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September 19, 2019

Abstract

We study the impact of information processing and rational learning on the term struc-

tures of equity risk, risk premia, and bond yields. In contrast with the full information

economy, learning gives rise to an upward-sloping term structure of bond yields and

downward-sloping term structures of equity risk and risk premia. Moreover, learning

generates lower interest rates and a larger risk premium than in an otherwise iden-

tical economy with full information. Therefore, information processing and learning

help explain jointly the observed level and timing of both equity return moments and

interest rates. Economic growth forecast data lends support to the model.
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1 Introduction

To build forecasts about future economic conditions, investors need to gather, analyze, and

filter a tremendous amount of information. By efficiently and rationally processing this

flow of information over time, investors update their forecasts and use them to dynamically

invest in financial markets. Therefore, information processing impacts asset prices through

investors’ trades.

We study the role of information processing and learning in an asset-pricing model with

time-varying economic growth.1 Investors, unable to directly observe economic fundamen-

tals, use a Bayesian model to update their beliefs about future growth prospects. We show

that rational learning changes the agents’ perception of economic growth risk across differ-

ent horizons, which in equilibrium translates into patterns of the term structures of equity

risk premia, equity return volatility, and interest rates that are in line with the empirical

evidence (van Binsbergen, Brandt, and Koijen, 2012; van Binsbergen, Hueskes, Koijen, and

Vrugt, 2013). Information processing and rational learning help to overcome the empirically

inconsistent predictions of the full information framework.

We analyze an economy in which aggregate output is driven by two sources of risk: a

long-lasting component and a contemporaneous shock. The long-lasting component of output

growth must be small to generate a realistic model-implied volatility of output growth. Such

a component is difficult to detect statistically, even in large samples. Therefore, we consider

a model of learning in which the representative agent observes changes in output but cannot

observe the long-lasting component driving the change.

Following Marfè (2017), we assume that the long-lasting component of output growth

depends on two latent factors. The first is the usual long-run component considered in

the long-run risk literature. The second is a mean-reverting, transitory component that

captures business cycle fluctuations. The long-run component implies that output growth

1The importance of time variation in economic growth for asset pricing and portfolio choice is highlighted
by Veronesi (1999, 2000), Brennan and Xia (2001), Xia (2001), and Bansal and Yaron (2004) among others.
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risk tends to increase with the time horizon, whereas the transitory component has the exact

opposite impact. Since the impact of the transitory component dampens that of the long-run

component, the term structure of output growth risk is about flat, as in the data (Marfè,

2017; Dew-Becker, 2017).

In line with the empirical findings of van Binsbergen et al. (2012), we show that informa-

tion processing and rational learning imply a downward-sloping term structure of equity risk

premia, whereas the full information model yields an upward-sloping term structure. More-

over, the slope of the term structure of interest rates is positive under information processing,

whereas it is negative under full information. The equity risk premium under information

processing is sizable and larger than under full information. Also, the short-term real bond

yield is smaller under the information processing than under full information. These results

provide evidence that the predictions of the model with information processing and learning

are consistent with data.

The economic mechanism is novel and works as follows. Under full information, each

priced source of risk has a specific effect on the slope of risk premia. Specifically, the long-

run component, the transitory component, and the contemporaneous shock to output have

respectively an upward-sloping, a downward-sloping, and a neutral effect on the term struc-

ture of equity risk premia. The upward-sloping effect dominates even if output growth risk

is flat across different horizons. Under information processing, the investor needs to infer the

latent components using only one source of information: the realized output growth rate.

As a result, learning yields an endogenous, perfect correlation between shocks to realized

output growth, shocks to the long-run component, and shocks to the transitory compo-

nent. This implies that the economy, as perceived by the investor, is driven by a unique

priced source of risk. In such a case, the slope of the term structure of equity risk premia

depends on the price sensitivities to the filtered long-run component and the filtered tran-

sitory component. Because prices are more sensitive to the transitory component than to

the long-run component, the impact of the transitory component dominates and yields a
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downward-sloping term structure of equity risk premia. Moreover, since bonds are used to

hedge equity risk, short-term bonds are more expensive and therefore feature lower yields

than long-term bonds.

