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Abstract

We study the economic incentives for automation when labor and machines are perfect sub-
stitutes. Labor may still be employed in production, even when it is a costlier input than robots
on a productivity-adjusted basis. This occurs if firms face uninsurable idiosyncratic risk, adjust-
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though labor survives, jobs become less stable, as workers are hired in short-lived bursts to cope
with shocks. We calibrate a general equilibrium, multi-industry version of our model to match
data on robot adoption in US manufacturing sectors, and use it to compute the employment and
labor share consequences of progress in automation technology. A fall in the relative price of
robots leads to relatively few jobs losses, while reductions in adjustment costs, or improvements
in relative robot productivity, can be far more disruptive. The model-implied semi-elasticity of
aggregate employment to robot penetration ranges between 0.01% and 0.1%, depending on the
underlying source of increased robot adoption. Adding reduced-form hiring and firing costs to
our benchmark model reveals that the scare of automation is justified when regulations impose
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1 Introduction

Over the last few years, the progress in robotics, software engineering, and AI, coupled with the

secular decline in the labor share of output, has sparked a discussion on whether machines will

progressively replace humans in performing tasks (Acemoglu and Restrepo, 2018c; Autor, 2015; Au-

tor and Salomons, 2018; Berg et al., 2018; Graetz and Michaels, 2018; Sachs and Kotlikoff, 2012). In

economic terms, the full displacement of humans requires perfect substitution between robots and

workers within tasks; otherwise human labor will always be needed. In this paper, we investigate

the long-run consequences of automation under this deliberately extreme assumption, to provide

an upper bound for potential employment losses.

The recent literature has stressed a number of reasons why robots and human workers might not

be perfect substitutes. Autor (2015) discusses the ability of workers to perform the multiple and dif-

ferentiated tasks that typically constitute a job. Acemoglu and Restrepo (2018b,c, 2020) highlight the

importance of human comparative advantage in carrying out specific tasks, a point that is also made

by Berg et al. (2018) and Graetz and Michaels (2018). Finally, there might be some non-routine oc-

cupations, or categories of workers that are poised to benefit from automation (see again Berg et al.

(2018) and Sachs and Kotlikoff (2012); Sachs et al. (2015)). While we acknowledge the importance

of these mechanisms, we abstract from them to focus on tasks where workers and robots can in-

deed be perfect substitutes. In this sense, we describe a worst-case scenario for workers employed

in low-skilled, routine occupations.

Our baseline model follows the spirit of the task framework proposed by Acemoglu and Restrepo

(2018b), and focuses on a firm choosing whether to automate a single task where humans and robots

are perfect substitutes. We describe how human labor can survive thanks to its flexibility as an input

in production, which we identify as its distinctive comparative advantage.1 Labor survives alongside

robots under three main assumptions that set our framework apart from the existing literature. First,

we introduce demand shocks by assuming that firms face uninsurable idiosyncratic risk. Shocks cre-

ate a source of demand for flexible inputs that can readily adjust to a volatile environment. Second,

we model robots as having capital-like features that impair their rapid deployment in production, in

contrast to the standard assumption of a rental market that allows for immediate adjustments of the

robot stock. Finally, we assume that employees can be hired and fired more easily than robots can

be bought, installed, and sold. Accordingly, firms respond to positive shocks using the more flexi-

ble factor, but generally employ both workers and machines. Notably, firms employ both workers

and machines even if labor and robots are perfect substitutes, and even if robots are cheaper on a

productivity-adjusted basis. Our model therefore presents a context where imperfect long-run sub-

1Tesla’s recent history is a real-world example of the mechanism we describe. After months of unsuccessful attempts
at scaling up the production of the Tesla Model 3 by radical automation, Elon Musk tweeted: “Yes, excessive automation
at Tesla was a mistake. To be precise, my mistake. Humans are underrated.” Installing and adapting robots to the various
tasks turned out to be harder than expected, pushing the company to meet its demand backlog by hiring thousands of
(human) workers. See the Forbes coverage in Muller (2018).
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Figure 1: Total System Cost of a Typical Spot-Welding Robot in the U.S. Automotive Industry
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stitutability between robots and workers arises endogenously. This result relies on the joint presence

of adjustment costs and revenue risk, as neither of these ingredients in isolation would produce a

finite long-run elasticity of substitution between robot and workers.

The dynamics implied by our model reproduce the empirical dichotomy between firm-level and

aggregate effects of automation on employment. At the firm level, investment in automation tech-

nology has been associated to higher wages and employment (Acemoglu et al., 2020; Aghion et al.,

2020; Bonfiglioli et al., 2019; Koch et al., 2019). However, aggregate labor demand at the sector or

geographic levels has been found to fall with increased robot penetration (Acemoglu and Restrepo,

2020; Dauth et al., 2019). We also show that the survival of production-line employment comes at

the cost of reduced job stability; simulated time series from our model highlight that, in an auto-

mated world, labor is only hired in short-lived “bursts” to cope with sudden increases in the desired

production scale.

Our modeling choices are informed by data on robot costs. Figure 1 reports data from Sirkin et al.

(2015) detailing the main cost items for the setup of a spot-welding robot in the U.S. automotive

industry. The figure highlights three main facts that feature in our model and calibration. First,

in line with the broader evidence in the report by the International Federation of Robotics (2017)

and Korus (2019), the purchase price of robots has been trending down, and it is projected to keep

doing so in the future. Second, purchase costs represent but a small fraction of the total cost of a

robotic system, which is mostly made up of installation-related costs, reflected by the adjustment

costs in our model. Third, the nature of these adjustment costs, and particularly those related to

programming and "peripherals", suggest that robot systems have a firm-specific component that

might affect their redeployment to different contexts.
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In order to gauge the quantitative implications of our theoretical findings, we develop a multi-

industry, general equilibrium version of our baseline model, which we calibrate to match data on

the adoption of robots between 2010 and 2014. This exercise reveals that, in line with the evidence in

Figure 1, robot adjustment costs might indeed be sizable. This result stems from the low aggregate

elasticity of robot penetration to purchase prices observed in the data. Under our calibration, we

establish that even a dramatic reduction in the relative price of robots causes only a modest fall in

aggregate employment, with changes in the technical substitutability and flexibility of robots pos-

ing a more substantial threat. Notably, general equilibrium effects mitigate employment losses, as

they imply a fall in the equilibrium wage. In line with quantitative findings from the empirical litera-

ture (Acemoglu and Restrepo, 2020), the semi-elasticity of aggregate employment to robot penetra-

tion implied by our calibrated model ranges between 0.01% and 0.1%, depending on the underlying

source of increased robot adoption.

We show that the mechanism of the baseline model is robust to using linear or fixed costs of

adjustment. This allows us to work with a more tractable model without loss of generality in our

conclusions. To clarify how the comparative advantage of humans arises, and to obtain analyti-

cal results, our benchmark model features frictionless hiring and firing. We depart from this as-

sumption in an extension. Labor adjustment costs, which we interpret as reduced-form market

frictions, dampen the flexibility comparative advantage, and increase the long-run displacement

of production-line workers. Our model suggests that removing strict employment protection mea-

sures could be an effective policy to safeguard unskilled jobs in the long run, counter to what in-

tuition might suggest. However, we also show that more rigid employment regulations can slow

down the substitution of workers with machines, depending on the speed of transition to lower

robot prices. Our findings highlight that policymakers face a trade-off between long-run and short-

run employment outcomes. The rigid-labor extension also shows that when the transition to lower

robot prices is gradual, stricter labor market regulations can induce firms to anticipate the adop-

tion of robots to smooth out workforce adjustment costs. This result speaks to empirical evidence

suggesting that higher unionization is associated with higher robot penetration at the current stage

(Acemoglu and Restrepo, 2018a).

Section 2 develops a simple model to build intuition. Section 3 extends the analysis to an infinite

horizon. Section 4 presents the multi-sector, general equilibrium model and our calibration. Sec-

tion 5 illustrates the robustness to alternative cost specifications, and the extension featuring labor

market rigidity. Section 6 concludes.

1.1 Related Literature

Our theoretical framework relates to two distinct strands of literature. The first deals with automa-

tion and its long-run impact on employment and factor shares. The second relates to modeling

investment with risk and imperfect reversibility. In this section, we also review the recent empirical
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literature on the effects of automation on employment and wages, and how it relates to our quanti-

tative findings.

The main contributions in the automation strand can be classified into two groups, based on

the nature of technological change. In particular, a number of papers view automation as a form of

factor-augmenting innovation. Furthest from our framework is Bessen (2019), who models techno-

logical progress in automation as labor-augmenting. Other papers, like Sachs and Kotlikoff (2012),

Sachs et al. (2015), Nordhaus (2015), and Berg et al. (2018) see innovation in robotics as a form of

capital-augmenting technology. Progress in automation can then replace workers according to the

elasticity of substitution between labor and capital. Specific modeling assumptions in most of these

papers put technological bounds to the degree of substitutability. Bessen (2019) prevents substitu-

tion altogether; Sachs and Kotlikoff (2012) assume that robot capital is complementary to old gen-

eration workers in an OLG framework; Berg et al. (2018) assume that robots enter in a CES aggre-

gate with workers, and in most scenarios they assume that the elasticity of substitution is finite. In

other instances, this literature focuses on scenarios where full substitution is possible: in Sachs et al.

(2015), the whole economy can instantly convert to full automation, and adopt a technology linear

in robot capital; Nordhaus (2015) assumes that the productivity of capital can grow without bounds

relative to labor, until a singularity is reached and production technology asymptotes to a linear

technology in information capital; Berg et al. (2018) consider a scenario where robots are perfectly

substitutable with humans in all tasks, and also find that labor can end up being fully displaced.

All the factor-augmenting strand either imposes explicit limits on the extent of automation through

technological assumptions, or otherwise concludes in favor of a long-run demise of labor, with a

factor share falling to zero.

Our stance is decidedly closer to the task-based approach adopted by Acemoglu and Restrepo

(2018b,c) and Graetz and Michaels (2018), in that we posit that labor and robots are perfect sub-

stitutes within each task. We believe that a model attempting to understand the consequences of

new technologies should highlight their nature as labor-replacing. As pointed out by Acemoglu and

Restrepo (2018b), “the expansion of the set of tasks that can be produced by machines [. . . ] always

reduces the labor share and it reduces labor demand and the equilibrium wage unless the productiv-

ity gains from automation are sufficiently large.” Acemoglu and Restrepo (2018c) assume that some

tasks are inherently human and study the effects of automation on factor shares along a growth path

where such tasks can be created. The existence of a balanced growth path relies on a race between

the expansion of automated versus non-automated tasks, where robots cannot be profitably em-

ployed. By contrast, Graetz and Michaels (2018) develop a model where machines can only be used

in an exogenously determined subset of tasks. Unlike these frameworks, we choose to focus on a

single task where labor can be fully substituted away, thereby excluding any technological limit to

automation.

Regardless of the specific view of automation, the theoretical literature described above has two
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common features. First, all these contributions assume a rental market for robots. Second, firms

operate in a deterministic environment. These assumptions allow for bang-bang solutions in favor

of either robots or labor when perfect substitution is possible. We believe that robots constitute a

form of capital investment, characterized by substantial rigidity and reallocation frictions, and ac-

cordingly connect to the long and rich literature on investment by adding risk and adjustment costs

that hinder robot reallocation. The seminal contributions by Abel (1983), Pindyck (1988, 1991), Ca-

ballero (1991), and Abel and Eberly (1996, 1997) have highlighted the crucial role of uncertainty and

rigidity in preventing a quick adjustment of capital to its desired optimal scale, contrary to the neo-

classical framework (Jorgenson, 1963). It is outside the scope of this paper to review this literature

extensively, but it is important to recall some key contributions on the sign of uncertainty on invest-

ment. An excellent summary of the above literature, and a resolution of the long controversy on this

topic, is provided by Caballero (1991), who shows that the stochasticity of returns depresses invest-

ment when the returns function features enough concavity to discourage the firm from investing in a

relatively fixed factor, even in the face of increased upside risk. Indeed, with decreasing returns, and

even if the profit function is convex in prices, the firm has an optimal scale for each price and suf-

fers a relevant penalty from being mis-sized. This result provides fundamental theoretical guidance

for our findings on the effect of risk on automation, since we adopt a decreasing-returns-to-scale

production function.

Our theoretical model is closest to Abel and Eberly (1996), in that we assume decreasing returns

to scale, perfectly flexible labor, and solve our model in continuous time. However, we depart from

the standard investment literature by adopting a production function that features perfect substi-

tutability of labor and capital. Our main contribution consists in bridging the literature on automa-

tion with that on risky investment under imperfect reversibility, thereby capturing the distinctive

characteristics of robots as a labor-substituting form of capital. Other fundamental references are

Dixit and Pindyck (1994) and Stokey (2009), which operate in a similar framework and provide im-

portant theoretical foundations for many of our results. Finally, we rely on Achdou et al. (2017, 2014)

for our numerical solution method.

In our proposed framework, increased robot penetration leads to lower aggregate employment,

even if at the level of the individual firm, investment in robots is positively correlated with produc-

tivity and employment. This dichotomy is consistent with a number of recent studies.2 In particular,

Acemoglu et al. (2020), Bonfiglioli et al. (2019), Koch et al. (2019), Aghion et al. (2020) find that em-

ployment generally increases at the level of the firm undertaking the automation effort. However,

evidence presented in Acemoglu and Restrepo (2020); Acemoglu et al. (2020), Dauth et al. (2019)

suggests negative employment effects of automation at various levels of aggregation.

2A comprehensive review of the rapidly growing empirical literature on the employment effects of automation is
outside the scope of this paper. We refer the interested reader to the excellent summary in Bessen et al. (2020) for a
more complete treatment.
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2 Two-Period Model

We start by presenting a simple two-period model to clarify the mechanism at play. This simple

model can be seen as a snapshot of the more complex, fully-dynamic problem presented in the next

section. We highlight two main results. First, in the absence of either idiosyncratic volatility, or

adjustment costs, and with perfectly flexible labor markets, labor is fully replaced by machines in

the long run. Second, introducing both of these features results in human labor being employed

alongside robots even in the long run.

2.1 Environment

In both periods, there is a continuum measure one of firms endowed with the same production

technology. In period 0, each firm starts with a given robot stock R0, and it observes an idiosyncratic

revenue-shifting shock z0, which we interpret as a productivity shock or a preference shock for dif-

ferentiated goods produced by the individual firms. Then, each firm produces and invests for the

following period, solving

V0(R0, z0) =max
R1≥0
Π (R0, z0)−pR (R1−R0)−

ψR

2
(R1−R0)

2+βE [V1 (R1, z1) | z0] ,

where the expectation is taken over the values of a stochastic revenue shifter z1 ∼ F (z1 | z0), whose

distribution is independent of R0. The firm can buy or sell robots at a list price pR . Regardless of

whether it buys or sells robots, the firm faces a convex cost for any non-zero level of investment.

In addition to analytical tractability, we focus on convex costs for two reasons. First, when buying

robots, we envision that the firm will have to adjust the working environment or the production

process to make it navigable by automated machines. This might involve sizable costs that are more

than proportional to the upfront investment (Sirkin et al., 2015). Second, it is also reasonable to think

that a seller will have to face similar adjustment costs to dismantle a robot system in place, related

for example to the removal of barriers and sensors from the workspace.3,4

In period 1, the stochastic revenue shifter z1 realizes, the firm produces and the world ends.

Thus,

V1 (R , z ) =Π (R1, z1) .

For both periods, we define

Π (R , z )≡ max
L≥0,0≤u≤1

Q (L , R , u , z )−w L −m uR ,

3In practice, it is not uncommon for firms to rent advanced or complex machines. Accordingly, Rt could be inter-
preted as the size of leasing obligations that a firm has, which often involve penalties for early termination.

4Our results are not qualitatively changed if we assume irreversible investment coupled with convex adjustment
costs for scaling up.

