi,n+1 − Ṽqi,n+1

αn(q)
≥ 0 (30)

where V and Ṽ denote the value functions under β and β̃, respectively. First consider the
case where n = N . Then Vqi,n+1 = Vq̃i,n+1 = 0, and thus X < 0, contradicting (30).

Next, consider the case where n < N . First suppose that αn+1(qi) = 1. It follows from
the inductive assumption that α̃n+1(qi) = 1. Thus, by Lemma 5, Vqi,n+1 = kn+1qi

N−n = Ṽqi,n+1.
Again this implies that X < 0, contradicting (30). Now, suppose that αn+1(qi) < 1. It then
follows from Lemma 3 that

Vqi,n+1 = Vqi,n+1(δ0) = kn+1αn+1(qi)− β(1− qi)

Furthermore,
Ṽqi,n+1 = Ṽqi,n+1(δ0) = kn+1α̃n+1(qi)− β̃(1− qi)

Thus, recalling from (6) that qi = αn+1(q) + (1− αn+1(q))q, we have

Vqi,n+1 − Ṽqi,n+1 ≤ kn+1(αn+1(qi)− α̃n+1(qi))
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Substituting this into the above expression for X , we obtain

X ≤ kn+1(αn+1(qi)− α̃n+1(qi))

αn(q)
< 0.

where the strict inequality follows from the inductive assumption that αn+1(qi) < α̃n+1(qi)).
Again, this is a contradiction of (30).

Next, let us establish part (b). Let λ̃ > λ > 0, and let α, α̃ denote the equilibria under λ
and λ̃, respectively, fixing all other parameters. We begin by showing that α̃n(p) = α̃n(p)

for any p and n. Fix an n and assume inductively that if n < N , αn+1(p) = α̃n+1(p) for all p
on-path.

Let V , Ṽ denote the value functions under the equilibria associated with λ and λ̃, re-
spectively. Note that Vp,n+1 = Ṽp,n+1 for all p on-path. In the case where n = N , Vp,n+1 =

Ṽp,n+1 = 0, and thus this holds trivially. In the case where n < N , this follows from the
inductive assumption.

Now, note that by Lemma 5, αn and α̃n must both be a solution to (P) at all (p, n) on-
path, which does not depend on λ. By Theorem 1, the solution to (P) is unique, and thus
αn(p) = α̃n(p) at all (p, n) on-path.

Now fixing any p and n, let p(t) and p̃(t) denote the common beliefs under λ and λ̃,
respectively. It follows from (5) that p(t) > p̃(t) for all t > 0. Thus, because αn(p) and
α̃n(p) are both weakly decreasing in p (Proposition 3), it follows that αn(p(t)) ≤ α̃n(p(t)).
Furthermore, since α̃(p) is strictly decreasing in p (Proposition 3) whenever αn(p) < 1 and
kN > β, it follows that αn(p(t)) < αn( ˜p(t)) in this case.

Finally, let us establish part (c). Let α and α̃ denote the equilibria under N and N + 1

firms, respectively, fixing all other parameters. We begin by showing that for all p, αn(p) ≥
α̃n(p), and αn(p) > α̃n(p) when αn(p) < 1. To this end, fix an n ∈ {1, ..., N} and assume
inductively that the claim holds for n+ 1 whenever n < N .

We begin by showing that α̃n(p) = 1 implies that αn(p) = 1. Suppose that α̃n(p) = 1. By
Proposition 1, β > kn and p < p̃∗n ≡

β−kn
β−kn/(N+1−n)

. Because p∗n ≡
β−kn

β−kn/(N−n)
> p̃∗n, it follows

from Proposition 1 that αn(p) = 1.

Now consider the case where α̃n(p) < 1. We wish tot show that α̃n(p) < αn(p). To this
end, we begin by making the following observation:

If αn and α̃n both satisfy (ODE) at q, and αn(q) = α̃n(q), then α′n(q) > α̃′n(q). (31)
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Let us now establish this. Note first that for αn and α̃n to both satisfy (ODE) at q, given
that αn(q) = α̃n(q), the following must hold:

α′n(q) =
−1

kn(1− q)αn(q)

N − n
N − n+ 1

(knαn(q)− Vqi,n+1 − β(1− αn(q))(1− q))

α̃′n(q) =
−1

kn(1− q)αn(q)

N − n+ 1

N − n+ 2
(knαn(q)− Ṽqi,n+1 − β(1− αn(q))(1− q)),

where V and Ṽ denote the value functions under the equilibria withN andN+1 total firms,
respectively. Note that if n = N , α′n(q) = 0. Meanwhile, by Proposition 3, α̃′n(q) < 0. Thus,
α̃′n(q) < αn(q) must hold. Next, consider the case where n < N . We begin by observting
that Vqi,n+1 > Ṽqi,n+1. To see why this must hold, first consider the case where α̃n+1(qi) = 1.
It then follows from the inductive assumption that αn(qi) = 1. Then, by Lemma 5,

Ṽqi,n+1 = Ṽqi,n+1(δ∞) =
kn+1q

i

N − n
<

kn+1q
i

N − n− 1
= Vqi,n+1(δ∞) = Vqi,n+1.