To provide empirical support for the economic mechanism of the model, we show that

the theoretical relation between beliefs about expected growth and equilibrium asset prices

can be recovered in actual data. Using actual prices, we extract model-implied beliefs about

expected economic growth and document that they align well with observed forecasts of

economic growth obtained from the Survey of Professional Forecasters.

Our paper is closely related to the literature providing theoretical foundations for the

observed shape of the term structures of equity risk premia and equity return volatility.

Belo, Collin-Dufresne, and Goldstein (2015) shows that, when dividend dynamics are such

that leverage ratios are stationary, the term structures of dividend growth volatility, eq-

uity risk premia, and equity return volatility are downward sloping as observed empirically.

Croce, Lettau, and Ludvigson (2015) show that when investors have limited information and

bounded rationality, the observed timing of equity risk premia and the high risk premium

can be explained simultaneously. Instead, we show that under a realistic description of the

timing of economic fundamentals rational learning is sufficient to explain in equilibrium the

empirical evidence about the timing of equity risk and risk premium. Importantly, we do not

need to evoke bounded rationality. Hasler and Marfè (2016) show that the observed term

structures of equity risk premia and volatility can be explained by the existence of recoveries

following rare economic disasters. Marfè (2017) shows that, when labor impacts dividend

payout, the equilibrium term structures of equity risk premia and equity returns volatility

are consistent with the data. Ai, Croce, Diercks, and Li (2018) show that, when investment

responds positively and negatively to respectively short-term and long-term productivity

shocks, the term structure of equity risk premia over short maturities is downward-sloping.

Hasler and Khapko (2018) derive conditions under which a simple model featuring standard

preferences and realistic output dynamics can produce the observed shapes of the terms
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structures of equity and interest rates.

Our results contribute to the existing literature by showing that the latent nature of

expected growth and rational learning alone help to rationalize the empirical evidence about

the timing of equity risk and risk premia. This economic mechanism is simple, arises natu-

rally, and complements the alternative economic channels mentioned above. Moreover, this

mechanism can explain the pro-cyclical variation in the slope of the term structure of equity

risk premia (van Binsbergen et al., 2013; Bansal, Miller, Song, and Yaron, 2019). Incomplete

information and the need for learning become more pronounced in bad times (Bloom, 2009,

2014; Jurado, Ludvigson, and Ng, 2015). In good times uncertainty is low and investors are

better informed. According to our results, this leads to an upward-sloping term structure of

risk premia. In bad times uncertainty is high and investors are forced to actively learn. In

this case, learning generates a downward-sloping term structure of risk premia.

The paper is also related to the long-run risk literature, which was launched by Bansal and

Yaron (2004). In this literature, the long-run component is highly persistent, which yields

highly volatile consumption growth rates over long horizons. However, empirical evidence

documents that consumption growth risk is about the same at short and long horizons

(Marfè, 2017; Dew-Becker, 2017). This suggests that the high empirical level of the equity

premium is unlikely to be rationalized by highly volatile long-horizon cash-flows (Beeler and

Campbell, 2012). In addition, long-run risk models imply an upward-sloping term structure

of equity risk premia, which is inconsistent with the empirical findings of van Binsbergen

et al. (2012), van Binsbergen et al. (2013), van Binsbergen and Koijen (2017), and Weber

(2018), as well as a downward-sloping term structure of interest rates. In our model, rational

learning, in the presence of a transitory component, dampens the upward-sloping impact of

the long-run component. Therefore, our model helps explain jointly the flat term structure

of consumption growth risk, the downward-sloping term structure of equity risk premia, the

upward-sloping term structure of interest rates, and the high equity risk premium.

