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Abstract

The mean density of a random closed set with integer Hausdorff dimension is a crucial
notion in stochastic geometry, in fact it is a fundamental tool in a large variety of applied
problems, such as image analysis, medicine, computer vision, etc. Hence the estimation of the
mean density is a problem of interest both from a theoretical and computational standpoint.
Nowadays different kinds of estimators are available in the literature, in particular here we
focus on a kernel–type estimator, which may be considered as a generalization of the traditional
kernel density estimator of random variables to the case of random closed sets. The aim of
the present paper is to provide asymptotic properties of such an estimator in the context of
Boolean models, which are a broad class of random closed sets. More precisely we are able to
prove large and moderate deviation principles, which allow us to derive the strong consistency
of the estimator of the mean density as well as asymptotic confidence intervals. Finally we
underline the connection of our theoretical findings with classical literature concerning density
estimation of random variables.
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1 Introduction

The mean density of lower dimensional random closed sets, such as fiber processes and surfaces

of full dimensional random sets, is an important quantity which arises in different scientific fields.

As a consequence its evaluation and estimation have undergone a growing interest during the last

decades [6, 19]. Recent areas of applications include pattern recognition and image analysis [40, 28],

computer vision [42], medicine [1, 8, 15, 16, 17], material science [14]. We remind that, given a

probability space (Ω,F ,P), a random closed set Θ in Rd is a measurable map

Θ : (Ω,F ) −→ (F, σF),

where F denotes the class of the closed subsets in Rd, and σF is the σ-algebra generated by the so

called Fell topology, or hit-or-miss topology, that is the topology generated by the set system

{FG : G ∈ G } ∪ {FC : C ∈ C }
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where G and C are the system of the open and compact subsets of Rd, respectively (e.g., see [36]).

We say that a random closed set Θ : (Ω,F ) → (F, σF) satisfies a certain property (e.g., Θ has

Hausdorff dimension n) if Θ satisfies that property P-a.s.; throughout the paper we shall deal with

countably H n-rectifiable random closed sets, having denoted by H n the n-dimensional Hausdorff

measure.

A random closed set Θn of locally finite n-dimensional Hausdorff measure H n induces a random

measure µΘn(A) := H n(Θn∩A), A ∈ BRd , and the corresponding expected measure is defined as

E[µΘn ](A) := E[H n(Θn ∩A)], A ∈ BRd , (1)

where BRd is the Borel σ-algebra of Rd. (The important issue of the measurability of the ran-

dom variable µΘn(A) has been addressed in [5, 45].) Whenever the measure E[µΘn ] is absolutely

continuous with respect to the d-dimensional Hausdorff measure H d, its density (i.e. its Radon-

Nikodym derivative) with respect to H d is called mean density of Θn, and, according to notation

in previous works (e.g., see [18, 20]), denoted by λΘn .

It is worth mentioning that, while the estimation of the mean density in stationary settings has

been widely studied in the literature (see, e.g., [6, 23]), only recently the non-stationary case has

been addressed, and, to the best of our knowledge, a general density estimation theory for random

sets is still missing. The aim of the present paper is the investigation of this area. As a matter

of fact, the problem of the local and global approximation of λΘn for non stationary random sets

has been tackled by the authors in [2, 18, 19, 20, 44]. More specifically, given an i.i.d. random

sample Θ
(1)
n , . . . ,Θ

(N)
n of size N for the random closed set Θn, the authors have provided two

different kinds of estimators for the mean density of Θn: the so-called “Minkowski content”–based

estimator, introduced in [43] through the notion of the Minkowski content of a set (see, e.g., [3]),

and the so-called kernel-type estimator, introduced in [10] and denoted here λ̂κ,NΘn
(for its precise

definition see Eq. (6) bellow). We refer to [10] for a discussion on similarities and differences

among them; we mention here that, even if the evaluation of λ̂κ,NΘn
(x) is a non–trivial issue for very

general random sets, it has been shown in [11] that it approaches the true value of λΘn(x) much

faster than the “Minkowski content”–based estimator.

We point out that the importance of the estimator λ̂κ,NΘn
(x) arises in the general theory of random

sets, because it may be regarded as a generalization of the classical kernel density estimator of

random variables to the case of random sets (see also Section 6); this is the reason why we shall

refer to λ̂κ,NΘn
(x) as “kernel-type” estimator (or briefly kernel density estimator), and why its inves-

tigation plays a pivotal role in the whole theory of random sets, providing a unifying approach to

density estimation. While the asymptotic properties of the “Minkowski content”–based estimator,

as well as asymptotic confidence intervals and central limit theorems, have been studied in [13], no

analogous results are still available for the kernel–type estimator of the mean density. Hence the

main aim of the present paper is the investigation of large and moderate deviation principles of

λ̂κ,NΘn
(x) for a large class of random closed sets, known as Boolean models, leaving to subsequent

works extensions to more general classes. The analysis we will carry out is much in the spirit of

[31, 35], who proved similar results for kernel estimators of random variables. Even if Boolean

models do not cover all the variety of random sets, as stated in [4], they are usually considered

basic random sets models in stochastic geometry; so this paper may be seen as the first step in

extending already known results for large and moderate deviation principles for kernel densities

estimators of random variables, and related results, to kernel-type estimators of the mean densities

of random sets. These results are interesting in their own right, in addition they provide tools to

derive asymptotic normality and strong consistency of kernel-type estimators, which are useful to
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determine asymptotic confidence intervals, as well.

The paper is organized as follows. In Section 2, we depict the general framework of Boolean

models that we want to handle in this paper; besides we briefly recall all the results on stochastic

geometry and large deviation theory that are necessary to the aim of the present paper. Large

and moderate deviation principles for the kernel–type estimator of the mean density are presented

in Section 3, namely in Theorem 2 and Theorem 3, respectively. These theorems are the basic

building blocks to derive statistical properties of such an estimator. Indeed we are able to prove its

strong consistency and to derive asymptotic confidence intervals (see Section 4). Some noteworthy

examples of Boolean models are discussed as well in Section 5. Finally Section 6 contains a

discussion on relevant connections with the literature and paves the way for future developments

of the present work. For the reader’s convenience, the proofs of the main theorems, and some

related technical lemmas, are deferred to Appendix A.

2 Preliminaries and notations

This section gathers some basics on stochastic geometry and large deviations, which are necessary

to understand our main results. Clearly the treatment is not exhaustive here, thus throughout the

paper we provide some interesting references for those readers who want to deepen the results we

just recall.

2.1 Point processes, intensity measure and Boolean models

Roughly speaking a point process, denoted here by Φ̃, is a locally finite collection {ξi}i∈N of

random points; more formally Φ̃ is a random counting measure, that is a measurable map from a

probability space (Ω,F ,P) into the space of locally finite counting measures on Rd. Throughout

the paper we will deal with simple point processes, that is Φ̃({x}) ≤ 1 ∀x ∈ Rd, P-a.s.

The measure Λ̃(A) := E[Φ̃(A)] on BRd is called intensity measure of Φ̃; whenever it is absolutely

continuous with respect to H d, its density is called intensity of Φ̃.

Marked point processes may be regarded as a generalization of point processes. They are collections

of random points ξi in Rd, each one associated with a mark Ki, which usually belongs to a

complete and separable metric space (c.s.m.s.) K. Hence the resulting collection of random points

Φ = {(ξi,Ki)}i∈N is a point process on Rd × K, with the property that the unmarked process

{Φ̃(B) : B ∈ BRd} := {Φ(B ×K) : B ∈ BRd} is a point process in Rd. K is called mark space,

while the random element Ki of K is the mark associated to the point ξi. Φ is said to be stationary

if the distribution of {ξi + x,Ki}i is independent of x ∈ Rd. The intensity measure of Φ, say Λ,

is a σ-finite measure on BRd×K defined as Λ(B × L) := E[Φ(B × L)]. A common assumption

(e.g., see [33]) is that there exists a measurable function f : Rd × K → R+ and a probability

measure Q on K such that Λ(d(x,K)) = f(x,K)dxQ(dK). We also recall that point processes

can be considered on quite general metric spaces. In particular, a point process in C d, the class of

compact subsets of Rd, is called particle process (see [4] and references therein). It is well known

that, by a center map, a particle process can be transformed into a marked point process Φ on Rd

with marks in C d, by representing any compact set C as a pair (x, Z), where x may be interpreted

as the “location” of C and Z := C−x the “shape” (or “form”) of C. In this case the marked point

process Φ = {(Xi, Zi)} is also called germ-grain model. Every random closed set Θ in Rd can be

represented as a germ-grain model by means of a suitable marked point process Φ = {Xi, Zi}. In

a large variety of applications the random sets Zi are uniquely determined by a suitable random

3



parameter S ∈ K. Typical examples include: union of random balls, where K = R+ and S is the

radius of a ball centered at the origin; segment processes in R2 in which K = R+ × [0, 2π] and

S = (L,α) where L and α are the random length and orientation of the segment attached to the

origin, respectively.