7



as the operating profit function. We let u denote the utilization rate of the existing robot stock, m

the flow cost of robots, and w the flow wage. Both these flow rates are constant and known at the

beginning of time 0. We now discuss the properties of the operating profit function, which is an

important building block of our model.

2.2 The Operating Profit Function

The production function is assumed to be:

Q (L , R , u , z ) = z (ΓL + (1− Γ )uR )θ ,

where Γ =MRTSLR/ (1+MRTSLR ), a normalized marginal rate of technical substitution that controls

the fixed rate at which robots and labor can be technologically substituted for each other. In this

sense, Γ captures how easily a task can be automated. An important point to note is that labor and

robots are perfect substitutes. We make this extreme assumption to abstract from forms of labor-

capital complementarity that the literature has already shown act as a backstop to full automation.

It is worth noting here that the substitutability assumption sets robots apart from traditional capital,

which is usually taken as a complement to labor. By contrast, we see automation as enabling perfect

substitution, and complete displacement of, e.g., low-skilled manufacturing workers.

The parameter θ ∈ (0, 1) captures decreasing returns to scale, which can be motivated by a down-

ward sloping demand curve for the differentiated product of the firm, or by the presence of a fixed

factor of production. Note that this unmodeled factor could encompass workers that are comple-

mented by robots, as well as more traditional complementary capital. Finally, decreasing returns

to scale allow for a well-defined notion of desired firm size, which plays a crucial role in our focus

on idiosyncratic revenue volatility. The parameter Ω, which we will refer to as flow labor savings,

denotes the productivity-adjusted flow cost savings from using robots instead of labor to produce a

unit of output:

Ω≡
1− Γ
Γ

w −m .

We assume thatΩ> 0 to make the problem interesting, as there cannot be any automation if the less

flexible factor has larger flow costs. Under this assumption, as stated formally in Proposition 1, our

model features full automation of the task if the firm’s revenues are deterministic and there are no

adjustment costs. The solution of the static problem, detailed in the appendix, yields

Π (R , z ) =















(1−θ )p z (1− Γ )θ R̄ (z )θ +
� (1−Γ )w

Γ −m
�

R R ≤ R̄ (z )

p z (1− Γ )θR θ −mR R̂ (z )≥R > R̄ (z )

p z (1− Γ )θ
�

R̂ (z )
�θ −mR̂ (z ) R̂ (z )<R ,
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where

R̄ (z )≡
1

1− Γ

�

p zθ Γ

w

�
1

1−θ

, R̂ (z )≡
1

1− Γ

�

p zθ (1− Γ )
m

�

1
1−θ

are the full automation cutoff and the optimal rental-market scale, respectively. Note that decreas-

ing returns to scale imply that the firm has a desired size associated with each value of the revenue

shifter z . If a rental market for robots existed, the firm could readily adjust its robot stock, and, given

that flow labor savings are positive, it would choose R̂ (z ) and use no labor at all. However, we as-

sume that robots are a state variable, therefore the firm will expand (using labor) or shrink (using

utilization) to get as close as possible to its desired size. We also define ẑ (R ) and z̄ (R ) as the inverses

of the above functions. If the revenue shock is small enough, z < ẑ (R ), the firm will have a robot

stock large enough to produce at the optimal size without hiring labor, and it will use the utiliza-

tion margin to operate below capacity and achieve Π
�

R̂ (z ), z
�

. If instead the realization of z is large

enough relative to the installed robot stock, z ≥ z̄ (R ), the firm will adjust using labor. Given z , the

firms uses labor to adjust if the installed robot stock is lower than the full automation cutoff R̄ (z ).

Indeed, decreasing returns to scale cause the marginal product of labor,

MPL (L , R )≡ θp z Γ (ΓL + (1− Γ )R )θ−1 ,

to be decreasing in R , and to drop below the wage rate w for any L > 0 if R > R̄ (z ). Static labor max-

imization implies that the firm will hire labor to achieve revenues p z (1− Γ )θ R̄ (z )θ . In this region,

the optimal labor policy is given by

L ?(R , z ) =
1− Γ
Γ

�

R̄ (z )−R
�

.

Finally, for intermediate realizations of z , the firm fully utilizes its installed robot stock without hir-

ing any labor. We sketch the solution in Figure 2.

The above solution implies that, for a given revenue shock z , marginal operating profits are con-

stant at Ω for R ≤ R̄ (z ). In this region, each additional unit of robots reduces the number of labor

hires, ((1− Γ )/Γ ) (R̄ (z )−R ), needed to achieve the same optimal level of revenues, p z (1− Γ )θ R̄ (z )θ . In

the intermediate region, marginal operating profits decrease in R . Finally, when R ≥ R̂ (z ), marginal

operating profits are 0, as the firm turns off any additional robot received in order to achieve the op-

timal scale R̂ (z ). The following Lemma summarizes the properties of the operating profit function.

All omitted proofs are reported in the appendices.

Lemma 1 (Properties of Π(R , z )). If labor savings Ω > 0, the operating profit function, Π(R , z ), is

weakly increasing in R for all z and in z for all R , weakly concave in R for all z , and weakly convex in

z for all R . Moreover, the marginal operating profit, ΠR (R , z ), is bounded from above by Ω and from

below by 0, weakly decreasing in R , and weakly increasing in z .
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Figure 2: Operating Profit and Marginal Operating Profit.

2.3 Properties of the Solution

The solution of the investment problem at time 0 is characterized by the following first order condi-

tion for the optimal robot stock R ?
1 :

ψR (R
?
1 −R0) +pR =βE

�

ΠR

�

R ?
1 , z1

�

| z0

�

,

with the usual interpretation that marginal costs and expected discounted benefits are equalized.5

The following propositions clarify our main mechanism.

Proposition 1 (Conditions for Full Automation in Period 1). Suppose that pR < βΩ, and that there

is no uncertainty regarding the revenue shock z , that is, zt = z d for all t . Then, ifψR = 0, the task is

entirely produced by robots in period 1, and no labor is employed.

Proof. If ψR = 0 and the price level is constant at z d , the first order condition for the choice of R1

5To make the problem interesting, we assume that pR < βΩ, a sufficient condition to avoid an uninteresting com-
plementary slackness condition to ensure a non-negative robot stock, R ?1 .
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Figure 3: Simple Model Solution, with R̄ (z )Distribution.

reduces to

pR =βΠR

�

R ?
1 , z d

�

.

By Lemma 1 the right hand side is decreasing in R1 and equal to βΩ if and only if R1 = R̄ (z d ), the full

automation threshold. It immediately follows that, if pR < βΩ then R ?
1 > R̄ (z d ), so the task is fully

automated.

This proposition illustrates that, with labor savings and without risk or adjustment costs, our

model features full automation of the task. As the firm knows which output level it will need to

produce tomorrow and forever, it can just invest in a stock of capital that is sufficient to fully replace

labor, thus saving on this expensive factor. The following proposition shows that this result collapses

once idiosyncratic risk and adjustment costs are present. In this instance, the rigidity of the robot

stock in responding to shocks makes hiring perfectly flexible labor profitable.

Proposition 2 (No Aggregate Full Automation in Period 1). Suppose that F (z1 | z0) has unbounded

support on [0,∞). Denote by L ?(R , z ) the choice of labor that maximizes operating profits given a

robot stock R and a revenue-shifter z . Then, for each pR ≥ 0,ψR > 0,

L d
1 ≡

∫ ∞

0

L ?(R1, z1)dG1(R1, z1)> 0.
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Given its installed robot stock R1, each firm can always receive a revenue-shifting shock z > z̄ (R1)

large enough to induce it to hire labor. Therefore, the aggregate labor demand in period 1 will be

strictly positive. Figure 3 depicts the optimal choice of the firm, together with the distribution of the

full automation cutoffs R̄ (z ), assuming that all firms start with the same value of the revenue shock

z0, and no robot stocks, R0 = 0.6 At time 0, all firms choose to install the same amount of robots R ?
1 ,

as they share the same value for the expected marginal value of robots.

Under the assumption that the firm is unable to adjust the robot stock in time for production,

stochastic demand realizations create a strong incentive to hire labor in the face of a sudden increase

in the desired production level, which drives the result in Proposition 2. In particular, after installing

a robot stock, each firm receives a stochastic revenue shock z , which determines a distribution of

full-automation cutoffs R̄ (z ). As a result, all firms receiving low shocks z such that R̄ (z )≤R ?
1 will be

fully automated, while all firms with high enough z so that R̄ (z )>R ?
1 will hire some labor. Therefore,

given the same starting z0 and R0 the realization of z will split firms into two groups depending on

whether they are fully or partially automated. The distribution of R̄ (z ) is also shown in Figure 3,

where we highlight the masses corresponding to the two groups.

3 Infinite-Horizon Model

We now extend our simple model to an infinite-horizon setting, which we use to model long-run

labor demand. We postpone the discussion of the equilibrium to Section 4.

Section 3.3 contains our main theoretical result: If robot reallocation involves sufficiently impor-

tant frictions, then firms demand human labor in the long run. In addition, we provide an analytical

bound to the extent of automation that prevails in this environment, which we use to conduct com-

parative statics exercises on the parameters of interest.

There are three main reasons for this extension. First and foremost, the two-period setting does

not allow firms to adjust over time, as in that framework capital is essentially set in advance. The

infinite-horizon setting allows us to clarify that the survival of labor is a long-run result and does not

hinge on the putty-clay feature of the two-period model. Firms will adjust towards a desired level of

robots that does not involve full automation. Second, the infinite-horizon model allows us to inter-

pretψR as a parameter capturing the rigidity of the machine stock in responding to shocks. Finally,

the model presented in this section features a stochastic revenue process that can be mapped more

easily to the data, contrary to the two period model that just considers permanent shocks.

6For all these plots, we assume that z0 = 1 and that z1 | z0 ∼ Γ (κ,λ), with parameters chosen so that E(z1) = 1,
σ2

z ≡V(z1) = .5.
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3.1 Environment

Time is continuous and lasts forever, and there is no aggregate uncertainty. There is a measure-

one continuum of firms, each producing a homogeneous good with the production function Q , and

realizing a flow instantaneous operating profit Π(Rt , zt ) as described in the previous section. The

firm’s problem is

max
I :Ω×[0,∞)→R

E0

∫ ∞

0

exp
�

−ρt
	

�

Π(Rt , zt )−pR It −
ψR

2
(It )

2
�

dt

s .t . dRt = (It −δRt )dt ,

dzt =µ(zt )dt +σ(zt )dWt ,

R0, z0 given.

The only source of risk in the model arises from the idiosyncratic revenue shock zt , a standard Itô

process. Denote by
�

Ω,B , (Ft )t ∈R+ ,P
�

the associated filtered probability space, where Z ⊆ R+. We

assume that the stochastic process has the FOSD property as defined below.7

Definition 1. Denoting as F (zt+s |zt ) the conditional distribution of the revenue shifter at horizon

t + s , given a starting point z (t ) = z , we say that the stochastic process for z has the FOSD property if

z ′t > zt ⇒ F
�

zt+s |z ′t
�

�F OSD F (zt+s |zt ) .

We take the output of the firm as the numeraire. In this section we solve the firm’s problem for

a given wage rate w , discount factor ρ and robot purchase price pR . In Section 4, we embed the

firm’s problem in a model where the wage rate is determined in general equilibrium. We assume

that the robot stock depreciates at rate δ, capturing physical depreciation or technological obso-

lescence. Finally, investment is subject to a quadratic adjustment cost, parameterized byψR . This

adjustment cost captures installation and configuration costs, as well as a potential discount when

selling robots.

To make the problem interesting, we assume throughout that the present discounted value of

labor savings is larger than the purchase price of robots,

pR <
Ω

ρ+δ
.

7Whenever possible, in the interest of generality we also prove our results for a continuous-time Markov Chain,
which we will hereafter refer to as CTMC. In this case, dzt follows a Poisson jump process defined over a finite setZ ⊂R+
with Nz levels z1 < · · ·< zN .
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Following Dixit and Pindyck (1994), we can write the problem of the firm recursively as8

ρV (R , z ) =max
I∈R

Π(R , z )−pR I −
ψR

2
I 2+ (I −δR )VR (R , z ) +µ(z )Vz (R , z ) +

σ2(z )
2

Vz z (R , z ).

While our results do not rely on the specification of the diffusion process, we shall focus on a Cox-

Ingersoll-Ross (CIR) process for the revenue-shifter, defined by

dzt =−θz (zt − z d )dt +σ
p

zt dW .

Here, dW is a Wiener process, z d is the unconditional mean of z , θz controls the rate of mean-

reversion towards the long run average, and σ scales the instantaneous variance. We choose this

process because it is stationary, and because it allows us to control both the long-run variance and

the rate of mean reversion independently.9

3.2 The Investment Policy Function

Regardless of the stochastic process for z , the optimal investment choice is given by the first order

condition

pR +ψR I ?(R , z ) =VR (R , z ),

with the usual interpretation that investment is set to equalize the marginal benefit from holding an

additional unit of capital to the net marginal cost.

We now formulate a useful lemma summarizing properties of the value function that will be

fundamental for the characterization of the policy functions and aggregates.10

Lemma 2 (Properties of the Value Function). The value function V (R , z ) is increasing in R for all

z , and concave in R for all z . VR (R , z ) is bounded from above by Ω
ρ+δ , and weakly decreasing in w .

Moreover, if the stochastic process has the FOSD property as in Definition 1, then V (R , z ) is increasing

in z , and VR (R , z ) is nondecreasing in z .

Many of the properties of the value function are standard. A more interesting point pertains

8In the case of a CTMC, the HJB equation reads

ρV (R , zi ) =max
I∈R

Π(R , zi ) −pR I −
ψR

2
I 2 + (I −δR )VR (R , zi ) +

∑

j 6=i

λi j

�

V
�

R , z j

�

−V (R , zi )
�

.

Here λi j denotes the arrival rate of a shock taking the revenue process from state zi to state z j .
9Recall that a CIR diffusion process that mean reverts to z d admits a stationary distribution which is a Gamma

with parameters αz =
2θz z d

σ2 and βz =
αz
z d , so that the unconditional variance of z is z d

2θz
σ2. Furthermore, it admits a

closed form for the conditional distribution at horizon t + s , for any s > 0, which is given by a non-central Chi-square

distribution with 4θz z d

σ2 degrees of freedom and non-centrality parameter given by 4θz exp{−θz s }
σ2(1−exp{−θz s }) z (t ). This also implies

that the conditional distribution exhibits the FOSD property as in Definition 1.
10Whenever we focus on derivatives of the value or policy functions with respect to the revenue shock z , the results

only apply to a diffusion.
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to the marginal value of a unit of robots. In our model, the labor substitution margin generates a

natural upper bound on the marginal operating profits. As a result, the marginal present discounted

value of a unit of robots will never exceedΩ/(ρ+δ), the PDV of labor savings, regardless of how high

the realization of z is. We use Lemmas 1 and 2 to derive the properties of the investment policy

stated in the following proposition.

Proposition 3 (Properties of the Optimal Investment Policy). Suppose that the stochastic process

for z satisfies the FOSD property in Definition 1. Then, the optimal investment policy I ?(R , z ) is non-

increasing in R for all z , non-decreasing in z for all R , non-decreasing in w for all (R , z ), and bounded

from above by
1

ψR

�

Ω

ρ+δ
−pR

�

.

Proof. Optimal investment satisfies the first order condition

I ?(R , z ) =
1

ψR

�

VR (R , z )−pR

�

.

It follows that I ?(R , z ) inherits the properties of VR (R , z ). By Lemma 2,the properties in the statement

follow.