The remainder of the paper is organized as follows. Section 2 describes the economic
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fundamentals and learning problem; Section 3 solves for equilibrium asset prices; Section 4

presents the results and Section 5 concludes. Derivations and supplementary material are

provided in the Appendix.

2 Economic Fundamentals

In this section we describe the economy and discuss the implications of learning on the

term structure of output growth risk. The only information available to the representative

agent is the one generated by the aggregate output process (which is equal to the aggregate

consumption in equilibrium). Importantly, the underlying factors driving the output growth

dynamics are not directly observable. This introduces learning into the decision problem of

the agent and has implications for the agent’s perception of risk at different horizons.

2.1 Output Dynamics

The aggregate output, C, has the following dynamics

d logCt = dyt + dzt, (1)

where y is an integrated process with time-varying expected growth, x. The dynamics of y

and x are

dyt = (µ+ xt)dt+ σydBy,t, (2)

dxt = − λxxtdt+ σxdBx,t, (3)

and the mean-reverting process z satisfies

dzt = −λzztdt+ σzdBz,t. (4)
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The three Brownian motions, By, Bx, and Bz are independent. The agent observes only

the level of output C and, through Bayesian updating, filters out the unobservable factors

θ = (x, z)′. The full filtration generated by observing all three Brownian shocks is denoted

by F.

The aim of considering both components, y and z, is to introduce some flexibility in

modeling the timing of risk (Marfè, 2017). The first component, y, is an integrated process

which depends on the time integral of x. That is, shocks in x accumulate and therefore

permanently affect future output levels. For this reason, we call x the stochastic drift of the

permanent component. The second component, z, depends on the current value of z. Since

the process z is mean-reverting, shocks in z dissipate as time passes and therefore have a

transitory impact on output. For this reason, we call z the transitory component. Without

the z component, the aggregate output follows the standard dynamics considered in the

literature on incomplete information and learning (e.g. Gennotte, 1986; Detemple, 1986) as

well as in the long-run risk literature pioneered by Bansal and Yaron (2004). In this case,

as we will show, the term structure of output growth risk is upward-sloping because of the

accumulation of x shocks in y. Adding the transitory component z generates risk in the short

term that dissipates in the longer term. Consequently, the transitory component induces a

downward-sloping effect on the term structure of output growth risk. The existence of both

x and z therefore provides flexibility in the modeling of the timing of output growth risk.

Equations (1), (2), and (4) imply the following dynamics for the logarithm of output

d logCt = (µ+ xt − λzzt)dt+
√
vdBt, (5)

where v ≡ σ2
y + σ2

z is the instantaneous variance and dBt ≡ (σydBy,t + σzdBz,t)/
√
v is an

increment of a standard Brownian motion.
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2.2 Bayesian Learning

The expected growth rate of output varies over time due to shocks that come from two

sources: the drift of the permanent component xt defined in (3) and the transitory component

zt defined in (4). The agent only has access to information generated by the observation of the

realized aggregate output path in (5), and thus does not have access to the full information

contained in the filtration F. Therefore, all her actions must be adapted to her observation

filtration Fo = {Fot }t≥0, defined as the flow of information generated by the path of output.

In other words, the agent needs to filter out through Bayesian updating the unobservable

components θ = (x, z)′ by observing the history of output only. Proposition 1 provides the

dynamics of the filtered state variables.

Proposition 1. With respect to the agent’s observation filtration, the dynamics of output

C, and the filtered state variables x̂t, and ẑt satisfy

d logCt =(µ+ x̂t − λz ẑt)dt+
√
vdB̂t, , (6)

dx̂t = − λxx̂tdt+ σ̂x,tdB̂t, (7)

dẑt = − λz ẑtdt+ σ̂z,tdB̂t. (8)

where x̂t ≡ E [xt | Fot ], ẑt ≡ E [zt | Fot ], B̂t is an Fot -Brownian motion, and

σ̂x,t =
γx,t − λzγxz,t√

v
, σ̂z,t =

σ2
z + γxz,t − λzγz,t√

v
.