In order to be consistent with the notation used in previous works (e.g., [44, 10]), we shall

consider random sets Θn described by marked point processes Φ in Rd with marks in a suitable

mark space K so that Z = Z(S) is a random set containing the origin:

Θn(ω) =
⋃

(ξ,s)∈Φ(ω)

ξ + Z(s), ω ∈ Ω. (2)

Whenever Φ is a marked Poisson point process, Θn is said to be a Boolean model. Since we are

going to consider here Boolean models, we also recall that a marked Poisson point process in Rd

with marks in K may be seen as a Poisson point process on Rd ×K with intensity measure Λ if

Λ(· ×K) is continuous and locally bounded.

For an exhaustive treatment of point processes we refer to [24, 25], and to [34] for an elegant

presentation of Poisson processes. Further, we mention [36, 37, 38, 39] for a unified theory on

germ-grain models.

2.2 Basics on large and moderate deviations

The theory of large deviations is concerned with the asymptotic estimation of probabilities of rare

events, by giving an asymptotic computation of small probabilities in exponential scale. Assume

that (X,X ) is a Polish space equipped with its Borel σ–algebra. The large deviation principle

characterizes the asymptotic behavior of a family of probability measures {µN}N≥1 on (X,X ) as

N goes to infinity in terms of a rate function. A rate function is a map J∗ : X → [0,+∞) lower

semicontinuous, i.e. the level sets {x : J∗(x) ≤ α} are closed for every α ≥ 0; J∗ is said to be

a good rate function if the level sets are compact. The set {x : J∗(x) < +∞} amounts to be the

domain of J∗. Let vN be a velocity, namely a function such that vN → +∞ as N →∞.

A family of probability measure {µN}N≥1 is said to satisfy a Large Deviation Principle (LDP)

with rate function J∗ and velocity vN if and only if for any A ∈X

− inf
x∈

◦
A

J∗(x) ≤ lim inf
N→+∞

1

vN
log(µN (A)) ≤ lim sup

N→+∞

1

vN
log(µN (A)) ≤ − inf

x∈A
J∗(x), (3)

where
◦
A and A are the interior and the closure af A, respectively, and with the convention that

the infimum over the empty set equals +∞. We say that a sequence of random variables satisfies

the LDP when the sequence of measures induced by these variables satisfies the LDP.

The Gärtner-Ellis Theorem [26, Theorem 2.3.6] is the main tool to prove large deviations results.

For our purposes, we consider the case X = Rm, with m ≥ 1, and X = BRm . In what follows

a · b :=
∑m
j=1 ajbj denotes the scalar product between two generic vectors a = (a1, . . . , am) and

b = (b1, . . . , bm) of Rm. We also remind that a convex function f : Rm → (−∞,∞] is said to be

essentially smooth (see e.g. Definition 2.3.5 in [26]) if the interior
◦
Df of Df := {γ ∈ Rm : f(γ) <

∞} is non-empty, f is differentiable throughout
◦
Df , and f is steep, i.e. limh→∞ ‖∇ f(γh)‖ = ∞

whenever {γh : h ≥ 1} is a sequence in
◦
Df converging to some boundary point of

◦
Df .
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Theorem 1 (Gärtner-Ellis Theorem). Let {ZN}N≥1 be a sequence of Rm–valued random variables

and define the function J : Rm → [−∞,+∞] by

J(γ) := lim
N→+∞

1

vN
logE[evNγ·ZN ],

whenever the limit exists. Assume that the origin 0 = (0, . . . , 0) ∈ Rm belongs to the interior

DJ := {γ ∈ Rm : J(γ) < ∞}. Then, if J is essentially smooth and lower semi-continuous, then

{ZN : N ≥ 1} satisfies the LDP with speed vN and good rate function J∗ defined by J∗(y) :=

supγ∈Rm{γ · y − J(γ)}.

Formally a Moderate Deviation Principle (MDP) is nothing else but a LDP. We speak of

moderate deviation when, for a suitable class of sequences of positive numbers {aN} such that

lim
N→∞

aN = 0 and lim
N→∞

wNaN =∞, (4)

where wN → ∞ as N → ∞, a LDP holds for suitable centered random variables with speed

vN = 1/aN and the same quadratic rate which does not depend on the choice of {aN}. Moderate

deviations may be employed to obtain the weak convergence to a centered Normal distribution

whose variance is determined by a suitable application of the Gärtner-Ellis Theorem (e.g., see also

[9]). This will be clarified in Section 4 where we shall apply LDP and MDP to show that, for every

x ∈ Rd, the kernel estimator λ̂κ,NΘn
(x) of λΘn(x) is strongly consistent and asymptotically Normal,

respectively.

2.3 Notations and assumptions

To fix the notation, bn denotes the volume of the unit ball in Rn, and Br(x) is the closed ball

centered at x ∈ Rd with radius r > 0. For any A ⊂ Rd and r > 0, its Minkowski enlargement

at size r > 0 is denoted by A⊕r :=
{
x ∈ Rd : dist(x,A) ≤ r

}
, where dist(x,A) stands for the

euclidean distance of the point x to the set A. The diameter of A will be denoted by diam(A). It

is worth to recall that a compact set A ∈ BRd is said to be countably H n-rectifiable if there exist

countably many n-dimensional Lipschitz graphs Γi ⊂ Rd such that A \ ∪iΓi is H n-negligible. For

further definitions and properties on rectifiable sets refer to [3, 29, 30].

In the sequel, we will say that Θn satisfies a certain property if such a property is satisfied for P-

almost every ω ∈ Ω; in particular Θn will be a Boolean model driven by a Poisson point process Φ in

Rd ×K with intensity measure Λ(d(x, s)) = f(x, s)dxQ(ds), satisfying the following assumptions:

(A1) for any s ∈ K, Z(s) is a countably H n-rectifiable and compact subset of Rd, such that there

exists a closed set Ξ(s) ⊇ Z(s) such that
∫
K

H n(Ξ(s))Q(ds) <∞ and

γrn ≤H n(Ξ(s) ∩Br(x)) ≤ γ̃rn ∀x ∈ Z(s), r ∈ (0, 1)

for some γ, γ̃ > 0 independent of s;

(A2) for any s ∈ K, H n(disc(f(·, s))) = 0, where disc(f(·, s)) contains the discontinuity points of

f(·, s), and f(·, s) is locally bounded such that for any compact K ⊂ Rd

sup
x∈K⊕diam(Z(s))

f(x, s) ≤ ξ̃K(s)

for some ξ̃K(s) with
∫
K

H n(Ξ(s))ξ̃K(s)Q(ds) <∞.
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These assumptions may seem to be a little bit technical at a first glance, but they are natural

hypotheses fulfilled by a wide class of germ-grain models, and their meaning has been extensively

discussed in [10, 44]; indeed, for the reader’s convenience, we use here the same notation (A1)

and (A2) introduced in [10] and in [44], respectively. We also recall that the assumption (A1)

guarantees (see Remark 4 and Proposition 5 in [44]) that the measure E[µΘn ] defined in (1) is

locally bounded and absolutely continuous with density

λΘn(x) =

∫
K

∫
x−Z(s)

f(y, s)H n(dy)Q(ds). (5)

In order to define the kernel density estimator of the mean density, we remind that a multivariate

kernel is a probability density function κ : Rd → R which is radially symmetric.

Summing up, throughout the paper, unless otherwise specified, we suppose the validity of:

Assumptions.

• Θn is a Boolean model with integer Hausdorff dimension n < d as in (2), satisfying (A1) and

(A2).

•
{

Θ
(i)
n

}
i∈N

is a sequence of i.i.d. random closed sets as Θn.

• κ is a continuous kernel with compact support supp(κ) ⊂ BR(0), and such that κ(x) ≤ M ,

for all x ∈ Rd and for some M > 0.

The kernel-type estimator λ̂κ,NΘn
(x) of the mean density λΘn(x) at a point x ∈ Rd is defined as

follows [10]:

λ̂κ,NΘn
(x) :=

1

N

N∑
i=1

κrN ∗H n
|
Θ

(i)
n

(x) =
1

NrdN

N∑
i=1

∫
Θ

(i)
n

κ
(x− y
rN

)
H n(dy), (6)

where ∗ stands for the usual convolution product, while κrN := κ(x/rN )/rdN is the scaled kernel.

It can be shown (see [10, Corollary 7]) that if the bandwidth rN is such that

lim
N→∞

rN = 0 and lim
N→∞

Nrd−nN = +∞,

then λ̂κ,NΘn
(x) is weakly consistent and asymptotically unbiased for H d–a.e. x ∈ Rd.

The notion of approximate tangent space shall appear in the expression for the rate function

both in the LDP and in the MDP stated in Theorem 2 and Theorem 3, respectively. Such a notion

is borrowed from geometric measure theory and it is recalled below, for the reader’s convenience.

Denoted by Gn the set of unoriented n-dimensional subspaces of Rd, and by Cc(R
d;R) the space

of all the real valued continuous functions with compact support in Rd, we remind that a H n-

rectifiable compact set A ⊂ Rd admits approximate tangent space πxA ∈ Gn at x ∈ A if

lim
r→0

∫
(A−x)/r

φ(y)H n(dy) =

∫
πxA

φ(y)H n(dy) ∀φ ∈ Cc(Rd;R). (7)

By Theorem 2.83 and Proposition 1.62 in [3], πxA exists for H n-a.e. x ∈ A; moreover, (7)

holds for any bounded Borel measurable function φ : Rd → R with compact support such that

H n
|πxA(disc(φ)) = 0. For the sake of simplicity, we have assumed that κ is continuous: this allows

us to directly apply Eq. (7) in the sequel. We refer to [10, Remark 9] for a more detailed discussion

on the non-continuous case.
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3 Large and moderate deviations for the kernel-type esti-
mator

In this section we state large and moderate deviation principles for the kernel density estimator

defined in (6), by deferring their proof to the Appendix. Such results will be useful to derive

statistical properties and and confidence intervals for the involved estimator, as we will see in

Section 4.