These intuitive properties are extremely important to the no-full-automation result detailed be-

low. The direct implications of Proposition 3 are that a high enough purchase price, or rigidity, of

robots, will go a long way towards safeguarding human labor in the long-run. More importantly, we

will show that given any purchase price pR ≥ 0, and for any diffusion process satisfying the FOSD

property detailed above, there always exists a finite value of the adjustment cost parameterψR > 0

such that the stationary distribution of firms G (R , z ) does not involve full automation.

We now characterize the stationary distribution of firms. We start by defining a desired stochastic

steady state.

Definition 2 (Desired Stochastic Steady State). For any price z , we define the desired stochastic

steady state as the stock of robots R ?(z ) such that optimal investment just covers depreciation,

I ?(R ?(z ), z ) =δR ?(z ).

R ?(z ) is the stock of robots that the firm would optimally choose if it received the same revenue

shock z forever, while operating in a stochastic environment. In this sense, R ?(z ) is the desired steady

state level of robots at the running profitability level z . Since I ?(R , z ) is non-increasing in R , for any

z , optimal net investment is negative if R >R ?(z ) and positive otherwise. Proposition 3 gives us the

following corollary.
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Corollary 1 (Properties of R ?(z )). Under the assumptions of Proposition 3, R ?(z ) is non-decreasing

in z , and non-decreasing in w for all z . If δ > 0, then R ?(z ) is bounded from above by

R ?
max ≡

1

δψR

�

Ω

ρ+δ
−pR

�

, ∀z

and tends to 0 asψR →∞.11

Proof. Follows directly from Proposition 3, evaluating investment at R ? and using Definition 2.

The fact that R ?(z ) is non-decreasing in w implies that the aggregate demand for labor is down-

ward sloping. Moreover, the formula for the robot stock upper bound clarifies the effect of many

key parameters on the extent of automation. In particular, the bound is strictly decreasing inψR , δ,

ρ, and pR . As robots become less flexible, more prone to obsolescence, or simply more costly, the

investment opportunity they provide becomes less attractive for any given PDV of labor savings.

3.3 The Stationary Distribution and the Extent of Automation

Given a stationary process for z , the solution of the model gives rise to a stationary distribution of

firms G (R , z ,∞) that solves the relevant Kolmogorov Forward Equation. As a first step, we state the

following proposition that applies to the case of a degenerate distribution for the revenue-shifter.

Proposition 4 (Steady State of the Deterministic Model). Consider the firm’s problem with zt =

z d , ∀t . The model has a unique steady state level of robots R ?(z d ). If either ψR = 0 or δ = 0, the

unique steady state features full automation. If δ > 0, there exists a finite value ψ̃R > 0 such that

partial automation obtains forψR ≥ ψ̃R and full automation occurs ifψR < ψ̃R .

The intuition is similar to the two-period model, with the only added complication arising from

depreciation and the infinite horizon. Recall that partial automation in this setting is a byproduct

of the need to pay adjustment costs on depreciating capital. This clarifies why automation is always

complete when either δ or ψR is zero.12 Note that the full-automation result carries over to a set-

ting where the firm faces a risky environment, but no adjustment costs.13 We now characterize the

stationary distribution in the general case.

11Note that ifδ= 0, there is no limiting value of R ?(z ), as investment becomes identically 0 for all z and R asψR →∞,
so any robot stock is equally desirable as a steady state. By contrast, when depreciation is strictly positive, the fact that
investment tends to 0 asψR →∞ implies that in the long-run no positive robot stock is ever maintained.

12Recall that we assumed that pR < Ω/(ρ+δ). If we had not made this assumption, automation would be either full
or nil depending on whether pR <Ω/(ρ+δ) or pR >Ω/(ρ+δ).

13In this case the firm can just set the robot stock to its desired frictionless level by selling or buying the relevant
amount of robots. To see that this entails full automation, note that in this case the optimal robot stock in each period
solves

VR (R
?(z ), z ) = pR <

Ω

ρ+δ
, ∀z

due to our main working assumption. This immediately implies that R ?(z )> R̄ (z ) for all z .
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Proposition 5 (Bounds of the Stationary Distribution). Given a diffusion or CTMC for z that admits

a stationary distribution with supportZ such that infZ = z1 and supZ = zN , the stationary distri-

bution G (R , z ) has support [R ?(z1), R ?(zN )] ×Z . If δ > 0, then the stationary distribution has support

[R ?(z1), R ?
max]×Z .

Proposition 5 states that the stationary distribution cannot feature any firms above R ?(zN ) or

below R ?(z1), as implied by the definition of desired stochastic steady states. If robots become ob-

solete or break down with positive probability, then labor substitution generates a natural upper

bound to the installation of robots, following the logic in Corollary 1, so that the upper bound of the

robot distribution can be tightened to the minimum between R ?(zN ) and R ?
max. This important re-

sult paves the way for partial automation in the long-run distribution if zN is high enough. Indeed,

the full automation cutoff, R̄ (z ), is increasing and convex in z , while the maximum desired steady

state level of robots is invariant to z . Thus, all firms receiving shocks high enough will not want to

obtain capital stocks that are above the relevant R̄ (z ) and will end up partially automated. Proposi-

tion 6 makes this point formally. It uses our characterization of R ?(z ) to extend Proposition 2 to an

infinite-horizon setting, and to a (potentially) bounded support for the revenue-shock distribution.

We begin by stating our definition of the upper bound to full automation.

Definition 3 (Full automation bound). Given a stationary distribution for z with CDF, F (z ), we de-

fine an upper bound to full automation as the mass of firms F (ž ), where ž is the revenue-shifter level

such that ž = z̄
�

R ?
max

�

.

When δ > 0, by definition of R ?
max and z̄ (R )

ž ≡
�

1− Γ
δψR

�

Ω

ρ+δ
−pR

��1−θ w

pθ Γ
.

Clearly, ž is unaffected by the properties of the stochastic process. As a result, once the effect of

key parameters of the process for z on the stationary distribution F (·) is known, it is immediate to

characterize their effect on the upper bound to full automation, F (ž ). For example, in the case of

the CIR diffusion process, a mean-preserving spread of the stationary distribution lowers F (z ) for

all z . As a result, since ž is not affected by the properties of F (·), the upper bound to full automation

falls.

We are now ready to state and prove our main theoretical result.

Proposition 6 (Conditions for Long-Run Partial Automation). Consider a non-degenerate diffusion

or CTMC for z admitting a stationary distribution onZ such that infZ = z1 and supZ = zN , z1 ≥ 0.

Define G
�

R̃ , z̃ ,∞
�

≡ P
�

R ≤ R̃ , z ≤ z̃
	

, the CDF of the stationary distribution. For any purchase price

of robots pR , as long as δ > 0,14 there exist a finite value of the adjustment cost parameter ψR such

14Note that the case with δ= 0 is uninteresting, as, given an initial distribution G (R , z , 0), asψR →∞, the stationary
distribution G (R , z ,∞)will become closer and closer to the initial distribution.
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that the stationary distribution g (R , z ) does not feature full automation. In particular, for ž as in

Definition 3,
∫

1
�

(R , z ) : R ≥ R̄ (z )∧ z ≥ ž
	

dG (R , z ) = 0.

If zN =∞, anyψR > 0 implies a stationary distribution that does not feature full automation.

Proof. By Proposition 5, if δ > 0, the stationary distribution has support bounded from above by

R ?
max. To prove the statement, we need to show that there exists a finite value ofψR such that R̄ (zN )>

R ?
max. Since R̄ (z ) is increasing in z , this amounts to setting ψR such that ž < zN . if the process

has unbounded support, the statement is trivial as ž <∞ for any ψR > 0. Otherwise, using the

statement in Definition 3, we can set

ψR >

�

w

pθ Γ zN

�
1

1−θ
�

1− Γ
δ

�

Ω

ρ+δ
−pR

��

.

This proposition highlights labor’s comparative advantage thanks to its flexibility. If robot reallo-

cation involves sufficiently important frictions, captured by the parameterψR , human labor will be

saved in the long run. Importantly, this result obtains for any level of pR , including 0, and for finite

values ofψR . If frictions are large, there is no price of robots low enough to sustain full automation.

The intuition for this result hinges on the existence of the upper bound R ?
max to the desired robot

stocks. Summing up the mechanics of our model, this bound arises naturally from combining the

perfect substitutability of robots and labor with rigidities in the adjustment of the robot stock and

decreasing returns to scale. Indeed, these features create a cap to marginal returns to machines and

investment, as in Proposition 3. The economic intuition is that robots are most productive when

the revenue shock is high relative to the existing stock, or else the firm would just under-utilize the

robots it already has. When the firm is thus undersized, it finds it optimal to hire labor to achieve

its desired scale, so that the marginal value of a unit of robots is exactly given by labor savings. This

generates the upper bound R ?
max to the desired robot stock that the firm wants to maintain, as these

capped marginal values are traded off with increasing marginal costs arising from the upkeep of the

machines.

While we can analytically prove the existence of bounds to full automation, we are unable to

provide comparative statics results for objects of interest like the aggregate stock of robots, or labor

demand, at this level of generality, with the exception of the effects of higher flow wages on aggregate

labor. We can only be certain of the effects of parameters of interest on R ?
max, but not on the shape

of the whole R ?(z ) schedule. It follows that, while Corollary 1 provides some guidance as to what

happens to the maximum stock of robots in the economy, it cannot shed light to what happens to

the average stock of robots. We provide a numerical example to clarify the workings of our model

and display its time series properties, and later characterize numerically the comparative statics of
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labor demand.

3.4 An Illustrative Numerical Example

In this section, we provide an illustrative numerical example to clarify the definitions and proposi-

tions stated above, and a simulated time series of the variables of interest.15 The firm-level dynamics

display three main features: The demand for labor can increase in tandem with robot investment;

In the steady state, more productive firms install more robots; When automation is prevalent, labor

is mostly hired in “bursts” to cope with positive shocks. These features are consistent with the evi-

dence presented in Acemoglu et al. (2020); Aghion et al. (2020); Bonfiglioli et al. (2019); Koch et al.

(2019), insofar as firms investing in automation capital, or new technologies, are generally found

to be more productive, to employ more labor, and to pay higher wages. While for us the wages are

held constant and all employees are homogeneous, it is generally true in our model that a more

productive firm will both hire more labor, and generally install new robot capital at the same time.

Figure 4 shows the policy functions for investment net of depreciation and labor in a stochastic

environment, illustrating the results on investment from Proposition 3. The leftmost panels display

the contour lines of the policies in the (z , R ) space, highlighting the locus of points corresponding

to R ?(z ) for net investment and the full-automation threshold R̄ (z ) for labor, while the center and

right panels show slices of the policy at specific z and R . Focusing first on investment, we can see

that, for any fixed z , net investment is negative above R ?(z ) and positive below. Moreover, the figure

shows that R ?(z ) is increasing in z and flattens out as z increases. Looking at the central panel, we

can see that net investment is indeed decreasing in R , while the rightmost panel shows that it is

increasing in z , convex for low values of z , and concave otherwise. For a given z , labor is decreasing

in R and falls to 0 at R̄ (z ). Furthermore, as a function z , the labor policy is increasing and convex

in z . This last point comes from the convexity of the marginal product of labor in z . Crucially, we

see that more productive firms generally have positive net investment, as they are trying to scale

up their production. However, due to the limited upside benefit arising from the labor substitution

margin, net investment never exceeds δR ?
max. Moreover, more productive firms also employ more

labor, a fact which is consistent with the empirical literature mentioned above.

Figure 5 displays the dynamic properties of our model. Panel 5a shows the net investment policy

function together with the schedules for optimal static capital, R̂ (z ), the full automation threshold,

R̄ (z ), the desired stochastic steady states R ?(z ) and the locus E[dz/dt ] = 0. The graph summarizes

the dynamics in the (z , R ) space. If the stochastic process for z reverted towards the mean deter-

ministically, the intersection of the solid lines would be the unique attractive steady state of the

model. The arrows represent the drift of R —determined by the optimal investment policy–and z

15The following figures are produced using the parameter values described in Appendix C.1, which are chosen to
highlight the features of our model, and generally differ from those we later use for the full calibration. We solve the
model following the procedure in Achdou et al. (2014, 2017).

19



in the state space, and scaled proportionally to the drift size. Starting from any point (z , R ), mean-

reversion pushes the price back to the unconditional mean z d , while the firm’s optimal investment

policy moves the robot stock towards the corresponding R ?(z ).

Panel 5b displays simulated time series for the main variables of interest, starting from a zero

robot stock and a revenue shock equal to its conditional mean. Consistent with the presence of ad-

justment costs, the path for the robot stock is substantially smoother than the stochastic revenue

process, while labor is highly volatile in response to shocks, falling to zero when the revenue shifter

is low relative to the installed robot stock. Interestingly, we find a mildly positive correlation be-

tween the robot stock and the labor series. To understand this result, consider the persistence of the

stochastic process and the relative downside risk in higher states. When a large shock hits, robots

are fixed, and labor is hired to meet heightened demand for the firm’s product. At the same time,

the firm chooses to increase its robot stock, as shocks are persistent and will fade away only after

some time. However, firms do not want to scale up their robot ownership substantially, as they are

concerned that they will not be able to fully utilize them. These two facts explain the mild positive

correlation that we find, and highlight a potential concern for the empirical literature trying to es-

timate capital-labor complementarity from firm-level data. This time series highlights that, when

automation is present, labor is used essentially to pick up the slack left by a relatively rigid robot

stock, and survives only thanks to its flexibility in the face of revenue shocks. Through the lenses of

our model, future low-skilled, routine jobs will be increasingly characterized by temporary employ-

ment coupled with higher turnover rates. Our model is therefore equipped to speak to the evidence

that exposure to automation is associated with more “non-traditional” work arrangements, featur-

ing a higher degree of hours volatility (Rutledge et al., 2019).

Figure 6 shows the stationary distribution together with the marginal distributions over R and

z , and the schedules R̄ (z ) and R ?(z ). The graph depicts the determination of the threshold ž as

the revenue shock corresponding to the intersection of R ?
max with the R̄ (z ) schedule. The marginal

distribution over z is highlighted to show the area corresponding to the full automation upper bound

and its complement, the partial automation lower bound. These bounds are very conservative, as

the whole mass of firms that are below the R̄ (z ) schedule and to the left of ž are actually hiring

workers and therefore not fully automated.
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Figure 5: Stochastic Dynamics

(a) Net Investment Policy Function: Optimal Drifts.

(b) Simulated Time Series.
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3.5 Aggregate Labor Demand Comparative Statics

In this section we characterize the aggregate labor demand and explore numerically its compara-

tive statics in the main parameters of interest. In particular, labor demand: decreases with a fall in

the price of robots; decreases if adjustment costs are lower; increases with a higher variance of the

idiosyncratic shock. The robot price effect is consistent with evidence presented in Acemoglu and

Restrepo (2020); Dauth et al. (2019).

Given a stationary distribution G (R , z ), aggregate labor demand is given by

L d (w )≡
∫

L ?(R , z )dG (R , z ),

where L ?(R , z ) is the optimal individual demand of labor for a firm at (R , z ),

L ?(R , z ) =
1− Γ
Γ

�

R̄ (z )−R
�

1{R≤R̄ (z )}.

The following proposition summarizes the properties of the labor demand schedule L d (w ) .

Proposition 7 (Aggregate Labor Demand). The aggregate labor demand is non-increasing in w , with

lim
w→∞

L d (w ) = 0 and lim
w→0

L d (w ) =∞.

The proposition ensures that labor demand behaves as one would expect. The overall effect on

labor demand stems from combining the individual reduction in demand with a rightward shift in

the distribution of robots at any given price. Given a distribution G (R , z ), a higher wage prompts

each individual firm to hire less labor as the full-automation cutoffs R̄ (z )—the highest scale opti-

mally attained hiring labor—shift down. In addition, a higher wage increases labor savings, thus

raising the marginal returns to robots and prompting higher investment for each (R , z ). This in-

creases the desired robot stocks R ?(z ) for each z , implying that the stationary distribution concen-

trates more mass at higher robot stocks for any given price. On average, more firms find themselves

with robot stocks above their full-automation cutoffs relative to the previous scenario.