The posterior variance-covariance matrix Γt is defined as follows:

Γt ≡

 γx,t γxz,t

γxz,t γz,t

 =

 Var [xt | Fot ] Cov [xt, zt | Fot ]

Cov [xt, zt | Fot ] Var [zt | Fot ]

 (9)
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and its elements satisfy

dγx,t
dt

=σ2
x − 2λxγx,t − v−1 (γx,t − λzγxz,t)2 , (10)

dγz,t
dt

=σ2
z − 2λzγz,t − v−1

(
σ2
z − λzγz,t + γxz,t

)2
, (11)

dγxz,t
dt

= − (λx + λz) γxz,t − v−1 (γx,t − λzγxz,t)
(
σ2
z − λzγz,t + γxz,t

)
. (12)

Proof. See Appendix B.1.

Equation (6) gives the dynamics of log-output, logCt, projected on the observable filtra-

tion, while Equations (8) and (7) describe the agent’s updating rule of the expectation of

the latent state variables xt, and zt. We refer to x̂t and ẑt as the filter estimates. Equations

(10), (11), and (12) provide the dynamics of the posterior variance-covariance matrix (9) and

hence capture the evolution of uncertainty associated with the estimation of the unobserved

components.

Note that the posterior variance-covariance matrix is a deterministic function of time.

In accord with the literature (e.g., Scheinkman and Xiong, 2003; Dumas, Kurshev, and

Uppal, 2009), we replace Γt with its steady-state (i.e., Γ ≡ limt→∞ Γt). That is, we assume

that the agent has already observed a long enough history of output paths to reach the most

precise variance estimate of the unobserved components. We will use σ̂x and σ̂z to denote the

corresponding steady-state volatilities of the two filter estimates. The steady-state volatilities

σ̂x and σ̂z are characterized in Appendix B.1.

2.3 Timing of Growth Risk

The goal here is to study how growth risk varies across different horizons. To this end, we

follow Belo et al. (2015) and Marfè (2017) and compute an annualized measure of output
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growth volatility under the full filtration F:

σC(t, τ) =

√
1

τ
log

(
Et[C2

t+τ | Ft]
Et[Ct+τ | Ft]2

)
, (13)

or under the observation filtration Fo:

σ̂C(t, τ) =

√
1

τ
log

(
Et[C2

t+τ | Fot ]

Et[Ct+τ | Fot ]2

)
, (14)

where τ denotes the horizon.

To compare risk across horizons, we also look at the corresponding term structures of

variance ratios:

V RC(t, τ) =
σ2
C(t, τ)

σ2
C(t, 1)

and V̂ RC(t, τ) =
σ̂2
C(t, τ)

σ̂2
C(t, 1)

,

with reference of one year.

We study how learning affects the perception of risk across horizons, and then, how

learning alters the shape of the term structures of growth risk. To provide a clear intuition,

our analysis focuses first on the simplified models with either a permanent shock only or a

transitory shock only, and then considers the general case that accounts for both permanent

and transitory shocks.

2.3.1 The Case of Permanent Shocks Only

In this subsection, we assume that output is an integrated process with its drift driven by

the process x only. That is, d logCt = dyt.

Under the full filtration F, the term structure of risk is monotone increasing. The more

volatile (i.e., the larger σx > 0) or the more persistent (i.e., the smaller λx > 0) the drift x,

the higher the level of the term structure of growth risk. The same properties are also shared

by the term structure of risk under the partial information filtration Fo. The aforementioned
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results are formalized in Proposition 2 below.

Proposition 2. The following properties hold for any horizon τ > 0:

∂τσC(t, τ) > 0, ∂τ σ̂C(t, τ) > 0,

∂σxσC(t, τ) > 0, ∂σxσ̂C(t, τ) > 0,

∂λxσC(t, τ) < 0, ∂λxσ̂C(t, τ) < 0.

Proof. See Appendix B.2.