Theorem 2 (LDP). Let Θn and κ be as in the Assumptions. Then the sequence of kernel estima-

tors
{
λ̂κ,NΘn

(x)
}
N≥1

satisfies a LDP with speed vN = Nrd−nN and good rate function

J∗x(y) = sup
t∈R

{
ty −

∫
K

∫
x−Z(s)

∫
Rd
κ(w)f(y, s)

×
exp

{
t
∫
πy(x−Z(s))

κ(θ + w)H n(dθ)
}
− 1∫

πy(x−Z(s))
κ(θ + w)H n(dθ)

dwH n(dy)Q(ds)
}
,

(8)

where πy(x− Z(s)) ∈ Gn is the approximate tangent space to x− Z(s) at y ∈ x− Z(s).

Theorem 3 (MDP). Let Θn and κ be as in the Assumptions, and let {bN}N≥1 be a sequence of

positive real numbers such that

lim
N→+∞

bN√
Nrd−nN

= +∞ and lim
N→+∞

bN

Nrd−nN

= 0. (9)

Then the sequence of estimators
{
Nrd−nN /bN (λ̂κ,NΘn

(x) − E[λ̂κ,NΘn
(x)])

}
N≥1

satisfies a LDP with

speed function vN := b2N/Nr
d−n
N and good rate function

J∗x(y) :=
y2

2CV ar(x)
,

where CV ar(x) is the quantity so defined

CV ar(x) :=

∫
K

∫
Rd

∫
x−Z(s)

∫
πy(x−Z(s))

κ(z)κ(z + w)f(y, s)H n(dw)H n(dy)dzQ(ds). (10)

4 Statistical properties and confidence intervals

In the previous section we stated large and moderate deviation principles for the kernel estimator

of the mean densities of random closed sets; these results allow to derive useful statistical properties

for such an estimator. Indeed, proceeding along the same lines of [12, Remark 2], we can show how

an estimate of the rate of convergence of λ̂κ,NΘn
(x) to λΘn(x) follows as a byproduct of Theorem

2 and that an immediate application of the Borel-Cantelli Lemma leads to a strong consistency

result:

Proposition 4 (Convergence rate). Let Θn and κ be as in the Assumptions, and let Cδ := {y ∈
R : |y − λΘn(x)| ≥ δ}, with δ > 0. Denoted by Γ∗δ := infy∈Cδ J

∗
x(y), where J∗x(y) has been defined

in Theorem 2, we have that for any 0 < η < Γ∗δ there exists N0 such that

P
(∣∣∣λ̂κ,NΘn

(x)− λΘn(x)
∣∣∣ ≥ δ) ≤ exp

(
−Nrd−nN (Γ∗δ − η)

)
∀N ≥ N0.
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Proof. It is known that when we can apply the Gärtner-Ellis Theorem (see Theorem (1)), the rate

function J∗(y) uniquely vanishes at y = y0, where y0 := ∇J(0). Denoted for any δ > 0

Cδ := {y ∈ Rm : ‖y − y0‖ ≥ δ},

we have that infy∈Cδ J
∗(y) > 0, since J∗ is non-negative and uniquely vanishes at y0. Therefore,

as a consequence of the large deviation upper bound in (3) for the closed set Cδ, we have

lim sup
N→∞

1

vN
log
(
P(ZN ∈ Cδ)

)
≤ − inf

y∈Cδ
J∗(y). (11)

By virtue of Theorem 2, the previous bound holds true for ZN = λ̂κ,NΘn
(x), and vn = Nrd−nN .

Besides, using equations (5) and (29), it can be easily seen that in our setup y0 := J ′x(0) = λΘn(x).

Hence, in view of these remarks and (11), one concludes that for all η such that 0 < η < Γ∗δ , there

exists N0 such that

P
(
|λ̂κ,NΘn

(x)− λΘn(x)| ≥ δ) ≤ exp
(
−Nrd−nN (Γ∗δ − η)

)
for all N ≥ N0.

Corollary 5 (Strong consistency). Let Θn and κ be as in the Assumptions, with rN → 0 such

that Nrd−nN /Nα → C for some C,α > 0 as N →∞.

Then the kernel estimator λ̂κ,NΘn
(x) of λΘn(x) is strongly consistent for every x ∈ Rd, i.e.

λ̂κ,NΘn
(x)

a.s.→ λΘn(x), as N →∞.

Proof. Let H := (Γ∗δ−η), with Γ∗δ defined as in Proposition 4 and η ∈ (0,Γ∗δ). Then H is a positive

quantity independent of N , and observe that
∑
N≥1 exp

(
−Nrd−nN H

)
< ∞, since Nrd−nN ∼ Nα

for some α > 0. Thus the result follows by Proposition 4 and a standard application of the

Borel–Cantelli lemma.

At the end of Section 2.2, we mentioned that the term moderate deviation is used when for

a sequence {aN} of positive numbers satisfying the conditions in (4), a LDP holds for suitable

centered random variables with speed vN = 1/aN . If we choose wN = Nrd−nN , we may observe

that by Theorem 3 we are in the case aN = Nrd−nN /b2N , with bN satisfying the conditions in (9).

Moreover we also mention that the case aN = 1/wN (so here bN = Nrd−nN ) and aN = 1 (so

here bN =
√
Nrd−nN ) should correspond to the convergence to zero and to the weak convergence

to a centered normal distribution, respectively, of the associated centered random variables (here{
λ̂κ,NΘn

(x)− E[λ̂κ,NΘn
(x)]

}
N≥1

and

{√
Nrd−nN (λ̂κ,NΘn

(x)− E[λ̂κ,NΘn
(x)])

}
N≥1

, respectively). This is in

accordance with the corollary above and with the proposition below.

Proposition 6 (Asymptotic Normality). Let Θn and κ be as in the Assumptions. Then the

sequence

{√
Nrd−nN (λ̂κ,NΘn

(x)− E[λ̂κ,NΘn
(x)])

}
N≥1

converges weakly, as N → +∞, to the normal

distribution N(0, CV ar(x)), where CV ar(x) is the quantity defined in (10).
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Proof. One can proceed as in the proof of Theorem 3 with bN =
√
Nrd−nN , noticing that the proof

is still valid, even if the first condition in (9) is violated. As a consequence one is able to show that

lim
N→+∞

E
[

exp
{
t

√
Nrd−nN (λ̂κ,NΘn

(x)− E[λ̂κ,NΘn
(x)])

}]
= et

2CV ar(x)/2

which is tantamount to saying that
{√

Nrd−nN (λ̂κ,NΘn
(x) − E[λ̂κ,NΘn

(x)])
}
N≥1

converges weakly to

the normal distribution N(0, CV ar(x)), as N → +∞.

We conclude the investigation of the statistical properties related to λ̂κ,NΘn
(x) providing asymp-

totic confidence intervals for λΘn(x), relying on Proposition 6. In order to do this we have to

choose a specific bandwidth rN , which is assumed to be the optimal bandwidth determined in [10].

Here we recall some useful results in this direction.

We remind that the best choice for rN should be the one which minimizes the mean square error

(MSE), given by

MSE(λ̂κ,NΘn
(x)) := E[(λ̂κ,NΘn

(x)− λΘn(x))2] = Bias(λ̂κ,NΘn
(x)) + V ar(λ̂κ,NΘn

(x)).

The minimization of the MSE is a quite challenging problem, which cannot be solved even in the

simplest case of kernel density estimators of random variables. Hence one should look for an rN
which minimizes the asymptotic mean square error (AMSE). For Θn and κ as in the Assumptions,

the following asymptotic approximation of the variance may be deduced by the proof of Theorem

8 in [10]:

V ar(λ̂κ,NΘn
(x)) =

CV ar(x)

Nrd−nN

+ o
( 1

Nrd−nN

)
, for H d–a.e. x ∈ Rd, (12)

where CV ar(x) is the quantity defined in (10). For what concernes the asymptotic approximation

of the bias, further differentiability assumptions on f are required. To fix the notation (the same

used in [10] for the reader’s convenience), in the sequel α := (α1, ..., αd) will denote a multi-index

of Nd0; we will further define

|α| := α1 + · · ·+ αd
α! := α1! · · ·αd!
yα := yα1

1 · · · y
αd
d

Dα
y f(y, s) :=

∂|α|f(y, s)

∂yα1
1 · · · ∂y

αd
d

;

besides, for all s ∈ K, we will put

D (α)(s) := disc(Dα
y f(y, s)), D(s) := disc(f(·, s)).

For now on we assume that f(·, s) is at least twice differentiable, and that the following assumption

is fulfilled for any |α| = 2:

(A2bis) for any s ∈ K, H n(D (α)(s)) = 0 and Dα
y f(y, s) is locally bounded such that for any compact

C ⊂ Rd
sup

y∈C⊕diamZ(s)

|Dα
y f(y, s)| ≤ ξ̃(α)

C (s)

for some ξ̃
(α)
C (s) with ∫

K

H n(Ξ(s))ξ̃
(α)
C (s)Q(ds) <∞.