We verify numerically that labor demand is increasing in pR ,ψR , in the unconditional variance

of the stochastic process for z , and in the product price p , as shown in Figure 7. As robots become

harder to adjust or more costly to buy, labor demand shifts up, as firms choose to accumulate less of

a rigid and expensive factor, relying instead on flexible, cheap labor. Similarly, as the unconditional

variance increases, not only will firms prefer a more flexible factor regardless of their revenue shock,

but they will also more frequently be exposed to large z ’s, requiring massive labor hiring. Finally, a

higher price unambiguously raises labor demand.

Figure 7 also plots the interesting benchmark provided by the deterministic labor demand for

z d = 1, the average of the revenue shocks in all stochastic scenarios. In particular, we can see that

in the deterministic framework, labor demand is identically 0 for high enough values of the wage,
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Figure 7: Comparative Statics on L d (w ) for pR ,ψR ,σp and p .

L d , baseline plots the same calibration for all panels: pR = 1.5,ψR = 20,σp = .4, θp = .05. The darker lines
corresponding to L d , medium and L d , high show an increase in the parameter of interest in each case.
Panel pR : medium pR = 2; high pR = 2.5. PanelψR : mediumψR = 50; highψR = 100. Panel σp : medium
σp = .6; highσp = .8. Panel p : medium p = 1.25; high p = 1.50.

where the firm finds full automation optimal. This contrasts starkly with the stochastic case, where

labor is only asymptotically zero. Indeed, it will be impossible for all firms to be fully automated

in all states, as this would require an infinite robot stock. When the wage is low enough, firms do

not install any robots in the deterministic case. In particular this occurs when the wage is below the

threshold:

w P E s.t. pR >
1−Γ
Γ w P E −m

ρ+δ
.

Here the wage is low enough that the present discounted value of labor savings falls below the pur-

chase price of robots. This generates the kink in labor demand that can be observed across all cal-

ibrations. Intuitively, the elasticity of labor demand falls discretely as robots stop being a viable

alternative to labor.
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4 Calibrated Model

In this section, we develop a multi-sector equilibrium version of our model that we can calibrate

to the data to gauge the quantitative implications of developments in robotic technology. We as-

sess the labor market consequences of a continuing downward trend in robot purchase prices and

adjustment costs, or a potential increase in the relative productivity of robots.

Section 4.2 presents a limit case of the model, and an analytical characterization of the key com-

parative statics in equilibrium. Section 4.3 describes our calibration strategy. We find that the cal-

ibrated parameters imply reasonable values of two untargeted moments: the semi-elasticity of ag-

gregate employment to robot penetration; and the adjustment costs to purchase price ratio. Section

4.4 contains our main quantitative findings. Our calibrated model predicts that, ceteris paribus,

substantial reductions in the purchase price of robots will cause only modest job losses. Taken in

isolation, the effect of small reductions in adjustment costs, or small increases in relative robot pro-

ductivity will be similarly negligible in most industries, with the exception of automotive. However,

if these changes occur simultaneously, their effect is amplified, resulting in dramatic job losses.

4.1 Equilibrium with Multiple Sectors

In order to map our model to the data, we consider each task as a sector, so that parameters can be

intended as sector-level aggregates and can be set to target sectoral characteristics. Accordingly, the

revenues of each firm i in sector s can be written as

psQs (zi , L i , Ri , ui )≡ ps zi (Γs L i + (1− Γs )ui Ri )
θs .

The parameter Γs can be interpreted as the average relative MRTS across all the tasks that are aggre-

gated to produce the output of sector s , which commands a price of ps . The production technology

and the stochastic process have the same parameters for all firms in the same sector, although the

value of the stochastic shock will vary across firms at each instant t . The investment problem of the

firm is unchanged, and we assume that all firms in all sectors face the same adjustment cost sched-

ule and robot prices. While this assumption is restrictive, it is suitable for our calibration exercise as

we use data for robotic arms in all sectors, thus focusing on the same type of robot capital.

We leave robot producers outside of our general equilibrium model, so the robot price is exoge-

nous. We do this for a number of reasons. First, we want to focus on relatively unskilled production-

line employees, who are most directly threatened by automation. We believe that these workers

would have a hard time reallocating to a robot-producing sector, which would likely require a higher-

skilled workforce. Second, we want to look at the worst-case scenario for low-skilled workers, and

we believe that this is best captured by an economy where these individuals cannot be easily real-

located to the robot-producing sector. This scenario is consistent with our other modeling choices
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that exclude a built-in backstop to full automation, which would arise naturally if our workers had

to be employed in the robot-producing sector. Finally, we want to conduct comparative statics with

respect to a fall in the relative robot price, which can be most directly achieved by determining the

robot price exogenously.16

In our equilibrium model, we are mainly interested in determining wages and relative prices.

There is no aggregate uncertainty. Labor is homogeneous across sectors so there is a single labor

market. Labor demand is the same as in the previous section, but now we have to sum over the N

sectors composing our economy:

L d (w , p) =
N
∑

s=1

∫ ∞

0

L s

�

w , ps , R , z
�

d Gs (R , z ) .

Here p is the vector collecting all the ps sectoral prices, and the dependence of labor on w is explicit.

Finally note that both the individual labor demand, L s , and the stationary distribution, Gs , vary

across sectors as a result of different stochastic processes, and different prices, which will generate

sectoral heterogeneity in the relevant cutoffs R̄ and R̂ .

The equilibrium wage is determined by crossing the labor demand with an isoelastic labor sup-

ply,

L s (w ) =
�

w

χ

�ϕ

,

where ϕ denotes the Frisch labor supply. This supply schedule arises from a representative house-

hold endowed with GHH preferences over consumption and labor, where the final good is the nu-

meraire. For simplicity, and since we are not concerned with the equilibrium interest rate, we as-

sume that households are hand-to-mouth and own a differentiated portfolio of all the firms in the

economy. As a result, they receive all the profits in the economy in addition to labor income.

Households consume a final good that is the CES aggregate of the Ys goods produced by the

various sectors,

Y ≡ AF

�

N
∑

s=1

ξs Y
σ−1
σ

s

�
σ
σ−1

,

where AF is an aggregate productivity term and σ denotes the elasticity of substitution across in-

dustries. The firm cost minimization problem determines the demand for each intermediate good

Ys as

Y D
s =

�

ξs

ps

�σ Y

AF
.

16In a previous version of our general equilibrium model, we experimented with a perfectly elastic supply of robots
arising from a robot-producing sector operating a technology linear in labor, supplied by the same workers employed
in the other sectors in the economy. In that version, the robot price is endogenized as the equilibrium wage over the
productivity of the robot sector. In that model, improvements in robot technology can push up the equilibrium wage
(as more workers are demanded to produce robots) thus accelerating the demise of labor in manufacturing sectors,
as workers quickly transition to the robot sector. However, this effect is partially reversed if productivity is increased
enough and less workers are demanded by the robot sector.
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The costs associated with robot maintenance, purchase and adjustment are rebated to the house-

hold. In essence, these goods and services are produced using the same aggregate of intermediates

as the final good. The supply of each intermediate good is given by

Y S
s =

∫

Qs (z , L , R , u )d Gs (R , z ).

An equilibrium is then prices w ,
�

ps

	

and quantities L , Y ,{Ys } such that the labor market and all

goods markets clear. We provide a formal definition, together with the full system of equations, in

Appendix D.

4.2 The Partial Automation Limit

We cannot provide general analytical results to characterize the system. However, we can obtain

closed-form expressions for the main aggregates and characterize some comparative statics in the

special case where no firm is fully automated. This case is empirically relevant, as no firms are cur-

rently fully automated, and our calibration suggests that the data on robot penetration can only be

matched by a scenario where almost all firms are partially automated. In our model, this scenario

occurs when a sector has žs → 0, which implies that the upper bound to full automation is given

by Fs (žs )→ 0. In this limit case, all firms within each sector are partially automated and choose to

install an amount of robots arbitrarily close to17

R ?
max,s =

1

ψRδ







1− Γs

Γs
w −m

ρ+δ
−pR






. (1)

Therefore, while not varying at the level of the individual firm, the installed stock of robots varies

across sectors according to the relative MRTS parametrized by Γs . To understand this result, recall

that ž represents the highest revenue shock that implies full automation for a firm installing R ?
max,s .

Thus, requiring that Fs (žs )→ 0 means that there is essentially no downside to installing the highest

desired robot stock, as the firm will almost always utilize it fully to save on labor costs. Equivalently,

the highest desired robot stock is small enough that the firm finds itself almost always partially au-

tomated. In this setting, we can show the following result.

Proposition 8 (Comparative Statics in General Equilibrium). Consider the general equilibrium model

17The reader might wonder how žs → 0 without having R ?max,s → 0. In the partial automation scenario,

žs =

�

1− Γs
Γs

R ?max,s

L s

∫

z
1

1−θs dF (z )

�1−θs

.

Therefore, žs → 0 if the ratio of R ?max,s to sectoral labor is low enough.

28



with Fs (žs )→ 0, θs = θ for all s , and elasticity of substitution across industries σ = 1. In the neigh-

borhood of an equilibrium supported by prices (w , p), aggregate equilibrium labor is increasing in m,

pR and ψR , and aggregate robot penetration—defined as the ratio of the aggregate robot stock R to

aggregate labor L—is decreasing in m, pR andψR .

Proposition 8 shows that price effects do not overturn partial equilibrium decisions by firms

when pR or ψR are changed. The assumption that decreasing returns are the same across all sec-

tors allows us to exclude reallocation effects from changes in the equilibrium wage, regardless of

heterogeneity in the relative productivity of robots. This also results also from the Cobb-Douglas

assumption for the final good aggregator, which prevents reallocation in expenditure shares.

4.3 Data, Calibration Strategy, and Untargeted Moments

We use data on average robot penetration taken from Acemoglu and Restrepo (2020). These data

pertain to the 13 manufacturing sectors defined by the International Federation of Robotics (IFR).

The values for 2014 provide a target for Rs/L s in each sector of our model. We construct the rel-

ative price of robots in 2010 and 2014, using data from Korus (2019) and average wages in manu-

facturing production occupations from the Occupational Employment Statistics, that we use to fix

pR/w .18 We use NBER-CES data (Becker et al., 2016) to obtain plausible values for the scale param-

eter θ by targeting the average production workers’ share of value added before 1980 in each sector,

before robots became ubiquitous (Graetz and Michaels, 2018). Compustat data give us estimates

of sector-specific revenue shock processes (Capital IQ Compustat, 2019). Following Oberfield and

Raval (2014), we set the elasticity of substitution across industry sectors toσ= 1. This conveniently

makes the final good a Cobb-Douglas aggregate and allows us to calibrate the ξs as the share of to-

tal manufacturing value added for each IFR sector in 2014. We obtain these shares from BEA data

referring to the various sectors considered by IFR, which we match to two-digit SIC codes following

Acemoglu and Restrepo (2020). In our baseline calibration, we set the elasticity of labor supply to

ϕ = 1. We target a total aggregate labor of L = 1 in 2014, and set the productivity parameters Γs to

match the number of robots per employee in each sector. Our baseline calibration also sets ψR to

match the increase in aggregate robot penetration observed between 2010 and 2014, given the ob-

served fall in the relative price of robots. Finally, we set m = 0 so that all steady state maintenance

costs are subsumed in the adjustment cost paid to replenish depreciation. We report a detailed de-

scription of our data, strategy, and numerical algorithm in Appendix C.

Our model requires a large value of adjustment costsψR in order to match the existing robot pen-

etration and, more importantly, the low aggregate elasticity of robot penetration to purchase prices

that we observe in the data. Note that this fact could not be explained by a version of our model

featuring no risk and adjustment costs, as Proposition 4 shows. According to the calibrated model,

18The wage is determined in equilibrium, so we force the ratio of robot prices to the flow wage to be fixed at the
desired level.
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the current data on robot penetration are matched by the partial-automation scenario described in

Section 4.2. Almost all firms within each sector s choose to install approximately the same level of

robots, R ?
max,s , as specified in Equation 1. The robot stock still varies across sectors with the tech-

nological parameters Γs . The stock of robots observed in the data in each sector is small relative to

the full automation level R̄ (z ) for most values of the revenue shock z . Importantly, this result arises

naturally in an equilibrium that features the (low) robot penetrations observed in the data.

Our calibration fits two key untargeted moments. First, the value of the adjustment cost param-

eter implies that, for the automotive sector, the ratio of total adjustment costs to purchase price in

steady state is:
Ψ
�

δR ?
max,auto

�

pRδR ?
max,auto

=
ψRδ

2pR
×
�

R

L

�

2014,auto
×

Lauto

1000
≈ 3.2917.

This value is consistent with data on spot-welding mechanical arms from Sirkin et al. (2015) that

we also reported in Figure 1, where the same ratio is approximately 3.03.19 Second, our calibration

compares favorably with estimates from Acemoglu and Restrepo (2020), who find that an additional

robot per thousand employees reduces the employment to population ratio in affected local labor

markets by 0.2%. In the data generated by our model, discussed in the following section, one more

robot per thousand employees is associated with an employment fall between 0.01%—if caused by

a decline in pR —and 0.1%—if caused by a decline in MRTSLR . The fact that our numerical results on

these non-targeted moments are similar to other estimates in the empirical literature supports our

calibration results.

4.4 Quantitative Results

In Figure 8, we quantify the labor market consequences of four scenarios, relative to the calibrated

2014 equilibrium. First, we focus on a reduction of the purchase price of robots all the way down to

pR = 0. Second, we analyze a fall of 25% in the MRTSLR , i.e., an increase in relative robot productivity

across all sectors. Third, we examine a fall of 25% in the MRTSLR limited to the automotive sector.

Finally, we consider a fall in adjustment costs, and thus in steady state maintenance costs, of 25%.

Ceteris paribus, a robot price reduction yields limited employment effects in the calibrated model.

This result is hardly surprising, since the value ofψR that we find is high relative to the equilibrium

wage, suggesting that robots are in fact relatively rigid (Sirkin et al., 2015). Consistent with the intu-

itions in our model, the only way to generate a high robot penetration is to have a low adjustment

cost parameter and/or a low MRTSLR . For instance, the higher penetration of robots in the automo-

tive sector is interpreted by our model as a low MRTSLR . Figure 8 also shows how labor is threatened

by technological improvements that render robots relatively more productive, or that reduce their

19Note that spot-welding mechanical arms are among the most widely used in the automotive sector. We obtain
adjustment costs in the data as the sum of the following components of the cost breakdown: project management;
systems engineering, such as programming and installation; peripherals, such as safety barriers and sensors. All of
these components are akin to the adjustment costs in our model, as they generally are unrecoverable and firm-specific.
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Figure 8: Total Sectoral Employment

Note: the full length of the bars gives the partial-equilibrium effect, while darker bars highlight total em-
ployment effects in general equilibrium.

installation and resale costs. While we present the results for changes of pR ,ψR , MRTSLR in isola-

tion, it is crucial to note that changes in one variable have knock-on effects on the other variables.

In particular, a fall inψR or MRTSLR increases the elasticity of aggregate labor to the relative price of

robots.