These results obtain because x is the instantaneous drift of the integrated process y.

Fluctuations in x accumulate over time and contribute to the integrated path of y. Thus,

the longer the horizon, the larger the accumulated variation of x and so the larger the

variance of y.

The same reasoning applies to the term structure of growth risk under the observation

filtration. However, the term structures under F and Fo are not equal. They are both

increasing and share the same short-run and long-run limits but the output growth variance

perceived by the agent under the partial information filtration is larger than that under the

full information filtration. The difference is a hump-shaped function of the horizon. These

results are formalized in Proposition 3 below.

Proposition 3. The following properties hold:

limτ→0 σ
2
C(t, τ) = limτ→0 σ̂

2
C(t, τ) = σ2

y ,

limτ→∞ σ
2
C(t, τ) = limτ→∞ σ̂

2
C(t, τ) = σ2

y + σ2
x

λ2x
.

(15)

Moreover, for any finite horizon τ > 0:

σ̂2
C(t, τ)− σ2

C(t, τ) > 0,
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and

∂τ
(
σ̂2
C(t, τ)− σ2

C(t, τ)
) > 0 τ < τx,

< 0 τ > τx,
(16)

where

τx ≡ −
1

2λx

(
1 + 2L(−1,− 1

2
√
e

)

)
> 0

and L(k, z) is k-th solution of the Lambert-W (or product logarithm) function.

Proof. See Appendix B.3.

Why does the term structure of growth risk under the partial information filtration

lie above that obtained under the full information filtration? Because the agent observes

only the level of output, uncertainty is generated by a unique Brownian motion under her

observation filtration. As a result, the filtered variables are driven by a unique Brownian

motion, and hence, are instantaneously perfectly correlated. Positive (negative) shocks to

the level y are perceived to come together with positive (negative) shocks to its expected

growth x. Such positive correlation increases σ̂2
C(t, τ) relative to σ2

C(t, τ) because y and x

are instead uncorrelated under F.

Moreover, the difference between the perceived and true growth risk is a hump shaped

function of the horizon: It increases up to a threshold τx, and decreases afterwards. At

the horizon τx, the divergence between the agent’s perception of growth risk under the full

and partial information is maximal. We note that the threshold τx is decreasing in λx.

Consequently, the difference between the perceived and the true growth risk increases for a

longer horizon when the persistence of x is high, or in other words, when the mean-reversion

speed λx is low.

Figure 1 illustrates the term structure of growth risk in the model with only permanent

shocks.
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Figure 1: Term Structure of Growth Risk with Permanent Shocks Only.

Parameter values are µ = 0.025, σy = 0.01, λx = 0.5, σx = 0.01.
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2.3.2 The Case of Transitory Shocks Only

In this subsection, we assume that the drift of output is only driven by transitory shocks z.

That is, d logCt = dyt + dzt, where dyt = µdt+ σydBy,t.

Both under the full and partial information filtrations, the term structure of growth risk

is monotone decreasing. The reason is that shocks to z affect output in a transitory way; as

time passes, the impact of these shocks on output weakens. Therefore, risk is higher in the

short term than in the long term. The more volatile (i.e., the larger σz > 0) or the more

persistent (i.e., the smaller λz > 0) the process z, the higher is the level of the term structure

of growth risk. These results are summarized in Proposition 4 below.

Proposition 4. The following properties hold for any horizon τ > 0:

∂τσC(t, τ) < 0, ∂τ σ̂C(t, τ) < 0,

∂σzσC(t, τ) > 0, ∂σz σ̂C(t, τ) > 0,

∂λzσC(t, τ) < 0, ∂λz σ̂C(t, τ) < 0.

Proof. See Appendix B.4.

Similar to the case of permanent shocks only, the term structures of growth risk under F
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and Fo are not equal. At any finite horizon, the risk perceived under the partial information

filtration is higher. In addition, the difference between the partial and full information

term structures is a hump-shaped function of the horizon. These results are summarized in

Proposition 5 below.