9



Then the following asymptotic approximation of the bias has been proved in [10, Theorem 8]:

Bias(λ̂κ,NΘn
(x)) = CBias(x)r2

N + o(r2
N ), for H d-a.e. x ∈ Rd, (13)

where

CBias(x) :=
∑
|α|=2

1

α!

∫
Rd
κ(z)zαdz

∫
K

∫
x−Z(s)

Dα
y f(y, s)H n(dy)Q(ds).

From (12) and (13) one gets the following asymptotic expansion of the MSE for H d–a.e. x ∈ Rd

AMSE(λ̂κ,NΘn
(x)) = C2

Bias(x)r4
N +

1

Nrd−nN

CV ar(x),

from which, for N sufficiently large, the optimal bandwidth ro,AMSE
N (x) amounts to be (see [10,

Eq. (17)])

ro,AMSE
N (x) := arg min

rN

AMSE(λ̂κ,NΘn
(x)) = 4+d−n

√
(d− n)CV ar(x)

4NC2
Bias(x)

, (14)

H d–a.e.x ∈ Rd, provided that CBias(x) 6= 0. (For a discussion on the case CBias(x) = 0 we refer

to [10].)

Proposition 7. Let Θn and κ be as in the Assumptions, and such that (A2bis) is fulfilled. If rN
is the asymptotic optimal bandwidth ro,AMSE

N in (14), then√
Nrd−nN

CV ar(x)
(λ̂κ,NΘn

(x)− λΘn(x))
d−→ Z as N →∞,

where Z ∼ N(
√

(d− n)/2, 1), for H d–a.e. x ∈ Rd.

Proof. First of all note that√
Nrd−nN

CV ar(x)
(λ̂κ,NΘn

(x)− λΘn(x)) =

√
Nrd−nN

CV ar(x)
(λ̂κ,NΘn

(x)− E[λ̂κ,NΘn
(x)])

+

√
Nrd−nN

CV ar(x)
(E[λ̂κ,NΘn

(x)]− λΘn(x))

(15)

and the first term in (15) converges weakly to the standard normal distribution as N → +∞, by

Proposition 6. Let us notice now that the non–random term√
Nrd−nN

CV ar(x)
(E[λ̂κ,NΘn

(x)]− λΘn(x)) =

√
Nrd−nN

CV ar(x)
Bias(λ̂κ,NΘn

(x))

(13)
=

CBias(x)√
CV ar(x)

√
Nrd−n+4

N + o
(√

Nrd−n+4
N

)
(14)
=

√
d− n
2

+ o(1),

as N → +∞, for H d–a.e. x ∈ Rd, if rN = ro,AMSE
N , and so the assertion.

Corollary 8 (Asymptotic confidence interval). Under the assumptions of Proposition 7, if rN ≡
ro,AMSE
N , then an asymptotic confidence interval for λΘn(x) of level α is[

λ̂κ,NΘn
(x)−

√
CV ar(x)

Nrd−nN

(
Jα +

√
d− n
2

)
, λ̂κ,NΘn

(x) +

√
CV ar(x)

Nrd−nN

(
Jα −

√
d− n
2

)]
for H d–a.e. x ∈ Rd, where Jα is such that P(−Jα ≤ Z ≤ Jα) = 1− α with Z ∼ N(0, 1).
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Proof. Thanks to Proposition 7 we can state that√
Nrd−nN

CV ar(x)
(λ̂κ,NΘn

(x)− λΘn(x))−
√
d− n
2

∼ AN(0, 1),

hence

1− α ' P
(
− Jα ≤

√
Nrd−nN

CV ar(x)
(λ̂κ,NΘn

(x)− λΘn(x))−
√
d− n
2

≤ Jα
)

= P
(
λ̂κ,NΘn

(x)−

√
CV ar(x)

Nrd−nN

(
Jα +

√
d− n
2

)
≤ λΘn(x) ≤ λ̂κ,NΘn

(x) +

√
CV ar(x)

Nrd−nN

(
Jα−

√
d− n
2

))
.

The asymptotic confidence intervals we have derived in the present section are based on the

assumption CBias(x) 6= 0, this does not happen for stationary Boolean models. However in such

a situation the kernel–estimator is unbiased (see [10]) and Proposition 6 gives immediately the

following:

Proposition 9 (Stationary case). Let Θn and κ be as in the Assumptions; furthermore suppose that

Θn is a stationary Boolean model with constant mean density λΘn = fEQ[H n(Z)], where f is the

intensity of the underlying Poisson point process. Then the sequence

{√
Nrd−nN (λ̂κ,NΘn

− λΘn)

}
N≥1

converges weakly, as N → +∞, to the normal distribution N(0, CV ar), being

CV ar := f

∫
K

∫
Rd

∫
{−Z(s)}

∫
πy(−Z(s))

κ(z)κ(z + w)H n(dw)H n(dy)dzQ(ds).

The previous Proposition is the basic building block to determine asymptotic confidence inter-

vals for stationary Boolean models as well. Indeed, proceeding along the same lines as in the proof

of Corollary 8, an asymptotic confidence interval for λΘn of level α is

[
λ̂κ,NΘn

−
√

CV ar

Nrd−nN

Jα, λ̂
κ,N
Θn

+

√
CV ar(x)

Nrd−nN

Jα

]
where Jα is such that P(−Jα ≤ Z ≤ Jα) = 1− α with Z ∼ N(0, 1). Note that here rN can be any

bandwidth.

5 Noteworthy examples

Here we discuss some relevant examples of Boolean models, in particular a Boolean segment process,

the Poisson point process and the Matérn cluster process.

5.1 A Boolean segment process

As simple example of applicability of the previous results we discuss the Boolean segment process

already introduced in [10].

Let n = 1 and assume that Θ1 is an inhomogeneous Boolean model of segments in R2 with random
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length L and uniform orientation, so that the mark space is K =R+×[0, 2π]. For all s = (`, α) ∈ K,

let Z(s) := {(u, v) ∈ R2 : u = τcosα, v = τsinα, τ ∈ [0, `]} be the segment with length ` ∈ R+,

and orientation α ∈ [0, 2π]. Denoted by PL(d`) the probability law of the random length L, we

assume that E[L3] < +∞. Finally the segment process Θ1 is driven by the marked Poisson process

Φ in R2×K having intensity measure Λ(d(y, s)) = f(y)dyQ(ds), where f(y) = f(y1, y2) = y2
1 + y2

2

and Q(ds) = 1
2πdαPL(d`). We are going to consider the kernel k(z) = 11B1(0)(z)/π, which is not

continuous, anyway the theory developed here apply for this kernel thanks to [10, Remark 9]. More

precisely, λ̂κ,NΘ1
(x) is given here by

λ̂κ,NΘ1
(x) =

1

Nπr2
N

N∑
i=1

H1(Θ
(i)
1 ∩BrN (x)),

whereas in [10] it is shown that

CV ar(x) =
16

3π2
λΘ1(x), for any x ∈ R2,

and the asymptotic optimal bandwidth is

ro,AMSE
N = 5

√
16(E[L](x2

1 + x2
2) + E[L3]/3)

3π2N(E[L])2
.

Hence Proposition 7 and Corollary 8 now apply with the previous specifications of λ̂κ,NΘ1
(x), rN

and CV ar.

5.2 Poisson point processes

Let Ψ be a Poisson point process inRd with a continuous intensity λΨ. We recall that Ψ may be seen

as a particular Boolean model with Hausdorff dimension n = 0 and mean density λΨ, by choosing

K = Rd as mark space, Z(s) = s ∈ Rd as trivial typical grain, and Λ(d(y, s)) := λΨ(y)dyδ0(s)ds.

As expected, observe that

(5) =

∫
K

∫
x−Z(s)

λΨ(y)H 0(dy)δ0(s)ds =

∫
K

λΨ(x− s)δ0(s)ds = λΨ(x).

Let
{

Ψi
}
i∈N

be a sequence of i.i.d. point processes as Ψ, and κ as in the Assumptions. Then, by

noticing that Assumptions (A1) and (A2) are trivially fulfilled, all the previous results for λ̂κ,NΘn
(x)

specialize now for the sequence of kernel estimators
{
λ̂κ,NΨ (x)

}
N≥1

of λΨ(x) defined by

λ̂κ,NΨ (x) :=
1

NrdN

N∑
i=1

∑
xj∈Ψi

κ
(x− xj

rN

)
.

In particular, by observing that πy(x− Z(s)) = {0}, we get∫
πy(x−Z(s))

κ(θ + w)H n(dθ) =

∫
{0}

κ(θ + w)H 0(dθ) = κ(w),
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and

CV ar(x)
(10)
=

∫
R

∫
Rd

∫
x−s

∫
{0}

κ(z)κ(z + w)λΨ(y)H 0(dw)H 0(dy)dzδ0(s)ds

= λΨ(x)

∫
Rd
κ2(z)dz.