Figure 8 allows a decomposition of employment effects into partial and general equilibrium ef-

fects. The full length of the bars shows the partial equilibrium effect, while the dark segment high-

lights total employment effects in general equilibrium. As a result, the lighter portion of the bars

represents the attenuation effect that comes from accounting for general equilibrium price feed-

back. A finite labor supply elasticity occasions a fall in the wage that dampens the adverse effects on

labor demand. This attenuation effect is starkest in the case of a fall in MRTSLR ; the total general-

equilibrium effect is half of its partial-equilibrium counterpart. Further, there is a reallocation effect

at play, which depends on the suitability of various sectors to automation. This is evident from com-

paring the automotive sector—currently featuring the highest relative robot productivity—to other
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sectors. For example, a fall inψR reduces employment in automotive, while it leads to such a large

fall in the equilibrium wage that other sectors hire more workers. Our general equilibrium frame-

work also allows us to investigate the consequences of technological advances in a single sector. To

this end, Figure 8 also displays the employment effect of a 25% fall in MRTSLR in the automotive

industry. Relative price and wage effects help labor survive. While there is still a substantial fall

in the number of workers employed in the automotive sector, the reduced labor demand coming

from this sector puts downward pressure on the real equilibrium wage, leading the other sectors to

expand their employment.

Figure 9 displays the aggregate employment and labor share consequences of smoothly varying

the parameters of interest one at a time. Panel 9a shows that the employment effects are modest.

The potential fall in MRTSLR across all sectors poses the most relevant threat to the survival of la-

bor. Nevertheless, a 70% reduction in relative labor productivity would cause a relatively modest

20% reduction in aggregate manufacturing employment. As a comparison, a 70% fall in ψR only

causes about a 1% fall in aggregate employment, and an equivalent reduction in pR reduces total la-

bor by a mere 0.11%. The labor share consequences, reported in Figure 9b, are similar. Once again,

there is substantial attenuation coming from general equilibrium price effects. This attenuation is

apparent when technological advances are limited to just one sector, in this case the automotive

sector. At fixed prices and wages, the aggregate employment fall coincides with the employment fall

in the automotive industry. The flat portion of the curve reveals that a sufficiently large decrease

in MRTSLR completely wipes out human labor in automotive, which directly translates to a fall in

aggregate employment that equals the initial number of employees in this sector. This effect is mit-

igated in general equilibrium by a substantial reallocation of labor to other sectors, encouraged by

a fall in the equilibrium wage. This reallocation halves the total employment effect, but at the cost

of a sharper reduction in the aggregate labor share compared to the partial equilibrium case, as can

be seen in Figure 9b.

The results presented above suggest that, ceteris paribus, small changes in robotic technology

other than the purchase price will have the largest effects in the automotive industry, with modest

impacts on the remaining sectors. However, radical changes have the potential to affect all sectors

dramatically. Finally, it is worth highlighting that our calibration only focused on industrial robots,

namely mechanical arms, thereby ignoring the impact of other potentially relevant technologies.
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Figure 9: Comparative Statics on the Calibrated Model

(a) Aggregate Employment

(b) Labor Share
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5 Extensions and Robustness

In this section, we consider two changes to the theoretical model presented in Section 3. First, we

introduce labor market rigidity by means of convex adjustment costs. An illustrative numerical sim-

ulation highlights a tradeoff between short-run, and long-run employment outcomes. If the fall in

robot price is sudden, then a higher degree of labor rigidity slows down employment losses in the

short run. By contrast, if robot prices fall gradually, then firms in rigid labor markets will start cutting

jobs sooner than firms operating in a more flexible context. Second, we show that our theoretical

findings are robust to both linear and fixed adjustment costs specifications.

5.1 Introducing Labor Rigidity

Until now, we have assumed that labor can adjust instantly in response to shocks. In this section

we relax that assumption, introducing quadratic costs on labor so that it, too, is a state variable in

the firm’s problem. We verify numerically that this model produces approximately the same results

as our baseline model when labor adjustment costs are arbitrarily small. We show that the severity

of labor market frictions—as captured by the ratio of labor to capital adjustment costs—is a key

variable in determining the adverse effects of automation on employment. The higher the relative

adjustment costs, the lower the comparative advantage of labor in responding to shocks, leading

to quicker substitution away from labor. We thus provide additional substance to our claim that

flexibility is the key source of labor’s comparative advantage in our model. The immediate policy

prescription is that a flexible labor market is the most effective backstop to long-run automation.

This intuition is supported by evidence in Acemoglu and Restrepo (2018a) that unionization rates

are correlated with the adoption of robots across OECD countries.

In what follows, we choose quadratic costs on labor, in keeping with the literature inaugurated

by Sargent (1978). We choose quadratic costs for two main reasons. First, using the same type of

adjustment costs for capital and labor immediately allows us to assess the relative rigidity of the two

factors. Second, this type of cost can be easily managed by our solution method.20 Formally, the

firm’s problem can be formulated recursively as

ρV (R , L , z ) = max
IR∈R,IL

Π(R , L , z )−pR IR −
ψR

2
(IR )

2+ (IR −δR )VR (R , L , z )−
ψL

2
(IL )

2+

+ (IL − s L )VL (R , L , z ) +µ(z )Vz (R , z ) +
σ2(z )

2
Vz z (R , z ).

Here ψL parametrizes labor adjustment costs and s is an exogenous separation rate. We augment

20Note that the additional state variable imposes a non-negligible computational burden on the algorithm, as now
there are two endogenous state variables and the exogenous forcing term. This means that we need to be more parsi-
monious with the choice of approximating grids for the variables in our numerical scheme. We present this model with
illustrative intent, as calibrating it to match the data points as in Section 4 would be infeasible.
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Figure 10: Comparative Statics onψL – Model with Labor Market Rigidities

the profit function to allow for under-utilization of labor:

Π(R , L , z ) = max
0≤uR ,uL≤1

z p (ΓuL L + (1− Γ )uR R )θ −m uR R −w L .

Note that we do not allow the firm to pay workers in proportion to the utilization rate, in order to

better capture labor market rigidities. Accordingly, the only way to avoid paying workers is to fire

them. The profit function reads

Π (R , L , z )≡















z p (ΓL + (1− Γ )R )θ −mR −w L ΓL < (1− Γ )
�

R̂ (z )−R
�

z p
�

(1− Γ ) R̂ (z )
�θ −mR̂ (z )− Γ

1−Γ ΩL (1− Γ )
�

R̂ (z )−R
�

≤ ΓL ≤ (1− Γ ) R̂ (z )

z p (ΓL )θ −w L (1− Γ ) R̂ (z )< ΓL .

This solution entails full utilization of labor, regardless of the level of robots. By contrast, robots are

turned off whenever full utilization would bring the firm above the desired scale R̂ (z ).

Figure 10 portrays aggregate labor demand as a function of relative adjustment costs ψL
ψR

, keeping

ψR fixed at the level from Section 3. We set the separation rate s =δ, although our qualitative results

are unaffected as long as s > 0. For reference, the dashed line plots aggregate labor demand for the

model without adjustment costs. Labor demand is essentially the same as in the frictionless model

for low ψL/ψR , and labor goes to 0 when the labor adjustment cost is sufficiently high relative to

the robot adjustment cost. Intuitively, most of the fall in labor occurs beforeψL =ψR , that is, where

labor and robots are equally rigid. Some labor survives beyond this point, but this is just a byproduct

of the quadratic costs specification, as the firm might prefer to adjust two factors by a little rather
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than a single factor by a lot in order to save on adjustment costs. Therefore, the above comparative

statics might understate the adverse effects on labor stemming from higher adjustment costs.

Arguably, our comparative statics on steady states do not make a strong case for a more flexible

labor market. Indeed, existing labor protections could benefit labor by slowing the transition to a

more automated production process. We perform a simple exercise where we fix the wage rate and

postulate a perfectly anticipated fall in the price of robots all the way to zero. We perform this exer-

cise to evaluate the worst-case scenario for workers. As highlighted in Section 4, general equilibrium

feedbacks dampen the negative employment effects. We portray the results in Figure 11, which dis-

plays important differences between the transition featuring an immediate fall of the price of robots

to 0, reported in the upper panel, and a more gradual one.

Starting from panel 11a, we see that the fall in labor is slower in the more rigid labor market. After

about 10 years, though, the paths intersect. While the more flexible labor market limits employment

losses to 80% of the original number, the more rigid market transitions to an almost fully automated

scenario, consistent with the comparative statics highlighted above. These transition paths seem

to provide some rationale for keeping existing protections in place. For instance, if we interpret the

model as a sector of the economy, then the policymaker might prefer a slower adjustment to allow

workers either to retire, or to have enough time to get the proper training to switch occupations.

Similarly, employment-protection legislation (EPL) might be useful for transferring more surplus to

workers, who one might argue are already disadvantaged given the trends in automation.

However, panel 11b reveals that EPL plays a much different role in a gradual transition. Here,

the economy featuring larger labor market frictions starts adopting robots earlier relative to its low-

friction counterpart. This can speak to the evidence in Acemoglu and Restrepo (2018a) that coun-

tries with higher unionization rates also have a higher robot adoption at the current world price

for robots. The role of labor market frictions, while unambiguous in the long run, is therefore nu-

anced in the short term. In the long run, labor protections, far from benefiting workers, eliminate

their distinctive comparative advantage. This effect is likely to be magnified in the real world, given

that labor-substituting technological innovation responds to the incentives provided by a rigid labor

market. However, in the short run and medium run they can contribute to a more gradual transition,

depending on the pace of the improvement in automation technology.
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Figure 11: Transition to Steady State with pR = 0

(a) Immediate Fall to pR = 0

(b) Gradual Transition
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5.2 Robustness to Different Adjustment Costs Specifications

In this section, we explore the robustness of our findings in Section 3 to alternative adjustment costs

specifications. We focus on linear adjustment costs, following Bentolila and Bertola (1990). Linear

costs are interesting because they generate an inaction region, similar to fixed costs of adjustment

(Stokey, 2009). However, linear costs are closer to the evidence provided in Conway (2014), which

highlights unit installation costs. We describe the solution algorithm we use for our numerical re-

sults in detail in Appendix E. The firm’s problem is now

ρV (R , z ) =max
I∈R

Π(R , z ) −1{I > 0} (ψ++pR )I −1{I < 0} (−ψ−+pR )I +

+ (I −δR )VR (R , z ) +µ(z )Vz (R , z ) +
σ2(z )

2
Vz z (R , z ),

where ψ+ and ψ− denote linear adjustment costs for positive and negative investment. The F.O.C.

for investment gives the following conditions on the value function derivative:















VR (R , z ) = pR −ψ− if I < 0

pR −ψ− <VR (R , z )< pR +ψ+ if I = 0

VR (R , z ) = pR +ψ+ if I > 0

.

This implies that, for each z , the firm will be inactive for R ∈
�

R ?inv(z ), R ?disinv(z )
�

, where

VR

�

R ?
inv(z ), z

�

= pR +ψ+ and VR

�

R ?
disinv(z ), z

�

= pR −ψ−,

and the firm will adjust towards the investment/disinvestment cutoffs, R ?
inv(z ) and R ?

disinv(z ), if the

revenue shock is such that the installed capital stock is outside of the inaction region. The inac-

tion region is a closed interval because the value function inherits the weak concavity of the return

function, so there will be unique cutoffs and R ?
inv(z )≤R ?

disinv(z ).

This solution immediately implies that the stationary distribution will have positive density only

inside the inaction region. Therefore, we can numerically verify a result that is analogous to Propo-

sition 6. Given the other parameters and for any pR , there exists a ψ+ > 0 such that the stationary

distribution does not feature full automation. The increase in ψ+ shifts down the investment bar-

rier R ?
inv(z ) for all z , while R̄ (z ), the full automation threshold, is invariant to adjustment costs. As

a result, it is possible to find aψ+ large enough that the investment barrier falls below R̄ (z ) for all z

in a non-zero measure set of the support of F (z ). In Figure 12 we show an example of this instance,

where it is clear that part of the stationary distribution falls below the R̄ (z ) schedule.

We sketch the solution of a fixed-cost variant of the model to show that it produces results that

are similar to the linear specification we have analyzed thus far. Namely, a fixed cost model would

also entail a desired level of capital to which firms want to adjust. Conditional on adjusting, a firm
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Figure 12: Stationary Distribution for the Linear Adjustment Costs Model

with a revenue shock z would like to set the robot stock to R ?
adj(z ), given by

VR

�

R ?
adj(z ), z

�

= pR .

Given (R , z ), a firm that does not adjust gets the value V (R , z ), defined recursively as

ρV (R , z ) =Π(R , z )−δRVR (R , z ) +µ(z )Vz (R , z ) +
σ2(z )

2
Vz z (R , z ).

It follows that, given a fixed cost of adjustment F , a firm chooses to adjust if and only if

V
�

R ?
adj(z ), z

�

≥V (R , z ) +pR

�

R ?
adj(z )−R

�

+ F.

Given the properties of the value function, the right hand side of the above expression is concave in

R , so in general there exist two robot stock cutoffs, defined as functions of z . Analogous to the case of

linear adjustment costs, these functions provide the bounds for an inaction region where firms will

just let installed robot stocks depreciate. The condition above clearly shows that a sufficiently high

F will push the lower bound of the inaction region towards R = 0—and therefore below R̄ (z )—for

any given finite z . As a result, a positive mass of firms will inevitably end up partially automated.
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6 Conclusions and Future Work

We have shown that when robot capital involves substantial rigidity, and firms operate in a risky

environment, labor can survive substantial innovations in automation if it is relatively more flexible.

This occurs even if there is perfect substitution between factors, and even if robots have a flow cost

advantage. However, this comes at a cost: job stability. As the simulated time paths in Figure 5b

show, labor is mostly hired in short-lived bursts to cope with demand peaks.

Moreover, our calibrated model has shown that the main threat to labor comes from significant

improvements in robot productivity or reductions in robot reallocation frictions. By contrast, we do

not envision an important role for falling list prices in generating employment losses.

Our main insight on human labor flexibility has important policy consequences. Labor can sur-

vive in the absence of barriers to human-robot substitution, and it can do so by being more flexible

than robots. If this source of advantage is taken away—for example by overly rigid regulations—

human labor may be eliminated even in the presence of revenue risk and adjustment costs for

robots.

While we do not develop this point formally, our framework can speak to the supply side con-

sequences of a host of robot taxes that have been recently proposed. Our calibration suggests that

a tax on robot purchases, or one tied to ownership or utilization of robots, might not be enough to

significantly alter the incentives for automation if robots become more productive and less costly

to install. However, our results suggest that reducing the wage bill for firms, for instance by limit-

ing social security contributions or income taxes on low-income individuals, might go a long way

towards safeguarding unskilled and routine jobs.

Flexibility in performing tasks might be an inherently human ability that machines may never

be able to reproduce. Our model can be easily extended to incorporate an intensive dimension of

volatility, given by the stochasticity arising from the complexity of the environment in which robots

have to operate. The simplest way to study this dimension in our framework is to focus on a robot-

specific productivity shock, and move the scope of our analysis from tasks to jobs. In this setting,

each job is an aggregate of tasks, which workers are asked to carry out stochastically. This could

shed light on which jobs and sectors are inherently human, and which types of technical innovations

could be most threatening for labor.
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Appendix A Solution of the Static Revenue Maximization Problem

We assume that Ω> 0. The static problem reads

Π (R , z )≡ max
L≥0,0≤u≤1

z p (ΓL + (1− Γ )uR )θ −w L −m uR .

Solving for labor yields,

L ? (R , z ) =











1

Γ

�

�

w

p z Γθ

�
1
θ−1

− (1− Γ )u ?R
�

if uR ≤
�

w

p z Γθ

�
1
θ−1 1

1− Γ
≡ R̄ (z )

0 else

.

Thus,

Π (R , z )≡







(1−θ )p z (1− Γ )θ R̄ (z )θ +
� (1−Γ )w

Γ −m
�

uR uR ≤ R̄ (z )

p z (1− Γ )θuθR θ −m uR uR > R̄ (z )
.

Now, by the F.O.C. for u , we obtain u ? in the case of an interior solution,

θp A (ΓL ?+ (1− Γ )u ?R )θ−1 (1− Γ )R −mR = 0.

Plugging in optimal labor from above yields,

u ? (R , z ) =
1

(1− Γ )R

�

m

(1− Γ )θp A

�
1
θ−1

=
R̂ (z )

R
.