Proposition 5. The following properties hold:

limτ→0 σ
2
C(t, τ) = limτ→0 σ̂

2
C(t, τ) = σ2

y + σ2
z ,

limτ→∞ σ
2
C(t, τ) = limτ→∞ σ̂

2
C(t, τ) = σ2

y .

(17)

Moreover, for any finite horizon τ > 0:

σ̂2
C(t, τ)− σ2

C(t, τ) > 0,

and

∂τ
(
σ̂2
C(t, τ)− σ2

C(t, τ)
) > 0 τ < τ z,

< 0 τ > τ z,
(18)

where

τ z ≡ −
1

2λz

(
1 + 2L(−1,− 1

2
√
e

)

)
> 0

and L(k, z) is k-th solution of the Lambert-W function.

Proof. See Appendix B.5.

Figure 2 illustrates the term structure of growth risk in the model with only transitory

shocks.
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Figure 2: Term Structure of Growth Risk with Transitory Shocks Only.

Parameter values are µ = 0.025, σy = 0.01, λz = 0.1, σz = 0.03.

0 5 10 15 20

0.02

0.025

0.03

Horizon (Years)

V
ol

at
il
it

y

Full information

Partial information

0 5 10 15 20

0.4

0.6

0.8

1

Horizon (Years)

V
ar

ia
n
ce

R
at

io

2.3.3 The Case of Permanent and Transitory Shocks

When aggregate output is driven by both permanent and transitory shocks, the term struc-

ture of growth risk can be either increasing or decreasing depending on which of the two

shocks dominates. The limits of the annualized variance of output growth at short and long

horizon are respectively

limτ→0 σ
2
C(t, τ) = limτ→0 σ̂

2
C(t, τ) = σ2

y + σ2
z ,

limτ→∞ σ
2
C(t, τ) = limτ→∞ σ̂

2
C(t, τ) = σ2

y + σ2
x

λ2x
.

At the short end, growth risk is driven by the volatility of the transitory shock, σz.

On the contrary, it is the volatility of the permanent shock (scaled by the mean-reversion

speed), σx, that influences growth risk at the long end. The lower the mean-reversion speed

of the permanent shock, λx, the higher the output growth volatility at the long end. Figure

3 illustrates the term structures of growth risk in the model with both permanent and

transitory shocks for different values of the mean-reversion speed λx.

Importantly, in the economy with both permanent and transitory shocks, partial infor-

mation and learning can alter the shape of the term structure of growth risk perceived by the

agent. Figure 4 illustrates the case when the true term structure of growth risk is decreasing
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Figure 3: Term Structure of Growth Risk with Permanent and Transitory
Shocks.

Parameter values are µ = 0.025, σy = 0.01, σx = 0.01, λz = 0.1, σz = 0.03.
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Mean-Reversion Speed λx = 0.5

up to one year and then flat. However the agent, unable to directly observe the shocks that

drive output, perceives the term structure as increasing for up to one year and decreasing

afterwards.
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Figure 4: Term Structure of Growth Risk with Permanent and Transitory
Shocks.

Parameter values are µ = 0.025, σy = 0.01, λx = 1.5, σx = 0.05, λz = 0.6, σz = 0.035.
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3 Asset Pricing

In this section we study the role of learning in the context of a general equilibrium asset

pricing model. We focus on the equilibrium term structures of dividend strips and interest

rates. We compare the shape of these term structures derived under partial information to

those in the full information economy.

We consider an endowment economy (Lucas, 1978) in which the output process follows

the dynamics in (1). In equilibrium, the representative agent’s aggregate consumption is

equal to the output. As we have seen in Section 2, the permanent shock x induces an

upward-sloping effect on the term structure of growth risk, whereas the transitory shock z

induces a downward-sloping effect. The two shocks jointly allow for a flexible shape of the

term structure of growth risk.