Hence we can specialize large and moderate deviation principles for λ̂κ,NΨ (x) by a direct application

of Theorem 2 and Theorem 3, respectively:

(LDP) the sequence of kernel estimators
{
λ̂κ,NΨ (x)

}
N≥1

satisfies a LDP with speed vN = NrdN and

good rate function

J∗x(y) = sup
t∈R

{
ty − λΨ(x)

∫
Rd

(etκ(w) − 1)dw
}

; (16)

(MDP) assume that
{
bN

}
N≥1

is a sequence of positive real numbers satisfying

lim
N→+∞

bN√
NrdN

= +∞ and lim
N→+∞

bN
NrdN

= 0;

then the sequence
{

(NrdN/bN )(λ̂κ,NΨ (x)−E[λ̂κ,NΨ (x)])
}
N≥1

satisfies a LDP with speed vN =

b2N/Nr
d
N and good rate function

J∗x(y) =
y2

2||κ||22λΨ(x)
. (17)

Finally, as a direct consequence of Proposition 6 it follows that the sequence
{√

NrdN (λ̂κ,NΨ (x) −

E[λ̂κ,NΨ (x)])
}
N≥1

converges weakly, as N → +∞, to the normal distribution N(0, ||κ||22λΨ(x)).

5.3 Matérn cluster processes

Clustering is a fundamental operation on point processes, well-known in stochastic geometry, and it

allows to construct new point processes (see [23] for a more exhaustive treatment). The clustering

operation consists in replacing each point x of a given point process Φp, called parent point process,

by a cluster Nx of points, called daughter points. Each cluster Nx is itself a point process, and it

is assumed to have only a finite mean number of points. The resulting point process given by the

union of all the clusters Nx is said to be a cluster point process. Let us assume that the parent

point process Φp is a homogeneous Poisson point process with intensity λp, and the clusters Nx
are of the form Nxi = Ni + xi for each xi ∈ Φp, where the sequence {Ni}i is independent of

Φp, and independent and identically distributed as N0 (the representative cluster, centered at 0).

Assuming that the number of points of N0 is distributed according to a Poisson random variable

with parameter nc, and that these points are independently and uniformly distributed in the ball

BR(0), where R is a further parameter of the model, then the resulting cluster point process

Φ =
⋃

xi∈Φp

xi +Ni
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is called Matérn cluster process. It follows that Φ has constant intensity λΦ = λpnc, and may

be regarded as a Boolean model Θ0 with dimension n = 0, underlying Poisson point process Φp,

and typical grain Z0 := N0 given by a Poisson point process restricted to BR(0) whose intensity

equals λN0
(x) = nc

bdRd
11BR(0)(x). The resulting Boolean model Θ0 ≡ Φ is driven by a marked

Poisson point process in Rd × S having intensity measure Λ(d(ξ, η)) = λpdξQ(dη), where the

mark space coincides with K := S the space of all sequences of points in Rd and Q is the

probability distribution of N0.

Note that all the assumptions (A1) and (A2) are trivially fulfilled; as a consequence, all the

previous results on λ̂κ,NΘ0
(x) ≡ λ̂κ,NΦ (x) hold in such a context. A LDP follows from Theorem 2,

more specifically one can observe that the general expression for J∗x appearing in the statement of

that theorem simplifies in the context of Matérn cluster processes, indeed

∫
K

∫
x−Z(s)

∫
Rd

exp
{
t
∫
πy(x−Z(s))

κ(θ + w)H n(dθ)
}
− 1∫

πy(x−Z(s))
κ(θ + w)H n(dθ)

κ(w)f(y, s)dwH n(dy)Q(ds)

now equals

∫
S

∫
x−η

∫
Rd

exp
{
t
∫
{0} κ(θ + w)H 0(dθ)

}
− 1∫

{0} κ(θ + w)H 0(dθ)
κ(w)dwλpH

0(dy)Q(dη)

=

∫
S

∫
x−η

(∫
Rd

(etκ(w) − 1)dw
)
λpH

0(dy)Q(dη)

=
(∫

Rd
(etκ(w) − 1)dw

)
λp

∫
S

H 0(x− η)Q(dη)︸ ︷︷ ︸
=nc

= λΦ

∫
Rd

(etκ(w) − 1)dw.

Hence one can see that the same large deviation principle (LDP) stated in Section 5.2 for a Poisson

point process Ψ hold even for the Matérn cluster process Φ, replacing the intensity λΨ with λΦ

in the expression for the rate function J∗x (16). In a similar vein one can prove the validity of

the MDP stated in Section 5.2 for the Matérn cluster process Φ, where again the intensity λΨ is

replaced with λΦ in (17).

Finally it is easy to see that CV ar(x)
(10)
= ||κ||22λΦ, from which we may claim that the sequence{√

NrdN (λ̂κ,NΦ (x) − Eλ̂κ,NΦ (x))
}
N≥1

converges weakly, as N → +∞, to the normal distribution

N(0, ||κ||22λΦ).

6 Discussion and concluding remarks

We have proved large and moderate deviation principles for kernel–type estimators of the mean

density of Boolean models. Thanks to these results, we have been able to derive the consistency

of the estimator, and asymptotic confidence intervals as well.

Theorems 2 and 3 are connected with classical results concerning the kernel–type estimator of

the density function of an absolutely continuous random variable due to [31, 35]. Here we want

to pinpoint the connection with the classical literature in view of future developments. More
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specifically, let X be a random variable taking values in Rd with probability density function fX ,

and let X1, . . . , XN be a random sample for X. The kernel density estimator f̂NX (x) of f(x) at a

point x ∈ Rd is traditionally [27, 32, 41] defined as

f̂NX (x) :=
1

NrdN

N∑
i=1

κ
(x−Xi

rN

)
, x ∈ Rd.

The scaling parameter rN , known as the bandwidth, determines the smoothness of the estimator,

and it has to be chosen such that

rN → 0 NrdN →∞

to obtain an asymptotically unbiased and weakly consistent estimator f̂NX (x). The kernel density

estimator λ̂κ,NΘn
(x) of λΘn(x) defined in Eq.(6) may be seen as the natural extension of f̂NX (x) to

the case of very general random geometric objects in Rd of Hausdorff dimension n > 0, i.e. not

necessarily Boolean models. See also [10, Section 3.3.1].

Large and moderate deviation principles for kernel density estimators of fX have been investigated

in [31, 35] with different techniques, in particular, in [31] the author establishes pointwise and

uniform moderate and large deviations results for the sequence
{
f̂NX (x) − E[f̂NX (x)]

}
N≥1

, even

for more general kernel functions κ. We recall here the pointwise results for large and moderate

deviations given in [31, Proposition 3.1] and [31, Proposition 2.1], respectively, specializing them

with our notation and assumptions on κ:

(LDP) the sequence
{
f̂NX (x) − E[f̂NX (x)]

}
N≥1

satisfies a LDP with speed vN = NrdN and rate

function

J∗x(y) = sup
t∈R

{
ty −

(
fX(x)

∫
Rd

(etκ(w) − 1)dw − tfX(x)
)}

; (18)

(MDP) assume that
{
bN

}
N≥1

is a sequence of positive real numbers satisfying

lim
N→+∞

bN√
NrdN

= +∞ and lim
N→+∞

bN
NrdN

= 0;

then the sequence
{

(NrdN/bN )(f̂NX (x)− E[f̂NX (x)])
}
N≥1

satisfies a LDP with speed vN =

b2N/Nr
d
N and rate function

J∗x(y) =
y2

2||κ||22fX(x)
. (19)

If Theorems 2 and 3 were true for a general germ–grain model (not only for Boolean models),

then the results concerning random variables just recalled here would follow as a particular case.

Indeed a random variable X ≡ Θ0 can be seen as a trivial germ–grain process driven by the

marked point process Φ = {(X, s)} in Rd with mark space K = Rd, consisting of one point

(X) only, with grain Z(s) := s, and intensity measure Λ(d(y, s)) = f(y)dyδ0(s)ds. With these

choices equation (5) implies that λΘ0(x) = f(x), i.e. the mean density of X amounts to be its

probability density function, and the expressions in (18) and (19) follow (formally) by replacing

Λ(d(y, s)) = f(y)dyδ0(s)ds and Θn = X in Theorem 2 and Theorem 3, respectively, in analogous

way as we did in Section 5.2. Note that the further term tfX(x) appearing in (18) is due to having
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considered now the sequence
{
f̂NX (x)− E[f̂NX (x)]

}
N≥1

instead of
{
f̂NX (x)

}
N≥1

.

Hence we may ask whether the theorems obtained for Boolean models extend to more general

random closed sets, e.g. germ–grain models. In such a case, as just observed here, the results of

[31, 35] would follow as a particular case of a more general theory. Otherwise, if the extension is not

possible, the independence property of the underlying Poisson point processes would be peculiar in

obtaining such expressions. This problem remains open and requires different kinds of techniques

with respect to the ones employed here, which are mainly based on the availability of the Laplace

functional of a Poisson point process.

Finally it is worth to underline that the theoretical results proved in this paper and in [12] may be

useful in many applications, for example to determine confidence intervals for the estimators. A

future work in this direction, we are working on, will be focused on simulation studies of the the

kernel–type estimator in comparison with other estimators, such as the “Minkowski content”–based

estimator mentioned in the Introduction.