Next, consider the case where α̃n(qi) < 1. In this case, it follows from Lemma 3 that

Ṽqi,n+1 = Ṽqi,n+1(δ0) = kn+1α̃n+1(qi)− β(1− qi) < kn+1αn+1(qi)− β(1− qi)

= Vqi,n+1(δ0) ≤ Vqi,n+1

where the strict inequality follows from the inductive assumption made above. Examining
the two ODEs listed above, since by Proposition 3, α′n(q) ≤ 0, it follows that α̃′n(q) < α′n(q).

Now, assume by contradiction that αn(p) ≤ α̃n(p). We begin by showing that there
exists a q∗ < p such that α̃n(q∗) < αn(q∗). First consider the case where kn ≥ β. Then, by
Proposition 2,

lim
q→0+

αn(q) = lim
q→0+

α̃n(q) =
β

kn

Then, by the continuous differentiability of αn and α̃n on (0, p), it follows from Equation 31
that for some q∗ < p sufficiently small αn(q∗) > α̃n(q∗). Next, consider the case where
kn < β, and let p∗n ≡

β−kn
β/(N−n+1)−kn . Note by Proposition 1 that αn(p∗n) = 1. Meanwhile,

because p∗n < p̃∗n ≡
β−kn

β/(N−n+2)−kn , it follows from Proposition 1 that α̃n(p∗n) < 1, and thus, we
have for q∗ = p∗n, α̃n(q∗) < αn(q∗).

Since α̃n(q∗) < αn(q∗) and α̃n(p) ≥ αn(p), by the continuous differentiability of α on
[q∗, p], there must exist some q ∈ (q∗, p] such that αn(q) = α̃n(q) and α′n(q) ≤ α̃′n(q). How-
ever, this is a contradiction of (31).

Now fixing any p and n, let p(t) and p̃(t) denote the common beliefs under N and N + 1
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firms, respectively. We wish to show that on some interval [0, t], where t > 0, αn(p(t)) ≥
α̃n(p̃(t)) is weakly increasing in t, and strictly so whenever αn(p(t)) < 1. First consider the
case where αn(p(t)) = 1. In this case, the statement holds trivially. Next, consider the case
where αn(p) < 1. It follows from the above that αn(p) > α̃n(p). Now note that it follows
from (5) that limt→0+ p(t) − p̃(t) = 0. Since αn(p(t)) and α̃n(p̃(t)) are both continuous in t

(Lemma 4), it follows that for some t > 0, αn(p(t)) > α̃n(p̃(t)) for all t ∈ [0, t]. �

Appendix E Proofs: heterogenous learning abilities

Here, we consider the extended model presented in Section 6. The objective is to es-
tablish Proposition 5. This proof will require extending certain results established in the
baseline model to the extended model.

Regarding Lemmas 1-4, I will take for granted that these hold under the extended model.
Formal proofs of this are omitted as all proofs presented under the baseline model will
apply to the extended setting as well.

Next, I establish that Proposition 1 holds under the extended model. This claim is pre-
sented as Proposition 1’. In the analysis below, I let V i

p,n denote firm i’s value.

Proposition 1’. For all s, there exists a pi∗ ∈ (0, 1] such that at any p on-path, αi1(p) = 1 if and
only if the following two conditions hold:

1. k1 ≤ β

2. p ≤ pi∗

Furthermore, pj∗ > pi∗ whenever λj > λi and n > 1.

Proof. Fix an i. Suppose that k1 ≤ β. By identical reasoning as Proposition 1, for all
q < β−k1

k1
, αi1(q) = 1. Let

pi∗ ≡ sup{p|αi1(p) = 1 for all q < p}

It follows by definition that αi1(p) = 1 for all p ≤ pi∗1 .