The representative agent features recursive preferences in the spirit of Kreps and Porteus

(1979), Epstein and Zin (1989), Weil (1989), and Duffie and Epstein (1992). These prefer-

ences allow for the separation between the elasticity of intertemporal substitution and the

coefficient of relative risk aversion. Given a consumption process C, the utility at time t is
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defined as

Ut ≡
[
(1− δdt)C

1−γ
θ

t + δdtEt
[
U1−γ
t+dt | F

o
t

] 1
θ

] θ
1−γ

,

where δ is the time discount factor, γ is the coefficient of risk aversion, ψ is the elasticity of

intertemporal substitution, and θ = 1−γ
1− 1

ψ

.

Note that expectations are taken under the observation filtration Fo. Thus, the dynamics

of aggregate consumption depend on the filter estimates x̂ and ẑ, as provided in equations

(6)–(8). The only source of uncertainty is the Fot –Brownian motion B̂t.

In order to derive the price of dividend strips and equity, we assume a simple dynamics

for dividends. In line with the existing literature (e.g., Abel, 1999; Bansal and Yaron, 2004)

we define dividends as levered consumption:

Dt = e−βdtCφ
t ,

where φ ≥ 1 is the leverage parameter and βd is a parameter that determines the growth rate

of dividends. Note that we do not need to alter the learning problem of the agent; Observing

the dividend process does not bring any additional information compared to observing only

the path of consumption. This is because the dividend process is a deterministic function of

consumption.

Recursive preferences lead to a non-affine state-price density. Therefore, to solve for

prices and preserve analytic tractability, we follow the methodology presented by Eraker and

Shaliastovich (2008), which is based on the Campbell and Shiller (1988) log-linearization.

The discrete time (continuously compounded) log-return on aggregate wealth W (e.g., the

claim on the aggregate consumption stream {Ct}t≥0) can be expressed as

logRt+1 = log
Wt+1 + Ct+1

Wt

= log (ewct+1 + 1)− wct + log
Ct+1

Ct
,
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where wc ≡ log(W/C). A log-linearization of the first summand around the mean log

wealth-consumption ratio leads to

logRt+1 ≈ k0 + k1wct+1 − wct + log
Ct+1

Ct
,

where the endogenous constants k0 and k1 satisfy

k0 = − log
(
(1− k1)1−k1kk11

)
and k1 = eE(wct|F

o)/
(
1 + eE(wct|F

o)
)
.

Campbell, Lo, and MacKinlay (1997) and Bansal, Kiku, and Yaron (2012) provide evidence

of the high accuracy of this log-linearization, which we assume exact hereafter. We follow

Eraker and Shaliastovich (2008) and consider the continuous time counterpart defined as:

d logRt = k0dt+ k1d(wct)− (1− k1)wctdt+ d logCt. (19)

Recursive preferences lead to the following Euler equation, which enables us to characterize

the state-price density, M , that prices any asset in the economy:

E
[
exp

(
log

Mt+τ

Mt

+

∫ t+τ

t

d logRs

) ∣∣Fot ] = 1.

The state-price density satisfies

d logMt = θ log δdt− θ

ψ
d logCt − (1− θ)d logRt.

Proposition 6 below characterizes the state-price density, the risk-free rate, and the price

of risk in our economy.
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Proposition 6. The equilibrium state-price density has dynamics given by

dMt

Mt

= −rtdt− ΛdB̂t,

where the risk-free rate satisfies

rt = r0 + rx̂x̂t + rẑ ẑt,

with

r0 = − 1− γ
1− 1/ψ

log δ +
1/ψ − γ
1− 1/ψ

log k1 + γµ− 1

2
Θ (σ̂y, σ̂x, σ̂z) ,

rx̂ =
1

ψ
,

rẑ = − λz
ψ
,

and the market price of risk equals

Λ = γσ̂y +

(
(γ − 1/ψ)

1/k1 − (1− λx)

)
σ̂x +

(
γ − λz(γ − 1/ψ)

1/k1 − (1− λz)

)
σ̂z,

where σ̂y ≡
√
v − σ̂z, and σ̂x, σ̂z are defined in Appendix B.1. Θ (σ̂y, σ̂x, σ̂z) is defined in

Appendix B.6.