A Proofs of the main theorems

A.1 Proof of Theorem 2

Before proving Theorem 2, we provide two thecnical lemmas. For the sake of simplifying notation

we define

h(ξ, s) :=
1

rn

∫
ξ+Z(s)

κ
(x− y

r

)
H n(dy), (20)

and we shall write hN (ξ, s) if r = rN in the above definition.

Lemma 10. Let Θn and κ be as in the Assumptions. For any r < 1 and t ∈ R

E
[

exp
{ t

rn

∫
Θn

κ
(x− y

r

)
H n(dy)

}]
= exp

{∫
Rd×K

(eth(ξ,s) − 1)f(ξ, s)dξQ(ds)
}
. (21)

Proof. First of all we remind that (see [34, pg. 28]) if Ψ is a Poisson point process on X with inten-

sity measure µ, then, for any measurable function g : X→ R such that
∫
X

min {|g(x)|, 1}µ(dx) <

∞, it holds

E
[

exp
{
ϑ
∑
x∈Ψ

g(x)
}]

= exp
{∫

X

(eϑg(x) − 1)µ(dx)
}

(22)

for any complex number ϑ.

By observing that min{h(ξ, s), 1} ≤ h(ξ, s), and that 1/rn ≤ 1/rd if r ≤ 1, we have∫
Rd×K

min
{
h(ξ, s), 1

}
f(ξ, s)dξQ(ds) ≤ 1

rd

∫
K

∫
Rd

∫
ξ+Z(s)

κ
(x− y

r

)
H n(dy)f(ξ, s)dξQ(ds)

=
1

rd

∫
K

∫
Rd

∫
Z(s)

κ
(x− ỹ − ξ

r

)
H n(dỹ)f(ξ, s)dξQ(ds)

=

∫
K

∫
Rd
κ(w)

∫
Z(s)

f(x− ỹ − rw, s)H n(dỹ)dwQ(ds)

We remind that κ is a kernel with supp(κ) ∈ BR(0), Z(s) ⊆ Ξ(s), and we notice that if ỹ ∈ Z(s)

and w ∈ BR(0) then x − rw ∈ BRr(x) ⊆ BR(x). Therefore x − ỹ − rw ∈ BR(x) − Z(s) ⊂
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BR(x)⊕diam(Z(s)), so that by (A2) we get∫
K

∫
Rd
κ(w)

∫
Z(s)

f(x− ỹ − rw, s)H n(dỹ)dwQ(ds)

≤
∫
K

ξ̃BR(x)(s)H
n(Ξ(s))Q(ds)

(A2)
< ∞.

(23)

Thus we may write

E
[

exp
{
t
∑

(ξ,s)∈Φ

h(ξ, s)
}]

(22)
= exp

{∫
Rd×K

(eth(ξ,s) − 1)f(ξ, s)dξQ(ds)
}
.

Finally, Lemma 3 in [44] guarantees that the event that different grains of Θn overlap in a subset

of Rd of positive H n-measure has null probability, therefore we may claim that

E
[

exp
{ t

rn

∫
Θn

κ
(x− y

r

)
H n(dy)

}]
= E

[
exp

{ t

rn

∑
(ξ,s)∈Φ

∫
ξ+Z(s)

κ
(x− y

r

)
H n(dy)

}]
,

that is the assertion.

Lemma 11. Let Θn and κ be as in the Assumptions. If r < min
{

1, 1/(2R)
}

, the following bound

holds for any s ∈ K, t ∈ R, w ∈ Rd, and H n-a.e. y ∈ x− Z(s):∣∣∣∣∣∣
(

exp
{
t
∫

[(x−Z(s))−y]/r
κ(ỹ + w)H n(dỹ)

}
− 1
)

∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
κ(w)f(y − wr, s)

∣∣∣∣∣∣ ≤ Ψ(t)κ(w)ξ̃BR(x)(s), (24)

where

Ψ(t) =


|t| if t ≤ 0

etMγ̃(2R)n − 1

Mγ̃(2R)n
if t > 0

with ∫
K

∫
x−Z(s)

∫
Rd

Ψ(t)κ(w)ξ̃BR(x)(s)dwH n(dy)Q(ds) < +∞. (25)

Proof. First of all consider the case t ≤ 0.

∣∣∣
(

exp
{
t
∫

[(x−Z(s))−y]/r
κ(ỹ + w)H n(dỹ)

}
− 1
)

∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
κ(w)f(y − wr, s)

∣∣∣
=

(
1− exp

{
t
∫

[(x−Z(s))−y]/r
κ(ỹ + w)H n(dỹ)

})
∫

[(x−Z(s))−y]/r
κ(ỹ + w)H n(dỹ)

κ(w)f(y − wr, s)

≤ |t|κ(w)f(y − wr, s),

being 1− eα ≤ −α for any α ∈ R.

17



The case t > 0 is less trivial, and we employ the Taylor series expansion of the exponential

∣∣∣
(

exp
{
t
∫

[(x−Z(s))−y]/r
κ(ỹ + w)H n(dỹ)

}
− 1
)

∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
κ(w)f(y − wr, s)

∣∣∣
=

(
exp

{
t
∫

[(x−Z(s))−y]/r
κ(ỹ + w)H n(dỹ)

}
− 1
)

∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
κ(w)f(y − wr, s)

= κ(w)f(y − wr, s)
∑
k≥1

tk

k!

(∫
[(x−Z(s))−y]/r

κ(θ + w)H n(dθ)
)k−1

. (26)

Now we focus on the integral in (26):∫
[(x−Z(s))−y]/r

κ(θ + w)H n(dθ) ≤
∫

[(x−Z(s))−y]/r

M11BR(0)(θ + w)H n(dθ)

=
M

rn

∫
Z(s)

11BR(0)

(
w +

x− θ̃ − y
r

)
H n(dθ̃)

≤ M

rn

∫
Z(s)

11BrR(wr+(x−y))(θ̃)H
n(dθ̃)

≤ M

rn
H n(Ξ(s) ∩BrR(wr + (x− y))).

(27)

By replacing this in (26) and by remembering that supp(κ) ⊂ BR(0), we obtain

∣∣∣
(

exp
{
t
∫

[(x−Z(s))−y]/r
κ(ỹ + w)H n(dỹ)

}
− 1
)

∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
κ(w)f(y − wr, s)

∣∣∣
≤ κ(w)f(y − wr, s)

×
∑
k≥1

tkMk−1

r(k−1)nk!
(H n(Ξ(s) ∩BrR(wr + (x− y))))k−1

= 11BR(0)(w)κ(w)f(y − wr, s)

×
∑
k≥1

tkMk−1

r(k−1)nk!
(H n(Ξ(s) ∩BrR(wr + (x− y))))k−1

≤ 11BR(0)(w)κ(w)f(y − wr, s)

×
∑
k≥1

tkMk−1

r(k−1)nk!
(H n(Ξ(s) ∩B2rR(x− y)))k−1 (28)

where we have used the fact that w ∈ BR(0). By assumption, x − y ∈ Z(s) and 2Rr ≤ 1; thus

(A1) implies

∑
k≥1

tkMk−1

r(k−1)nk!
(H n(Ξ(s) ∩B2rR(x− y)))k−1 ≤

∑
k≥1

tkMk−1

r(k−1)nk!
(γ̃(2rR)n)k−1

=
1

Mγ̃(2R)n

∑
k≥1

(tMγ̃(2R)n)k

k!
= Ψ(t)

18



Moreover, being y ∈ x− Z(s) and r ≤ 1, we observe that, for any w ∈ BR(0),

y − wr ∈ x− Z(s) +BR(0) ⊆ BR(x)⊕diam(Z(s)),

therefore 11BR(0)(w)f(y − wr, s)
(A2)

≤ ξ̃BR(x)(s), and (24) it is now proved by replacing the above

inequalities in (28).

Finally, the integrability condition (25) easy follows:∫
K

∫
x−Z(s)

∫
Rd

Ψ(t)κ(w)ξ̃BR(x)(s)dwH n(dy)Q(ds)

≤ Ψ(t)MbdR
d

∫
K

ξ̃BR(x)(s)
(∫

x−Z(s)

H n(dy)
)
Q(ds)

≤ Ψ(t)MbdR
d

∫
K

H n(Ξ(s))ξ̃BR(x)(s)Q(ds)
(A2)
< ∞.

Proof of Theorem 2. The proof relies on the Gärtner-Ellis Theorem. First of all we will show that

J(t) := lim
N→∞

1

vN
logE[etvN λ̂

κ,N
Θn

(x)] (29)

=

∫
K

∫
x−Z(s)

∫
Rd

exp
{
t
∫
πy(x−Z(s))

κ(θ + w)H n(dθ)
}
− 1∫

πy(x−Z(s))
κ(θ + w)H n(dθ)

κ(w)dwf(y, s)H n(dy)Q(ds)

then we observe that J is a smooth function defined on R, hence satisfying the assumptions of the

Gärtner-Ellis Theorem. Since
{

Θ
(i)
n

}
i∈N

is a sequence of i.i.d. random sets, then for N sufficiently

big so that rN < 1

1

vN
logE[etvN λ̂

κ,N
Θn

(x)] =
1

vN
logE

[
exp

{
tNrd−nN

1

NrdN

N∑
i=1

∫
Θ

(i)
n

κ
(x− y
rN

)
H n(dy)

}]
= N

1

vN
logE

[
exp

{ t

rnN

∫
Θn

κ
(x− y
rN

)
H n(dy)

}]
=

1

rd−nN

logE
[

exp
{ t

rnN

∑
(ξ,s)∈Φ

∫
ξ+Z(s)

κ
(x− y
rN

)
H n(dy)

}]
(21)
=

1

rd−nN

∫
Rd×K

(
exp

{ t

rnN

∫
ξ+Z(s)

κ
(x− y
rN

)
H n(dy)

}
− 1
)
f(ξ, s)dξQ(ds)

=
1

rd−nN

∫
K

∫
Rd

(
exp

{
t

∫
[(x−Z(s))−ξ]/rN

κ(ỹ)H n(dỹ)
}
− 1
)
f(ξ, s)dξQ(ds).