In particular, u ? = 1 if

R̄ (z )≤R ≤ R̂ (z ) =

�

p zθ (1− Γ )θ

m

�
1

1−θ

,

the optimal static scale of the firm. Under our assumption that labor savings are strictly positive, i.e.

Ω> 0, it is straightforward to see that u ? (R , z )> 0. We now show that in the case where both robots

and labor are used, u ? = 1. Indeed, for an internal solution in the first region, the F.O.C. requires

w

Γ
(1− Γ )R −mR = 0,

i.e. no labor savings from having a (fully utilized) robot quantity R . Therefore, in the first region

u ? = 1 if labor savings are positive. Otherwise, the firm sets u ? = 0. This static solution allows us to

write the operating profit function as reported in the main text.
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Appendix B Omitted Proofs

B.1 Two-Period Model

Proof of Lemma 1. The operating profit function reads:

Π (R , z ) =















(1−θ )p z (1− Γ )θ R̄ (z )θ +
� (1−Γ )w

Γ −m
�

R R ≤ R̄ (z )

p z (1− Γ )θR θ −mR R̂ (z )≥R > R̄ (z )

p z (1− Γ )θ
�

R̂ (z )
�θ −mR̂ (z ) R̂ (z )<R

where:

R̄ (z )≡
1

1− Γ

�

p zθ Γ

w

�
1

1−θ

R̂ (z )≡
1

1− Γ

�

p zθ (1− Γ )
m

�

1
1−θ

Define z̄ (R ), ẑ (R ), as the inverse functions of R̄ (z ), R̂ (z ), respectively. The derivative of the profit

function with respect to R is given by,

ΠR (R , z )≡















Ω≡
� (1−Γ )w

Γ −m
�

z > z̄ (R )

θ z p (1− Γ )θR θ−1−m z̄ (R )≥ z > ẑ (R )

0 z ≤ ẑ (R )

.

Under the assumption of positive labor savings Ω, the above is non-negative ∀z . Furthermore,

this derivative is decreasing in R . Indeed, both z̄ (R ) and ẑ (R ) are increasing in R , since they are the

inverses of the functions R̄ (z ), R̂ (z ), which are increasing in z . Moreover, its maximum is given by Ω

(which in particular is also the value of the derivative when R is 0). Now, for a given (R̃ , z̃ ), consider

an increase in z . If the initial z̃ is not at any of thresholds, taking derivatives shows that ΠR (R̃ , z̃ ) is

strictly increasing in z if the (R̃ , z̃ ) are such that z̄ (R̃ ) > z̃ > ẑ (R̃ ). Otherwise, ΠR ,z (R̃ , z̃ ) = 0. Finally,

this function is increasing in z if z̃ = z̄ (R̃ ), or z̃ = ẑ (R̃ ), since Ω ≥ θ z p (1− Γ )θR θ−1 −m ≥ 0 for the

values of R that imply full robot-stock utilization. It follows thatΠR (R , z ) is increasing in z . Following

similar steps for R shows that ΠR (R , z ) is decreasing in R .

The derivative of the operating profit function with respect to z reads

Πz (R , z )≡















(1−θ )p (1− Γ )θ R̄ (z )θ + (1−θ )p z (1− Γ )θ θ R̄ (z )θ−1R̄z (z ) z > z̄ (R )

p (1− Γ )θR θ z̄ (R )≥ z > ẑ (R )

p (1−θ )
�

R̂ (z )
�θ
+p z (1−θ )θ

�

R̂ (z )
�θ−1

R̂z (z ) z ≤ ẑ (R )

.

Where the last line follows from replacing the definition of R̂ (z ) into Π(R , z ) for R̂ (z ) < R , which
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yields,

p z (1− Γ )θ
�

R̂ (z )
�θ −mR̂ (z ) = p z (1− Γ )θ

�

1

1− Γ

�

p zθ (1− Γ )
m

�

1
1−θ
�θ

−
m

1− Γ

�

p zθ (1− Γ )
m

�

1
1−θ

=
�

p zθ (1− Γ )
m

�

θ
1−θ
(p z −θp z )

= p z (1−θ )R̂ (z )θ .

Further note that

R̂z (z )≡
∂ R̂ (z )

z
=

1

1−θ
z

θ
1−θ

1

1− Γ

�

pθ (1− Γ )
m

�

1
1−θ

=
1

(1−θ )z
R̂ (z )≥ 0,

and similarly,

R̄z (z )≡
∂ R̄ (z )

z
=

1

(1−θ )z
R̄ (z )≥ 0.

We can therefore rewrite

Πz (R , z )≡















p (1− Γ )θ R̄ (z )θ z > z̄ (R )

p (1− Γ )θR θ z̄ (R )≥ z > ẑ (R )

p (1− Γ )θ
�

R̂ (z )
�θ

z ≤ ẑ (R )

.

It immediately follows that the derivative Πz (R , z )≥ 0 for all (R , z ). Moreover,

Πz z (R , z )≡















p (1− Γ )θ θ R̄ (z )θ−1R̄z (z ) z > z̄ (R )

0 z̄ (R )≥ z > ẑ (R )

p (1− Γ )θ θ
�

R̂ (z )
�θ−1

R̂z (z ) z ≤ ẑ (R )

,

is nonnegative, given the derivatives reported above.

Proof of Proposition 2. First note that βE [ΠR (R1, z1) | z0] is decreasing in R1 for all z0, z1. In particu-

lar, given the definition above, it is continuous with limits given by,

lim
R1→0

βE [ΠR (R1, z1) | z0] =βΩ, lim
R1→∞

βE [ΠR (R1, z1) | z0] = 0.

The LHS of the FOC starts at pR −ψR R0 and goes to∞ as R1→∞. It follows that there is a unique

solution R ?
1 of the FOC. In the trivial case that pR > βΩ +ψR R0, the firm sets R1 = 0, and it only

produces with labor in period t = 1. When the solution for R ?
1 is interior, the unbounded support
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ensures that, ∀R ?
1 , ∃z̄ (R ?

1 ) such that, ∀z > z̄ (R ?
1 ), R̄ (z )>R ?

1 , and therefore L ?1(z )> 0. It follows that

L d
1 ≡

∫ ∞

0

L ?1(z ) f (z )dz > 0.

B.2 Continuous Time Model

Proof of Lemma 2. The properties cited are inherited by the instantaneous operating profit function

Π(R , z ) (see e.g. Stokey (2009), p.233). Following Stokey (2009) (p.229), and considering a small time

interval dt → 0, we can write an approximation for the value function as follows:

V (R0, z0) ≈ Π(R0, z0)dt −pR (I
?(R0, z0))−

ψR

2
(I ?(R0, z0))

2+ (2)

+
1

1+ρdt
E [V (R0+dR , z0+dz )]

Where:

dR ≡ [I ?(R0, z0)−δR0]dt ,

is the drift associated to optimal investment I ?(R0, z0). Note that the above Equation 2 defines a

contraction mapping Tdt (V ) for all dt > 0. We can therefore apply the results in Stokey et al. (1989)

Corollary 1 (p.52). In particular, it is straightforward to verify the following properties of V that derive

directly from the properties of Π(R , z ) summarized in Lemma 1:21

• Π(R , z ) increasing in R for all z implies that V (R , z ) is increasing in R for all z , Π(R , z ) weakly

concave in R for all z implies that V (R , z ) is weakly concave in R for all z .22

• If the FOSD property is assumed, Π(R , z ) increasing in z for all R implies that V (R , z ) is in-

creasing in z for all R , as it is immediate to see that Tdt will map a V increasing in z for all R

21These properties follow directly from Π since the Envelope Theorem ensures that the effects of changes in z0

through the optimal investment I ? and the associated drift dR on the maximized value function V are second order.
22An alternative proof of concavity follows Dixit and Pindyck (1994), 1993, p.360. Consider two initial values of R ,

R1, R2 with associated optimal paths
�

R1,t

	

,
�

R2,t

	

and investment policies
�

∆R1,t

	

,
�

∆R2,t

	

. Now consider the firm
having initial capital stock:

αR1+ (1−α)R2, α ∈ [0, 1]

Consider now the path
�

αR1,t + (1−α)R2,t

	

. This is clearly feasible, so V will have a value at least as large as the one
obtained following this path. Following such path the firm obtains in each instant:

ut

��

αR1,t + (1−α)R2,t

	

, zt

�

≡ Π
�

αR1,t + (1−α)R2,t , zt

�

−pR

�

α∆R1,t + (1−α)∆R2,t

�

+

−Ψ
�

α∆R1,t + (1−α)∆R2,t

�

By concavity of Π and convexity of Ψ(I )≡ ψR
2 I 2:

ut

��

αR1,t + (1−α)R2,t

	

, zt

�

≥αut

�

R1,t , zt

�

+ (1−α)ut

�

R2,t , zt

�
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into a value function V ′ = T (V ) that has the same property. This is ensured by the definition of

FOSD. For any z ′′0 > z ′0,E
�

V (R0+dR , z ′′0 +dz )
�

≥E
�

V (R0+dR , z ′0+dz )
�

. The statement follows

combining this fact with the fact that Π(R , z ) is increasing in z for all R .

To prove the properties of VR , Consider the Envelope condition that can be obtained by differ-

entiating the HJB in R side by side. Doing so yields:

�

ρ+δ
�

VR (R , z )−ΠR (R , z )−µ (z )VR p (R , z )−
1

2
σ2 (z )VR p p (R , z )− Ṙ VR R (R , z ) = 0,

which can be rewritten using Itô’s formula as:

�

ρ+δ
�

VR (R , z )−ΠR (R , z )−E
�

dVR (R , z )
dt

�

= 0,

As for Equation (2), we can use an approximation for the derivative of the value function along the

optimal path as:

VR (R0, z0)≈ΠR (R0, z0)dt +
1

1+ (ρ+δ)dt
E [VR (R0+dR , z0+dz )] . (3)

The RHS of Equation (3) also defines a contraction TR ,dt for any dt > 0, as it satisfies the hypotheses of

Blackwell’s theorem.23 To prove that VR R ≤ 0, consider a function V ′
R that satisfies the property. Then

it is immediate to see that V ′′
R = TR ,dt (V ′

R ) satisfies it as well. Indeed, the returns function ΠR (R , z )

has weakly negative derivative in R as well. It follows that the operator maps weakly concave value

functions into weakly concave value functions. Since TR ,dt is a contraction mapping, we conclude

that VR R ≤ 0. A similar reasoning shows that VR w > 0, and, if the FOSD property holds, that VR z ≥ 0.

To prove the upper bound of VR (R , z ), we rewrite the envelope condition using Lemma 1 in Ap-

This implies:

E0

∫ ∞

0

e −ρt ut

��

αR1,t + (1−α)R2,t

	

, zt

�

dt ≥αE0

∫ ∞

0

e −ρt ut

�

R1,t , zt

�

dt+

+ (1−α)E0

∫ ∞

0

e −ρt ut

�

R2,t , zt

�

dt

E0

∫ ∞

0

e −ρt ut

��

αR1,t + (1−α)R2,t

	

, zt

�

dt ≥αV (R1, z0) + (1−α)V (R2, z0)

V (αR1+ (1−α)R2, P )≥αV (R1, z0) + (1−α)V (R2, z0)

Proving the statement.
23Monotonicity follows immediately from the fact that the operator is linear in VR , while discounting is ensured by

(ρ+δ)dt > 0 for all dt > 0.
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pendix B of Abel and Eberly (1993, p.22) to solve for VR (R , z ) as24

VR (R0, z0) =E
�∫ ∞

0

e −(ρ+δ)tΠR (Rt , zt )dt

�

.

Using the bounds for Π(R , z ) in Lemma 1,

VR (R0, z0)≤E
�∫ ∞

0

e −(ρ+δ)tΩdt

�

=
Ω

ρ+δ
.

Proof of Proposition 4. By the proof of Proposition 3, we can write,

I ?(Rt , zt ) =
1

ψR

�∫ ∞

t

e −(ρ+δ)(s−t )Et

�

ΠR

�

R ?
s , zs

�	

ds −pR

�

.

Removing the expectation and evaluating at the steady state we obtain, for R ? > 0,

δR ?(z d ) =
1

ψR

�

ΠR (R ?(z d ), z d )
ρ+δ

−pR

�

.

First, note that, given z d , we have

ΠR (R
?(z d ), z d ) =







min
�

Ω,θ z d p (1− Γ )θR ?(z d )θ−1−m
	

R ?(z d )< R̂ (z d )

0 R ?(z d )≥ R̂ (z d ).

Therefore, R ?(z d ) = 0 if pR >
Ω
ρ+δ , regardless of the value of ψR ,δ. If either ψR ,δ = 0, the FOC for

investment gives
ΠR (R ?(z d ), z d )

ρ+δ
= pR .

So if there are strictly positive labor savings, 0 < pR <
Ω
ρ+δ—our main assumption—the optimal so-

lution entails full automation, R ?(z d )> R̄ (z d ).25

Turning to the case δ,ψR > 0 and rearranging,

ψRδR ?(z d ) +pR =
ΠR (R ?(z d ), z d )

ρ+δ

the above equation has a unique solution as Π(R , z ) is weakly concave in R , so the RHS is strictly

24This part shows the case of a diffusion, but the same reasoning can be applied to a CTMC, by replacing the stochastic
terms appropriately. Indeed, while the statement of Lemma 1 in Abel and Eberly (1993) considers a diffusion, all their
passages can be directly applied to a CTMC, and to the case where the function of interest is multivariate, as in our case.

25When Ω
ρ+δ = pR , the firm is indifferent between all values of the robot stock satisfying, R ?(z d )≤ R̄ (z d ), so there is a

continuum of steady state distributions that depend on the initial distribution of robot stocks.
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increasing from pR to∞ and the LHS in weakly decreasing from Ω
ρ+δ to 0. Since the revenue shock

is fixed at z d , this unique solution is the steady state of the model. Moreover, by Corollary 1 we have

that R ?(z d ) is strictly decreasing inψR and goes to 0 asψR tends to infinity. It follows that there exists

a finite ψ̃R such that R ?(z d )< R̄ (z d ) for allψR > ψ̃R .

Proof of Proposition 5. For ease of notation, define R ?
1 = R ?(z1), R ?

N = R ?(zN ). The KFE for a Poisson

process reads, defining G
�

R̄ , zi , t
�

= P r
�

Rt ≤ R̄ , zt = zi

�

:

∂

∂ t
G (Rt , zi , t ) =−

∂ Rt

∂ t

∂

∂ Rt
G (Rt , zi , t )−

∑

j 6=i

λi j G (Rt , zi , t )+
∑

j 6=i

λ j i G
�

Rt , z j , t
�

Integrating over z ’s yields:

∑

i

∂

∂ t
G (Rt , zi , t ) = −

∑

i

∂ Rt

∂ t

∂

∂ Rt
G (Rt , zi , t )+

+
∑

i

(

−
∑

j 6=i

λi j G (Rt , zi , t )+
∑

j 6=i

λ j i G
�

Rt , z j , t
�

)

At the stationary distribution it holds:

0=−
∑

i

∂ R

∂ t

∂

∂ R
G (R , zi ,∞)

since the last terms in parenthesis cancel out by definition of a stationary distribution. Note by

definition of R ?
N :
∂ Rt (R ?N ,zN )

∂ t =
�

I ?(R ?
N , zN )−δR ?

N

�

= 0 . By Corollary 1, investment is increasing in z and

decreasing in R . It follows that

∂ Rt (R , z )
∂ t

< 0 ∀R >R ?
N ∧ z ≤ zN

To avoid contradiction, in a stationary distribution we must have: G (R , z ,∞) = 0 ∀R > R ?
N . A

similar argument can be made for R ?
1 by flipping all inequalities. Combining the two arguments,

G (R , zi ,∞) = 0 ∀R /∈ [R ?
1 , R ?

N ].