Next, we will show that αi1(q) < 1 whenever k1 > β or p > pi∗1 . Suppose not by con-
tradiction. First, consider the case where k1 > β and αi1(p) = 1 for some p. Then we have
that

V i
p,1(δ0) = k1p+ (k1 − β)(1− p) > k1p ≤ V i

p,1(δ∞)

Thus, i can profitably deviate at p. Contradiction. Next, consider the case where q > pi∗n

and αi1(p) = 1. In this case, a contradiction follows from identical reasoning to what is
presented in Proposition 1.
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Finally, we show that pj∗ > pi∗ whenever λj > λi. Suppose by contradiction that pj∗ ≤
pi∗. Note that because j is truth telling at (pj∗S , n = 1), V j

pj∗1 ,1
(δ∞) ≥ V j

pj∗,1(δ0). Furthermore,

because pj∗ ≤ pi∗, i is also truthful at (pj
∗
n , n = 1). Thus,

V j

pj∗1 ,1
(δ0) = V i

pj∗1 ,1
(δ∞) = k1 − β(1− p).

Now, note that because λj > λi,

V j

pj∗1 ,1
(δ∞) > V i

pj∗1 ,1
(δ∞).

Combining these inequalities we have V i
pj∗1 ,1

(δ∞) < V i
pj∗1 ,1

(δ0). However, because αi1(pj∗) = 1,

V j

pj∗n ,1
= V j

pj∗n ,1
(δ∞). Contradiction. �

Next, we extend Proposition 2 to this setting. Note this entails deriving an ODE that
applies to this extended model, (ODE’).

Proposition 2’. In equilibrium, for any p on-path, if k1 ≥ β or p > pi∗, then the following must be
satisfied:

αi′1 (p) = −β −

∑
j 6=i

λj

αj1(p)∑
j λ

j(1− p)
[αi(p)− β(1− p)] (ODE’)

In addition, limp→0+ α
i
1(p) = β/k1 must hold if k1 > β, and limp→pi∗+ α

i
1(p) = 1 if k1 ≤ β.

Proof. Let us first establish that (ODE’) must hold under the conditions specified.

When k1 ≥ β or p > pi∗, it follows from Proposition 1’ that αi1(p(t)) < 1. It then follows
from Lemma 3 that there exsits an ε > 0 such that for all ∆ ∈ (0, ε),

V i
p,1(δ∆)− V i

p,1(δ0)

∆
= 0

Recall that V i
p,1(δ0) = k1α

i
1(p)− β(1− p). Meanwhile,

V i
p,1(δ∆) =

∫ ∆

0

k1α
i
1(p(s))Ψi(s)ds+ (1−

∑
j

lim
s→∆−

Ψj(s))[k1α1(p(∆))− β(1− p(∆))]

where Ψ is the first-report distribution associated with the strategy profile in which i

plays δ∞ and all j 6= i play Fp,1. Specifically, for all s > 0,

Ψi(s) = pλi
∫ s

0

e−
∏
j∈S λ

jr
∏
j 6=i

(1− F i
p,1(r)))dr
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and for j 6= i,

Ψj(s) = p

∫ s

0

e−
∏
k 6=j λ

kr
∏
k 6=i 6=j

(1− F k
p,1(r))d(−e−λjr(1− F j

p,1(r)))

+(1− p)
∫ s

0

∏
k 6=k 6=j

(1− F k
p,1(r))dF j

p,1(r)

Substituting these two expressions into the above equation for V i
p,1(δ0) and following the

same sequence of steps in Proposition 2 yields (ODE’).

The two limit conditions are established by the same reasoning presented in Proposi-
tion 2. �

Proof of Proposition 5. Fix any (i, j) such that λi > λj . We want to show that αi1(p(t)) ≤
αji (p(t)) and that αi1(p(t)) < αji (p(t)) whenever αi1(p(t)) < 1. First suppose αi1(p) = 1. In this
case, αi1(p) ≥ αj1(p) is trivially satisfied.

Next, suppose αi1(p) < 1. We want to show that αi1(p) > αj1(p). Suppose by contradiction
that αi1(p) ≤ αj1(p). First consider the case where k1 < β. Then, let

q∗ ≡ inf{q|αj1(p) < 1 and αj1(p) < αi1(p)}.

Because the αi1 are continuous, it follows from Proposition 1’, and the assumption that
αi1(p) ≤ αj1(p), that q∗ < p exists. Again, by continuity, αj1(q∗) = αi1(q∗). It then follows
from (ODE’) that αj′1 (q∗) < αi′1 (q∗). But this implies that for some q > q∗, αj1(q∗) > αi1(q∗).
Contradiction.

Next, consider the case where k1 ≥ β. Recall by Proposition 2’ that limp→0+ α
i
1(p) =

limp→0+ α
j
1(p). Thus, there exists some q ∈ (0, p] such that αi1(p) ≤ αj1(p) and αi′1 (p) ≤ αj′1 (p).

However, it again follows from (ODE’) that αi′1 (p) > αj′1 (p). Contradiction.

�
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