It is worth to multiply and divide the above integrand by
∫

[(x−Z(s))−ξ]/rN κ(y)H n(dy); then, by

19



suitable changes of variable, the following chain of equality holds:

1

vN
logE[etvN λ̂

κ,N
Θn

(x)] =
1

rd−nN

∫
K

∫
Rd

exp
{
t
∫

[(x−Z(s))−ξ]/rN κ(ỹ)H n(dỹ)
}
− 1∫

[(x−Z(s))−ξ]/rN κ(ỹ)H n(dỹ)

×
∫
ξ+Z(s)

κ
(x− y
rN

)
r−nN H n(dy)f(ξ, s)dξQ(ds)

=
1

rdN

∫
K

∫
Z(s)

∫
Rd

exp
{
t
∫

[(x−Z(s))−ξ]/rN κ(ỹ)H n(dỹ)
}
− 1∫

[(x−Z(s))−ξ]/rN κ(ỹ)H n(dỹ)

× κ
(x− y − ξ

rN

)
f(ξ, s)dξH n(dy)Q(ds)

=

∫
K

∫
Z(s)

∫
Rd

exp
{
t
∫

[(y−Z(s))/rN+w]
κ(ỹ)H n(dỹ)

}
− 1∫

[(y−Z(s))/rN+w]
κ(ỹ)H n(dỹ)

× κ(w)f(x− y − wrN , s)dwH n(dy)Q(ds)

=

∫
K

∫
Z(s)

∫
Rd

exp
{
t
∫

(y−Z(s))/rN
κ(ỹ + w)H n(dỹ)

}
− 1∫

(y−Z(s))/rN
κ(ỹ + w)H n(dỹ)

× κ(w)f(x− y − wrN , s)dwH n(dy)Q(ds)

=

∫
K

∫
x−Z(s)

∫
Rd

exp
{
t
∫

[(x−Z(s))−y]/rN
κ(ỹ + w)H n(dỹ)

}
− 1∫

[(x−Z(s))−y]/rN
κ(ỹ + w)H n(dỹ)

× κ(w)f(y − wrN , s)dwH n(dy)Q(ds).

Denoted by Df (s) the set of discontinuity points of f(·, s) for any s ∈ K, assumption (A2) implies

H n(Df (s)) = 0, therefore we can see that

lim
N→+∞

exp
{
t
∫

[(x−Z(s))−y]/rN
κ(ỹ + w)H n(dỹ)

}
− 1∫

[(x−Z(s))−y]/rN
κ(ỹ + w)H n(dỹ)

κ(w)f(y − wrN , s)

(7)
=

exp
{
t
∫
πy(x−Z(s))

κ(ỹ + w)H n(dỹ)
}
− 1∫

πy(x−Z(s))
κ(ỹ + w)H n(dỹ)

κ(w)f(y, s)

for any s ∈ K, w ∈ Rd, and H n-a.e. y ∈ x− Z(s) .

Thus the (29) follows by a simple application of the dominated convergence theorem, whose validity

is guaranteed by Lemma 11.

To conclude the proof we observe that J satisfies the assumptions of Theorem 1. More precisely, as

a byproduct of the application of the dominated convergence theorem, J(t) < +∞ for any t ∈ R.

Finally we show that J is differentiable on R with

J ′(t0) =

∫
K

∫
x−Z(s)

∫
Rd

exp

{
t0

∫
πy(x−Z(s))

κ(ỹ + w)H n(dỹ)

}
k(w)f(y, s)dwH n(dy)Q(ds)

for any t0 ∈ R. In order to prove this, fix t0 ∈ R and δ > 0 sufficiently small; following [7, Theorem

16.8], we need to show that the integrand

exp

{
t

∫
πy(x−Z(s))

κ(ỹ + w)H n(dỹ)

}
k(w)f(y, s)11(x−Z(s))(y) (30)
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is bounded from above for any t ∈ (t0 − δ, t0 + δ) by an integrable function. To this end, the

definition of approximate tangent space and similar arguments as in (27) give∫
πy(x−Z(s))

κ(ỹ + w)H n(dỹ) = lim
r→0

∫
x−Z(s)−y

r

κ(ỹ + w)H n(dỹ) ≤Mγ̃(2R)n,

with w ∈ BR(0) ⊃ supp(k). Therefore

(30) ≤ max
{
e(t0+δ)Mγ̃(2R)n , e(t0−δ)Mγ̃(2R)n

}
k(w)f(y, s)11(x−Z(s))(y)

when t ∈ (t0 − δ, t0 + δ), with∫
K

∫
x−Z(s)

∫
Rd

max
{
e(t0+δ)Mγ̃(2R)n , e(t0−δ)Mγ̃(2R)n

}
k(w)f(y, s)dwH n(dy)Q(ds)

≤ λΘn(x) max
{
e(t0+δ)Mγ̃(2R)n , e(t0−δ)Mγ̃(2R)n

}
< +∞,

hence the thesis follows.

A.2 Proof of Theorem 3

Before proving Theorem 3 we need some useful lemmas.

Lemma 12. Let Θn and κ be as in the Assumptions, and let us define

τq(u) :=

∫
K

∫
Rd
e−uh(ξ,s)hq(ξ, s)f(ξ, s)dξQ(ds), q ≥ 1 (31)

for any measurable function h : Rd ×K→ R+ and u ≥ 0.

If r < min {1, 1/(2R)}, the function h(ξ, s) defined in (20) satisfies τq(u) < +∞ for any u ≥ 0 and

q ≥ 1.

Proof. For any q ≥ 1, and u ≥ 0 we have

e−uh(ξ,s)hq(ξ, s) ≤ hq(ξ, s) =
1

rnq

[ ∫
ξ+Z(s)

κ
(x− ỹ

r

)
H n(dỹ)

]q−1
∫
ξ+Z(s)

κ
(x− ỹ

r

)
H n(dỹ),

therefore

τq(u) ≤ 1

rqn

∫
K

∫
Rd

∫
Z(s)

[ ∫
ξ+Z(s)

κ
(x− ỹ

r

)
H n(dỹ)

]q−1

× κ
(x− ξ − y

r

)
H n(dy)f(ξ, s)dξQ(ds)

≤ 1

rqn−d

∫
K

∫
Z(s)

∫
Rd

(∫
Z(s)

κ
(y − ỹ

r
+ w

)
H n(dỹ)

)q−1

× κ(w)f(x− y − rw, s)dwH n(dy)Q(ds).

(32)

By remembering that κ(x) ≤M11BR(0)(x) for all x ∈ Rd, and Z(s) ⊆ Ξ(s),∫
Z(s)

κ
(y − ỹ

r
+ w

)
H n(dỹ) ≤M

∫
Z(s)

11BR(0)

(y − ỹ
r

+ w
)
H n(dỹ)

= M

∫
Z(s)

11BrR(y+rw)(ỹ)H n(dỹ) ≤MH n(Ξ(s) ∩BrR(y + rw)). (33)
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Note that BrR(y + rw) ⊆ B2rR(y) if w ∈ BR(0), and that

MH n(Ξ(s) ∩B2rR(y))
(A1)

≤ Mγ̃(2rR)n ∀y ∈ Z(s), r < 1.

Thus, by replacing (33) in (32) we get

τq(u) ≤ 1

rqn−d

∫
K

∫
Z(s)

∫
Rd

(Mγ̃(2rR)n)q−1κ(w)f(x− y − rw, s)dwH n(dy)Q(ds)

(23)

≤ (Mγ̃)q−1(2R)n(q−1)rd−n
∫
K

H n(Ξ(s))ξ̃BR(x)(s)Q(ds) <∞

In order to make the proof of the next lemma more readable, we recall here some basics on

Stirling numbers. The Stirling numbers of the second kind S(n, k) count the number of partitions

of n objects in k groups. They are extensively studied in [21, 22]: refer to them for additional

details on the subject. The Stirling number of the second kind is defined by

S(n, k) =
n!

k!

∑
(?)

1

q1! . . . qk!
(34)

where the summation is extended over all positive integers which are solution of the equation

q1 + . . .+ qn = n. It is worth noticing that the summation

Bn :=

n∑
k=0

S(n, k)

is knows as the Bell number, which amounts to be the number of partition of k objects in distinct

sets (see [21, pg. 292]). By [21, pg. 97] we have the following representation

Bn = e−1
+∞∑
j=0

jn

j!
. (35)

The Stirling number of the second kind satisfy a useful recurrence relation

S(n+ 1, k) = S(n, k − 1) + kS(n, k), k = 1, . . . , n− 1, n = 0, 1, . . .

with initial conditions

S(0, 0) = 1, S(n, 0) = 0 for n > 0, S(n, k) = 0 for k > n.