Now, consider a diffusion with KFE:

0=−
∂
�

[I ?(R , z )−δR ]g (R , z , t )
�

∂ R
−
∂
�

µ(z )g (R , z , t )
�

∂ z
+

1

2

∂ 2
�

σ2(z )g (R , z , t )
�

∂ z 2

Suppose g (R , z , t )> 0 for some R <R ?
1 at all z ∈ [z1, zN ]. Now, for all R <R ?

1 , and for all z ∈ [z1, zN ],

the investment drift is strictly positive, by definition of R ?
1 . Therefore, the joint distribution over

(R , z )will feature outflows in R for each revenue shock z ∈ [z1, zN ]. Integrating over z , the marginal
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stationary distribution for R is positive below R ?
1 . Since I ?(R , z )−δR > 0,∀z , R <R ?

1 ,

−d
�

[I ?(R , z )−δR ]g (R , z , t )
�

< 0 ∀z , R <R ?
1 ,

directly contradicting the definition of stationary distribution. Assume now that δ > 0, then we can

reason as above by flipping all inequalities for R >R ?
max.

Proof of Proposition 7. By Proposition 3, investment is non-decreasing in w . As a result, the cutoffs

R ?(z ) are non-decreasing in w as well. From the Kolmogorov Forward Equation in Proposition 5,

the stationary distribution entails weakly higher robot stocks for each z . Moreover, the cutoffs R̄ (z )

are strictly decreasing in w , which implies that individual labor demand is non-increasing in w for

all (R , z ) (strictly decreasing for firms with positive labor demand). Finally, individual labor demand

is non-increasing in R for all z . Combining all these facts, the integral,

∫

S
L ?(R , z )dG (R , z ),

is non-increasing in w . Note that as w →∞, the individual labor demand falls to 0. As w → 0, we

instead have that R̄ (z )→∞, implying that the individual labor policy tends to∞ as well.

B.3 General Equilibrium

Proof of Proposition 8. We define an equilibrium as in appendix D.3. Under the assumption σ = 1,

the system of equations pinning down the equilibrium prices, (w , p) reads,

LM (w , p;θ )≡
N
∑

s=1

(

Es

�

psθs Γ
θs
s

w

�
1

1−θs

−
1− Γs

Γs
R ?

max,s

)

−
�

w

χ

�ϕ

= 0,

I Ms (w , p;θ )≡

�

Es

�

psθs Γs

w

�

θs
1−θs

�

−ξs

∑

j p
1

1−θs
j E j

�

θ j Γ j

w

�

θ j
1−θ j

ps
= 0 ∀s = 1, . . . , N ,

where the symbol θ represents a generic parameter affecting the equilibrium on which we wish to

perform the comparative statics. For ease of notation, we have defined

Es ≡
∫ ∞

0

z
1

1−θs d Fs (z ) .

Here, the function LM (·) expresses excess demand for labor, while the functions I Ms (·)’s give the

excess demands for each intermediate good market. By Walras’ law, we can omit the final good

market. By the implicit function theorem, we can characterize the effect that a change in any of

these parameters has on the equilibrium price system. To this end, pre-multiply the vector of direct
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effects of the parameters on the system of equation by the inverse of the Jacobian of the system with

respect to prices. This yields,













d w
dθ
d p1
dθ
...

d pN
dθ













=−













d LM (w ,p;θ )
d w

d LM (w ,p;θ )
d p1

. . . d LM (w ,p;θ )
d pN

d I M1(w ,p;θ )
d w

d I M1(w ,p;θ )
d p1

· · · d I M1(w ,p;θ )
d pN

...
...

...
...

d I MN (w ,p;θ )
d w

d I MN (w ,p;θ )
d p1

· · · d I MN (w ,p;θ )
d pN













−1











d LM (w ,p;θ )
dθ

d I M1(w ,p;θ )
dθ
...

d I MN (w ,p;θ )
dθ













.

Starting from the first row of the Jacobian, we can see that,

d LM (w , p;θ )
d w

=−
N
∑

s=1











1

1−θs
Es

�

psθs Γ
θs
s

w θs

�
1

1−θs

+
1− Γs
Γs

d R ?max,s

d w
︸ ︷︷ ︸

>0











−ϕχ
�

w

χ

�ϕ−1

< 0,

d LM (w , p;θ )
d ps

=
1

1−θs
Es

�

p θs
s θs Γ

θs
s

w

�
1

1−θs

> 0 ∀s = 1, . . . , N .

Next, considering the effect of the wage on the market clearing condition in each sector,

d I Ms (w , p;θ )
d w

=
d Y S

s

d w
−
ξs

ps





∑

j

¨

pj

d Y S
j

d w

«



≶ 0.

However, note that the above is monotone in ξs . Plugging in the expressions for d Y S
s

�

d w , yields

d I Ms (w , p;θ )
d w

=
1

ps















−
θs

1−θs
w ps

�

psθs Γs

w

�

θs
1−θs

Es

︸ ︷︷ ︸

=Y S
s

+ξs

∑

j

pj Y S
j

θ j

1−θ j
w















.

Setting the above to 0 and rearranging delivers a threshold value of the shares of value added:26

ξ̄s =
θs

1−θs
∑

j ξ j
θ j

1−θ j

ξs .

Note that if θs = θ j for all s 6= j , then ξ̄s = ξs ∀s = 1, . . . , N . That is, under the assumption that

decreasing returns to scale are equal across sectors, there is no direct effect of the wage on excess

demand. Finally,
d I Ms (w , p;θ )

d ps
= (1−ξs )

d Y S
s

d ps
+
ξs

p 2
s

∑

j 6=s

pj Y S
j > 0,

26Recall that, by definition, the parameters ξs satisfy ξs =
ps Y S

s
∑

j pj Y S
j

.
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d I Ms (w , p;θ )
d pj

=−
ξs

ps
pj

d Y S
j

d pj
< 0.

Under the assumption that θs = θ for all s , the sign pattern of the Jacobian is,

sign (J ) =

















− + . . . . . . +

0 + − . . . −
... − + ...

...
...

...
... ... −

0 − · · · − +

















=























− + · · · · · · +
0
...
...

0













+ − . . . −

− + ...
...

...
... ... −

− · · · − +













︸ ︷︷ ︸

≡S























.

Note that m , pR andψR do not affect the excess demand for any of the intermediate goods, and they

only affect the excess demand for labor. Thus,

sign

























d LM (w ,p;θ )
d pR

d I M1(w ,p;θ )
d pR

...
d I MN (w ,p;θ )

d pR

























=













+

0
...

0













.

Therefore,
dw

dpR
=−(J −1)11

d LM (w , p;θ )
d pR

.

Due to the structure of the matrix J ,

(J −1)11 =
1

det |J |
det |S |=

1

J11 det |S |
det |S |=

1

J11
.

We therefore have that,

dw

dpR
=−

d LM (w ,p;θ )
d pR

d LM (w ,p;θ )
d w

> 0,

since,
d LM (w , p;θ )

d pR
=

1

ψRδ

N
∑

s=1

§

1− Γs

Γs

ª

> 0.

The proof follows the same steps forψR and m . Indeed,

sign

























d LM (w ,p;θ )
dψR

d I M1(w ,p;θ )
dψR

...
d I MN (w ,p;θ )

dψR

























= sign

























d LM (w ,p;θ )
d m

d I M1(w ,p;θ )
d m

...
d I MN (w ,p;θ )

d m

























=













+

0
...

0













,
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and,
d LM (w , p;θ )

dψR
=

1

ψR

N
∑

s=1

§

1− Γs

Γs

ª

R ∗max,s > 0

d LM (w , p;θ )
d m

=
1

ψRδ

1

ρ+δ

N
∑

s=1

§

1− Γs

Γs

ª

> 0.

Since there is no wealth effect on the labor supply, the comparative statics on aggregate employment

can be carried out trivially by noting that the supply of labor is only an increasing function of the

equilibrium wage.
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Appendix C Calibration

C.1 Illustrative Figures Calibration

The following table reports the detailed parametrization of the model we adopt for the illustrative

figures in the main text.

Description Variable/Parameter Value
Wage w 0.5
Robot Purchase Price pR 1.5
Normalized MRTS Γ 0.5
Flow robot cost m 0.2
Robot depreciation δ log(1+1/12)
Discount factor ρ log(1+0.04)
DRS parameter θ 0.5
Robot adjustment cost ψR 25
CIR mean-reversion parameter θp 0.1
CIR long-run variance σp 0.4
CIR log-run mean z d 1
Total factor productivity p 1

C.2 Data Sources

The data sources that inform our calibration are the following:

• Compustat Daily Updates - Fundamentals Annual (1950-2019) for US firms accessed through

the WRDS service. We use the series: “sale” (firm sales), “emp” (firm employment), “ppent”

(net property, plant and equipment), “ppegt” (gross property, plant and equipment). We use

“gvkey” identifiers and four-digit SIC codes to classify industries into the 19 sectors covered

by the IFR statistics;

• Crosswalk between IFR and SIC sectors kindly provided by Daron Acemoglu and Pascual Re-

strepo;

• Data on robots per worker in 2010 and 2014 from the replication files for Acemoglu and Re-

strepo (2020), retrieved at: https://economics.mit.edu/faculty/acemoglu/data. which

aggregates IFR data by sector;

• We construct factor shares using the historical SIC-level data from the NBER-CES dataset, re-

trieved at: http://www.nber.org/nberces/.

• Fixed investment deflator (BEA): Implicit price deflator for fixed gross private investment de-

flator, seasonally adjusted quarterly and averaged annually. https://fred.stlouisfed.
org/series/A007RD3Q086SBEA;
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• GDP deflator by the BEA, seasonally adjusted quarterly and averaged annually. Retrieved at:

https://fred.stlouisfed.org/series/GDPDEF;

• We use data from ARK investment and BCG to obtain a ballpark of the relative robot cost. In

particular, Korus (2019) and Sirkin et al. (2015) contain time series for robot unit costs up to

2014;

• Average annual wage for production workers from the Occupation Employment Statistics database

retrieved at: https://www.bls.gov/oes/tables.htm;

• Value added by industry from the BEA GDP-by-industry dataset. Retrieved at: https://
apps.bea.gov/iTable/index_industry_gdpIndy.cfm

C.3 Calibrating the Parameters of the CIR Stochastic Process

The first step towards calibrating the model is estimating the parameters of the CIR process for z

used throughout the paper. In order to do so, we choose to use Compustat firm-level TFP. We use

the SIC codes to classify firms into the 13 IFR sectors with the help of the crosswalk mentioned above.

We employ The following specification to recover TFP,

log(Saless i t ) = γi + ft s +αs log(Emps i t ) +βs log(Ks i ,t−1) + εi s t .

We include firm fixed effects, time-by-IFR-sector fixed effects and assume that the technological

parameters α and β are the same for all firms within the same IFR sector. We deflate sales by the

GDP deflator and capital stocks by the fixed investment deflator. Our real capital stock measure is

built by perpetual inventory method, using as a starting point the total gross property plant and

equipment (“ppegt”) in the first year the firm appears in our panel, deflated by the fixed investment

deflator for that year. We then add the net investment in property plant and equipment obtained

using the differences of the series “ppent”, deflated by the corresponding fixed investment deflator.27

The residuals of the above regression give an estimate of log firm-level TFP, from which we also

remove a firm-level trend, in order to make the estimated series stationary. We then exponentiate

the resulting series and we assume that all firms in the same IFR sector share the same CIR process

parameters. We estimate the parameters of the CIR process by maximum likelihood, following the

procedure in Wei et al. (2016), amended to account for the fact that all firms within each sector

share the same process.28 We estimate the parameters {as , bs ,ζs } for each sector s in the following

CIR process,

dzt s = (as − bs zt s )dt +ζs
p

zt s dW ,

27We deal with the missing values for “ppent” by interpolating linearly using the nearest non-missing observations.
28This amounts to assuming that all firms are sampled in an i.i.d. fashion in each sector, so that we can pool the data

of all firms in each sector.
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which we then normalize to obtain a mean of 1 for each sector, consistently with our modeling

choices. Thus, we calibrate θp s andσs as,

θp s = b̂s , σs =
ζs

Æ

âs/b̂s

.

C.4 Calibrating the Parameter θ

In order to calibrate θ in a model-consistent way, we target the share of income going to production-

line employees in the sectors of interest. Our model implies that this quantity is exactly equal to θ

when aggregate robot penetration, defined as R/L , is zero. To obtain the relevant labor share, we

use the NBER-CES data for 1958-2011, and compute the share of income going to production-line

employees as the wage bill of production-line employees over value added. Once again, this quantity

is computed by IFR sector, to which we map the SIC sectors by using our crosswalk. In order to

purge the estimated series by cyclical fluctuations, we apply a HP filter with smoothing parameter,

λ= 6.25, to our annual-frequency data, and keep the trend component.

We do not have data for robot penetration before the year 2004, so we cannot establish exactly

when the robot penetration is sufficiently close to 0. However, the data reported in Acemoglu and

Restrepo (2020) suggests that most sectors had a reasonably low penetration of robots in 2004, with

the exception of automotive. To calibrate θ we choose to take a mean of the HP-filtered series for

the years 1956-1980. We choose 1980 as the final point for the time average as the 1980s saw a sharp

increase in robot adoption in the US automotive industry.

C.5 Calibrating the Other Parameters

We calibrate our model annually choosing a required rate of return of 4%, which pins down the

discount rate of the firm ρ. We then choose the parameters
�

δ, pR/w
	

in order to match targets

from the evidence on robotic arms in years 2010 and 2014, which are the most recent data points on

robots per worker that we can obtain from Acemoglu and Restrepo (2020). Unless otherwise stated,

the source for such figures is the International Federation of Robots. First, we set δ= 1/12, to target

an average service life of 12 years, as reported in International Federation of Robotics (2017). Next,

we set the relative price of robots pR/w in order to match the corresponding ratio in the data in 2010

and 2014. We obtain data on average annual wages for production employees (OES code 51-0000) in

manufacturing from the OES and time series data for unit robot costs from Korus (2019). This gives:

�pR

w

�

2010
= 1.4348,

�pR

w

�

2014
= 1.0209.

We set the elasticity of substitution between sectors at σ = 1, consistent with Oberfield and Raval

(2014). As a result ξs represents the share of each sector in manufacturing value added, and we
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calibrate these parameters using the BEA GDP-by-industry data.

C.5.1 Calibrating Γs ,ψR

We calibrate Γs to match the stock of robots per employees in 2014 across the various industries,

andψR/w to approximately match the percentage fall in the average stock of robots per employees

between 2010 and 2014 weighted by 2014 value added shares, by solving the system of general equi-

librium equations numerically. We implicitly assume that the economy is in steady state both in

2010 and in 2014. While this is obviously a strong assumption, any other choice would require tak-

ing a stance of the time required to transition to a new steady state, which will mechanically imply a

value aψR . Moreover, a transition in general equilibrium with 13 sectors would incur considerable

numerical complications.

Our algorithm to solve for the 13 Γs ’s conditional on a value of ψR/w is given by a nest of two

solvers.29 The internal solver finds equilibrium prices and wages (14 variables) for any given set of

sectoral Γs ’s, and the external solver looks for the Γs ’s (13 variables) that deliver the observed robot

per workers across the IFR sectors, given the equilibrium found by the internal solver. This result in

a high number of function evaluations at each solver step, that entails several thousands of calls to

our basic routines that compute the stationary distributions in each sector. Nesting this procedure

inside yet another solver to look for aψR/w that matches exactly the fall in robot stocks would fur-

ther raise the computational burden. Therefore, we choose to match the fall in robot stocks by using

a closed-form approximation of equilibrium quantities that holds in the partial-automation limit of

our model, as an exact match would be computationally prohibitive. Indeed, we verify that, for a

wide range of chosen ψR/w , the low robot penetration observed in the data can only be matched

by a model featuring almost no fully automated firms. As a result, aggregates can be approximated

well by closed-form expressions. In particular, sectoral robot penetration reads:

�

R

L

�

s
=

R ?
max,s

L s
.