Lemma 13. Let Θn and κ be as in the Assumptions; then for any t0 > 0

∑
k≥3

tk0
k!
E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
= O(rd−n) as r → 0. (36)

Proof. With the notation introduced in (20), the same argument at the end of the froof of Lemma

10, together with traditional combinatorial arguments, show that for any k ≥ 3:
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E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
= E


 ∑

(ξ,s)∈Φ

h(ξ, s)

k


=

k∑
i=1

∑
(?)

(
k

q1 . . . qi

)
E


∑

ξ`1 < . . . < ξ`i

(ξ`r , s`r ) ∈ Φ

i∏
r=1

hqr (ξ`r , s`r )


where the sum over (?) runs over all the vectors (q1, . . . , qi) of positive integers such that q1 + · · ·+
qi = k. Besides we have used the fact that the marked point process is simple.

Since there are i! possible permutations of the points ξ`1 , . . . , ξ`i we can write

E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]

=

k∑
i=1

1

i!

∑
(?)

(
k

q1 . . . qi

)
E


∑

ξ`r 6= ξ`s

(ξ`r , s`r ) ∈ Φ

i∏
r=1

hqr (ξ`r , s`r )


=

k∑
i=1

1

i!

∑
(?)

(
k

q1 . . . qi

)∫
(Rd×K)i

i∏
r=1

hqr (ξ`r , s`r )ν[i](d(x1, s1), . . .d(xi, si)),

where ν[i] is the i–th factorial moment measure of Φ (e.g. see [23]). Being Φ a marked Poisson

pont processes, then ν[i] =
⊗

i Λ (see for example [39, Corollary 3.2.4]); hence we get

E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
=

k∑
i=1

1

i!

∑
(?)

(
k

q1 . . . qi

)
τq1(0) . . . τqi(0),

where τ is the function defined in (31). By the end of the proof of Lemma 12 we konw that

τq(0) ≤Mq−1γ̃q−1(2R)n(q−1)rd−nE[H n(Ξ)ξ̃BR(x)]

whenever r is sufficiently small, i.e. r ≤ min
{

1, 1/(2R)
}

, therefore

tauq1(0) · · · τqi(0) ≤ (Mγ̃(2R)n)k−ir(d−n)iE[H n(Ξ)ξ̃BR(x)]
i,

and so

E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k] (34)
=

k∑
i=1

(rd−nE[H n(Ξ)ξ̃BR(x)]

Mγ̃(2R)n

)i
S(k, i)(Mγ̃(2R)n)k.

Now we define the constant function C := C(Θn, κ), depending on Θn and the kernel κ,

C := max
{

1,
E[H n(Ξ)ξ̃BR(x)]

Mγ̃(2R)n

}
;
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as a consequence

E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
≤

k∑
i=1

CkS(k, i)(Mγ̃(2R)n)kr(d−n)i =

k∑
i=1

C̃kS(k, i)r(d−n)i

where we have put

C̃ := max
{
Mγ̃(2R)n,E[H n(Ξ)ξ̃BR(x)]

}
.

Recalling the definition of the Bell numbers Bk (see (35)) we have

E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
≤ C̃k

k∑
i=1

S(k, i)rd−n = C̃krd−n
k∑
i=1

S(k, i)

= BkC̃
krd−n = C̃krd−n

1

e

∞∑
m=0

mk

m!
.

Now we consider the summation in (36) for any t0 > 0. Finally, the previous bound for the

expectation yields

∑
k≥3

tk0
k!
E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
≤
∑
k≥3

tk0
k!

C̃krd−n

e

∞∑
m=0

mk

m!

=
rd−n

e

∞∑
k=3

tk0C̃
k

k!

∞∑
m=0

mk

m!
≤ rd−n

e

∞∑
m=0

1

m!

∞∑
k=0

(C̃mt0)k

k!

=
rd−n

e

∞∑
m=0

et0C̃m

m!
= rd−n exp

{
et0C̃ − 1

}
,

and the r.h.s. of this inequality turns out to be a O(rd−n), which implies the assertion.

Finally we recall that the discrete version of the Hölder inequality can be written as follows

n∑
i=1

xiyi ≤

(
n∑
i=1

xpi

)1/p

·

(
n∑
i=1

yqi

)1/q

, (37)

where xi, yi ≥ 0 for any i = 1, . . . , n, and p, q > 0 are such that 1/p + 1/q = 1. By specializing

(37) with n = 2, yi = 1 for i = 1, 2, p = k and q = k/(k − 1), it directly follows that

(x1 + x2)k ≤
[( 2∑

i=1

xki

)1/k

·
( 2∑
i=1

1
)k/(k−1)]k

= (xk1 + xk2) · 2k−1 (38)

for any x1, x2 > 0 and for any integer k > 0.

We are now ready to prove the theorem.

Proof of Theorem 3. Let us define

HN (t) := E
[

exp
{
vN t

Nrd−nN

bN

(
λ̂κ,NΘn

(x)− E[λ̂κ,NΘn
(x)]

)}]
,
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and

Jx(t) := lim
N→+∞

1

vN
logHN (t), (39)

after proving that the limit exists finite for any t ∈ R; then the good rate function will turn out

to be

J∗x(y) = sup
t∈R

{
ty − Jx(t)

}
,

as a direct application of Theorem 1.

First of all observe that, for any t ∈ R,

HN (t) = E
[

exp
{ tbN
NrdN

( N∑
i=1

(∫
Θ

(i)
n

κ
(x− y
rN

)
H n(dy)− E

∫
Θ

(i)
n

κ
(x− y
rN

)
H n(dy)

))}]
=
(
E
[

exp
{ tbN
NrdN

(∫
Θn

κ
(x− y
rN

)
H n(dy)− E

∫
Θn

κ
(x− y
rN

)
H n(dy)

)}])N
=
(

1 +
1

2

( tbN
NrdN

)2

V ar
(∫

Θn

κ
(x− y
rN

)
H n(dy)

)
+R(N)

)N
, (40)

In order to bound the term R(N) appearing in the previous equation, we note that for any real

valued random variable X the following inequality holds

E(X − EX)k ≤ E|X − EX|k
(38)

≤ 2k−1E(|X|k + (E|X|)k) ≤ 2kE[|X|k],

where the last inequality follows from a standard application of the Hölder inequality, namely

(E|X|)k ≤ E|X|k. Hence, if X =
∫

Θn
κ
(
x−y
rN

)
H n(dy), the remainder term R(N) in (40) may be

estimated as follows

R(N) :=
∑
k≥3

1

k!

( tbN
NrdN

)k
E
[( ∫

Θn

κ
(x− y
rN

)
H n(dy)− E

∫
Θn

κ
(x− y
rN

)
H n(dy)

)k]
≤
∑
k≥3

1

k!

( |t|bN
NrdN

)k
2kE

[( ∫
Θn

κ
(x− y
rN

)
H n(dy)

)k]
.

For N sufficiently big, the second condition in (9) implies that

2|t|bN
Nrd−nN

≤ t0

for some t0 > 0, so that(2|t|bN
NrdN

)k
=
( 2|t|bN
Nrd−nN t0

)k( t0
rnN

)k
≤
( 2|t|bN
Nrd−nN t0

)3( t0
rnN

)k
∀k ≥ 3;

hence we can bound R(N) as

R(N) ≤
( 2|t|bN
Nrd−nN t0

)3∑
k≥3

tk0
k!
E
[( 1

rnN

∫
Θn

κ
(x− y
rN

)
H n(dy)

)k] (36)
= O

(
rd−nN

( bN

Nrd−nN

)3)
.

Hence we obtain

HN (t) =
(

1 +
1

2

( tbN
NrdN

)2

V ar
(∫

Θn

k
(x− y
rN

)
H n(dy)

)
+O

(
rd−nN

( bN

Nrd−nN

)3))N
. (41)
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By assumption {Θ(i)
n }i∈N is a sequence of i.i.d. random closed sets as Θn; therefore

V ar
(∫

Θn

k
(x− y
rN

)
H n(dy)

)
= Nr2d

N V ar(λ̂
κ,N
Θn

(x))

(12)
= Nr2d

N

(CV ar(x)

Nrd−nN

+ o(
1

Nrd−nN

)
)

= rd+n
N (CV ar(x) + o(1)), as N → +∞. (42)

Thus, we conclude that

Jx(t)
(39)
= lim

N→+∞

Nrd−nN

b2N
logHN (t)

(41),(42)
=

N2rd−nN

b2N
log
(

1 +
1

2

( tbN
NrdN

)2

rd+n
N (CV ar(x) + o(1))

+O
(
rd−nN

( bN

Nrd−nN

)3))
=

N2rd−nN

b2N
log
(

1 +
t2b2N

2N2rd−nN

CV ar(x) + o
( b2N
N2rd−nN

))
(9)
=

t2

2
CV ar(x).

As a consequence the rate function is given by

J∗x(y) = sup
t∈R

{
ty − Jx(t)

}
= sup

t∈R

{
ty − t2

2
CV ar(x)

}
=

y2

2CV ar(x)

and the assertion follows.
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