We use this result to obtain guesses for the Γi ’s conditional on each value ofψR/w , by assuming that

the share of labor in each sector is proportional to the share of manufacturing value added. Given

our normalization for L2014 = 1, we obtain the following guesses:

Γ̃s (ψR/w ) =
1

1+ m
w + (ρ+δ)(δ

�

ψR
w

� �

R
L

�

s ,2014
ξs +

�pR
w

�

2014
)
,

which only depends on other calibrated parameters and targets.

29We experimented solving for Γs ’s and prices in a single solver, but our choice presented here proved substantially
more stable numerically, due to the nesting of the equilibrium price solver, that ensures that the Γs ’s are in each step
consistent with equilibrium prices.
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Table 1: Parameters Common to all Sectors

Description Variable Value Source/Target
Relative robot purchase price in 2010

� pR
w

�

2010
1.4348 Korus (2019) and OES

Relative robot purchase price in 2010
� pR

w

�

2014
1.0209 Korus (2019) and OES

Relative flow robot cost
�

m
w

�

0 Negligible energy costs of robots
Robot depreciation δ log(1+1/12) International Federation of Robotics

(2017)
Discount factor ρ log(1+0.04) 4% annual interest rate
Adjustment cost parameter ψR 1278.96 2010-2014 fall in value-added weighted

R/L
Final good productivity AF 1 Final good is the numéraire

Table 2: Targets and Calibrated Parameters

Sector R/L 2010 R/L 2014 ξ θ Γ σP θP

Automotive 88 117 0.065 0.35 0.52 0.13 0.77
Electronics 10 13 0.15 0.28 0.77 0.19 0.72
Food and Beverages 4.9 6.2 0.12 0.21 0.85 0.13 0.47
Wood and Furniture 0.022 0.14 0.028 0.41 0.89 0.13 0.63
Miscellaneous 2.4 14 0.04 0.32 0.85 0.18 0.84
Basic Metals 5.4 7.2 0.031 0.38 0.87 0.12 0.67
Industrial Machinery 1.8 2.4 0.078 0.33 0.88 0.14 0.71
Metal Products 6.2 8.3 0.07 0.35 0.84 0.12 0.91
Clay Glass and Minerals 0.28 0.68 0.024 0.33 0.89 0.13 0.7
Paper and Publishing 0.0085 0.11 0.047 0.28 0.89 0.1 0.62
Plastics, et cetera 8 9.9 0.27 0.18 0.78 0.61 0.89
Apparel and Textiles 0.0081 0.045 0.014 0.43 0.89 0.098 0.54
Shipbuilding and Aerospace 0.15 0.54 0.068 0.32 0.89 0.13 0.77

We verify that these guesses are sufficiently close to numerical solutions obtained solving the

exact model for given ψR/w . Our strategy therefore consists in solving for a ψR/w that matches

the percentage fall in the average robot stock in general equilibrium assuming that the true Γs ’s that

match R/L for each sector in 2014 are given by our guesses Γ̃s ’s. Applying this method only misses

our target percentage fall by 0.63%. The magnitude of the error corresponds to just 0.0236 of the

observed percentage change.

Summing up, our calibration strategy for Γi ’s andψR/w goes through the following steps:

1. Run solver forψR/w :

(a) Guess an initial value forψR/w ;

(b) Compute guesses Γ̃s that match approximately (R/L )s ,2014 givenψR/w ;

(c) Find equilibrium prices and wage that clear markets in 2010 and 2014 setting Γi = Γ̃s and

relative robot prices (pR/W )2010, (pR/W )2014;

(d) Obtain equilibrium (R/L )s ,2010, (R/L )s ,2014, aggregate over sectors and compute the devi-

ation between target and computed percentage increase in the robot stock;

(e) UpdateψR/w and go to step (b) until convergence.
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2. Run solver for Γs ’s givenψR/w found in 1.

(a) Guess an initial value for Γs ’s using the approximate formula;

(b) Find equilibrium prices and wage that clear markets in 2014 given Γs and relative robot

price (pR/W )2014;

(c) Obtain equilibrium (R/L )i ,2014, and compute the deviation from the target;

(d) Update the guess for Γs and go to step (b) until convergence.

Tables 1 and 2 summarize the parameters used for our calibration, together with the respective tar-

gets and sources.
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Appendix D General Equilibrium

This Appendix provides additional details on the general equilibrium model described in Section

4.1. Throughout, time indexes are suppressed.

D.1 Goods Producers

We denote the final good consumed by agents in our economy by Y , that we take as the numéraire.

The final good producer operates a CES production function that aggregates intermediate goods Ys ,

at unit cost ps . Under these assumptions, the static cost-minimization problem of the final good

firm reads:

max
{Ys }

N
∑

s=1

ps Ys

s.t. AF

�

N
∑

s=1

ξs Y
σ−1
σ

s

�
σ
σ−1

= Ȳ .

hereσ denotes the elasticity of substitution between goods from different intermediate sectors, and
∑N

s=1ξs = 1. We then have that the demand for each intermediate good is given by:

Y D
s =

�

ξs P̃

ps

�σ
Y

AF
=
�

ξs

ps

�σ Y

AF

where,

P̃ =

�

N
∑

s=1

p 1−σ
s ξσs

�
1

1−σ

= 1,

is the ideal price index, which equals one due to our choice of numéraire.

The intermediate good supplied by each sector is an aggregate of the net output of the firms

described in the main section:

Y S
s =

∫

{Qs (z , L , R , u )}d Gs (R , z )≡
∫

�

z (Γs L + (1− Γs )uR )θs
	

d Gs (R , z ).

In this context, we interpret the revenue-shifter shock as an idiosyncratic productivity shock faced

by each firm. The solution of the intermediate firms’ problem, as described in section 3, determines

the labor demand coming from each sector s . The firm’s problem also leads to an individual robot

demand. The expenditures faced by the firm to purchase, maintain and adjust the robot stock are

given by:

Ψs ≡
∫

§

mR +pR I ?s (R , z ) +
ψR

2
(I ?i (R , z ))2

ª

dGs (R , z ).
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D.2 Households

The economy is populated by a measure-one mass of hand-to-mouth agents. The representative

household also receives all profits and adjustment costs in the economy.30 Accordingly, the house-

hold’s problem reads,

max
cw ,`

U (cw ,`)

s.t. cw =w `+Π+Ψ,

where Ψ =
∑N

s=1Ψs . Since we are not concerned with wealth effects on the labor supply, we shut

down this channel assuming GHH preferences,

U (cw ,`) =

�

cw −χ
ϕ

1+ϕ`
1+ 1

ϕ

�1− 1
σ −1

1− 1
σ

.

A simple derivation gives the optimal labor supply of the household,

`?(w ) =

�

w

χpy

�ϕ

,

which, as usual for GHH preferences, only depends on the level of the real wage.

D.3 Equilibrium

The model is closed requiring equilibrium in the main markets. Labor market clearing requires,

`?(w ) = L d (w , p),

where labor demand is given by the sum of sectoral labor demands,

L d (w , p) =
N
∑

s=1

∫ ∞

0

L s

�

w , ps , R , z
�

d Gs (R , z ) .

Final goods’ market clearing requires,

Y = cw .

The remaining market clearing conditions are simply given by equating demand and supply for in-

termediate goods,

Y S
s (ps ) = Y S

s (ps ) ∀s = 1, . . . , N .

30We could equivalently have assumed that there is a sector producing all these goods/services which aggregates
intermediaries in the same way as the final good. This equivalent formulation stresses that ultimately robots produced
will generate income for somebody in the economy.
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We define a stationary equilibrium in a N -sector economy as follows. Given a Markovian stochas-

tic process for the productivity shock zt for each sector s that admits a stationary distribution with

CDF Fs (z ), , exogenous productivity parameter AF and robot prices pR , a stationary equilibrium

is given by a set of CDF’s Gs (R , z ) prices
�

w ,
�

ps

		

, allocations {L s , R , I , Ys , Y ,`, cw }, firms’ values

Vs (R , z ), utilization choices u , satisfying

1. Individual optimal labor supply:

`?(w ) =
�

w

χ

�ϕ

;

2. Optimal workers’ consumption:

cw =w `+Π+Ψ;

3. Final goods’ production function:

Y = AF

�

N
∑

i=1

ξs Y
σ−1
σ

s

�
σ
σ−1

;

4. Perfect competition in the final goods’ sector (price of the final good equals unit cost):

1=

�

N
∑

s=1

p 1−σ
s ξσs

�
1

1−σ

;

5. Cost minimization by final goods’ producers:

Y D
s =

�

ξs

ps

�σ Y

AF
∀s = 1, . . . , N ;

6. Static profit optimization by firms for labor:

L ?s (R , z ; w , ps ) = 1

�

u ?s (R , z )R ≤
�

w

ps z Γsθs

�
1

θs −1 1

1− Γs

�

×

×
1

Γs

�

�

w

ps z Γθ

�
1

θs −1

− (1− Γs )u
?
s (R , z )R

�

∀s ;

7. Static profit optimization by firms for utilization (use only if positive labor savings, get as close
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as possible to desired size):

u ?s (R , z ; w , ps ) = 1

(

R ≤
�

ps zθ (1− Γs )θs

m

�
1

1−θs

)

+

+1

(

R >

�

ps zθs (1− Γs )θs

m

�
1

1−θs

)

×

×
1

(1− Γs )R

�

m

(1− Γs )θs ps z

�
1

θs −1

∀s ;

8. Optimal individual investment by firms to solve the firms’ problem given value V (R , z ):

I ?s (R , z ; w , ps ) = arg max
I
Πs (R , z )−pR I −

ψ

2
(I )2+Es

�

d Vs (R , z )
d t

�

∀s ;

9. Value of an individual firm:

ρVs (R , z ) =Πs (R , z )−pR I ?s (R , z )−
ψ

2
(I ?s (R , z ))2+Es

�

d Vs (R , z )
d t

�

∀s ;

10. Law of motion of individual robot stocks:

d Rs =
�

I ?s (R , z )−δRs

�

d t ∀s ;

11. Labor market equilibrium:

N
∑

i=1

�∫

L ?s (R , z ; w , ps )d Gs (R , z )

�

− `?(w ) = 0;

12. Intermediate goods’ market clearing:

∫

¦

z
�

ΓL ?s (R , z ; w , ps ) + (1− Γ )u ?s (R , z )R
�θ
©

d Gs (R , z )−Y D
s (ps ) = 0 ∀i ;

13. Final goods’ market clearing:

Y = cw ;

14. Kolmogorov Forward Equation for the stationary CDF of firms:

d Gs (R , z )
d t

= 0 ∀s .
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Appendix E Linear Costs Solution Algorithm

In this appendix, we describe the solution algorithm adopted to solve the model in Section 5.2. We

follow a scheme similar to Achdou et al. (2017), making the adjustments that are required by the

problem at hand.

Consider a discretization of the state space on a increasing grid for R , z with NR and Nz points

respectively. First, recall that the policy is to adjust immediately if outside of the inaction region,

bringing the state variable all the way to the boundary, and to be inactive otherwise. This means

that a conventional PDE defines the value function within the inaction region, while the value func-

tion outside of the inaction region is a simple linear function of the value function evaluated at the

boundary. We seek the following matrix representation of the optimized HJB equation,

ρv= u+Av.

Where v is a vector of length Nz ×NR , and A is a (sparse) matrix that we describe below. Consider

first a case with just one value of z . Given an initial guess for the value function V 0(R ), we iterate on

the following steps until convergence.

Step 1. Find cutoffs Rinv and Rdisinv. We compute the forward and backward differences to ap-

proximate the derivative of the value function, d V F , d V B . By the concavity of the value function,

we know that these two objects are decreasing in R . Therefore, we divide the state space by finding

the first occurrence (starting from R0, the smallest value on the grid) of an index i such that,

d V F (Ri )< pR +ψ+.

This value for Ri gives us the first value of robots strictly inside the inaction region. Therefore we set

R ?
inv ≡ Ri−1. We proceed analogously to find the cutoff R ?

disinv ≡ R j , where j is defined as the index

such that,

d V B
�

R j

�

< pR −ψ−.

Note that the above procedure imposes that the two cutoffs lie on the grid and that the inaction

region contains at least one point. While this reduces the accuracy of the solution, the error in the

computation of the cutoffs vanishes as the size of the grid for R increases. Moreover, this greatly

improves the numerical stability of the algorithm. Given these cutoffs, we can define the inaction

region consistently with the main text as: {Rinv, . . . , Rdisinv}. Investment will then be positive for all

indexes i such that Ri < Rinv and negative for all indexes j such that R j > Rdisinv. Inside the inaction

region, the robot stock will depreciate at rate δ. Now we note that the optimal solution for invest-

ment entails,

VR (Ri ) = pR +ψ+ ∀i |Ri <Rinv,
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and,

VR (R j ) = pR −ψ− ∀ j |R j >Rdisinv.

Integrating, we immediately get,

V (Ri ) =V (Rinv)−
�

ψ++pR

�

(Rinv−Ri ) , ∀i |Ri <Rinv,

and,

V
�

R j

�

=V (Rdisinv)−
�

−ψ−+pR

� �

Rdisinv−R j

�

, ∀ j |R j >Rdisinv.

Step 2. By the above results, we can rewrite the above matrix representation as follows, denoting
by iinv the index such that Rinv =Riinv

, and similarly for idisinv:













































V (R0)

V (R1)
...

V
�

Riinv−1

�

ρV
�

Riinv

�

...

ρV
�

Ridisinv

�

V
�

Ridisinv+1

�

...

V (Rend)
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−
�

ψ++pR

� �

Riinv
−R0

�

−
�

ψ++pR

� �

Riinv
−R1

�

...

−
�

ψ++pR

� �

Riinv
−Riinv−1

�

Π
�

Riinv

�

...

Π
�

Ridisinv

�

−
�

ψ−−pR

� �

Ridisinv+1−Ridisinv

�

...

−
�

ψ−−pR

� �

Rend−Ridisinv
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0 0 · · · 0 1 0 · · · · · · · · · 0
...

... · · ·
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... · · · · · · · · ·
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... · · ·
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... · · · · · · · · ·
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0 0 · · · 0 1 0 · · · · · · · · · 0

0 0 . . . δRiinv
−δRiinv

0 · · · · · · · · · 0

0 0 · · · 0
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...

...
...

...

0 0 . . .
... · · · δRidisinv

−δRidisinv
0 · · · 0
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...

...
...

...
...

...
...

...
...

...
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V (R0)

V (R1)
...

V
�

Riinv−1

�

V
�

Riinv

�

...

V
�

Ridisinv

�

V
�

Ridisinv+1

�

...

V (Rend)













































We can then update the value function using either an iterative or implicit scheme as described in

the appendix to Achdou et al. (2017).

Extending the problem to multiple price levels is trivial. The only difference is that the indexes

denoting the inaction region will vary for each z . Moreover, the matrix described above becomes

only one of the diagonal blocks in a bigger sparse matrix. Differently from the standard case, out-

flows from each block into other blocks are only allowed for states inside the inaction region within

each block. Indeed, outside of these blocks, the linearity of the value function is ensured as de-
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scribed above, and there is no jump over z to be included in the matrix A, as control is instanta-

neous.

In order to compute the stationary distribution, we proceed as in Achdou et al. (2017), by using

the adjoint of the matrix A, AT , to iterate on an initial guess. The only difference is that now we have

to ensure that any firm starting outside the inaction region will eventually abandon it. To do so,

we just add −1 to the diagonal of all indexes outside the inaction region, ensuring that the rows of

A sum to zero and that therefore AT is indeed an infinitesimal generator. The resulting matrix will

therefore eventually push all the mass outside the inaction region to relevant cutoffs.
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