Proof. See Appendix B.6.

Proposition 7 below characterizes the zero-coupon bond price and yield.

Proposition 7. The equilibrium price of the zero-coupon bond with time to maturity τ is

given by

B(t, τ) = E
[
Mt+τ

Mt

∣∣Fot ] = eq0(τ)+qx̂(τ)x̂t+qẑ(τ)ẑt ,
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where q0(τ) is derived in Appendix B.7

qx̂(τ) = − 1

λxψ

(
1− e−λxτ

)
,

qẑ(τ) =
1

ψ

(
1− e−λzτ

)
.

The yield to maturity τ is defined as Y TM(t, τ) = −(1/τ) logB(t, τ).

Proof. See Appendix B.7.

Proposition 8 below characterizes the dividend strip price and its return moments.

Proposition 8. The equilibrium price of the dividend strip with time to maturity τ is given

by

S(t, τ) =E
[
Mt+τ

Mt

Dt+τ

∣∣Fot ] = e−βdt+φŷt+w0(τ)+wx̂(τ)x̂t+wẑ(τ)ẑt ,

where w0(τ) is derived in Appendix B.8 and

wx̂(τ) =
1

λxψ
(1− e−λxτ )(φψ − 1)

wẑ(τ) =
1

ψ

(
1− e−λzτ (1− φψ)

)
.

The return premium of the dividend strip with time to maturity τ is given by

RP(t, τ) = − 1

dt

〈dMt

Mt

,
dS(t, τ)

S(t, τ)

〉
= (φσ̂y + wx̂(τ)σ̂x + wẑ(τ)σ̂z) Λ.

The return volatility of the dividend strip with time to maturity τ is given by

Vol(t, τ) =

√
1

dt

〈dS(t, τ)

S(t, τ)

〉
=
∣∣φσ̂y + wx̂(τ)σ̂x + wẑ(τ)σ̂z

∣∣.

Proof. See Appendix B.8.
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The log return on equity, logRe, is defined in a similar way as the return on aggregate

wealth in (19):

d logRe
t = k0,ddt+ k1,dd(pdt)− (1− k1,d)pdtdt+ d logDt,

where pdt ≡ logPt/Dt and k0,d, k1,d are endogenous constants. The equity price can be

approximated as an exponential affine function of the state variables. Proposition 9 below

characterizes the equity price and its return moments.

Proposition 9. The equilibrium price of equity is given by

Pt =

∫ ∞
0

Et
[
Mt+τ

Mt

Dt+τ

∣∣Fot ] dτ ≈ Dte
Ad+Bx̂,dx̂t+Bẑ,dẑt ,

where Ad is derived in Appendix B.9 and

Bx̂,d =
φ− 1/ψ

1− k1,d(1− λx)
,

Bẑ,d = − λz(φ− 1/ψ)

1− k1,d(1− λz)
.

The equity risk premium is given by

RP(t) = − 1

dt

〈dMt

Mt

,
dPt
Pt

〉
= (φσ̂y +Bx̂,dσ̂x + (φ+Bẑ,d) σ̂z) Λ.

The equity return volatility is given by

Vol(t) =

√
1

dt

〈dPt
Pt

〉
=
∣∣φσ̂y +Bx̂,dσ̂x + (φ+Bẑ,d) σ̂z

∣∣.

Proof. See Appendix B.9.
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4 Results

In this section we calibrate the model, provide empirical support for it, and study its asset-

pricing predictions on the level and timing of both equity return moments and interest rates.

4.1 Model Calibration and Empirical Support

In order to understand the role of learning on the term structures of both equity return

moments and interest rates, it is important to parametrize the output dynamics so that

it matches the empirical properties of growth risk across different horizons. We calibrate

the output dynamics parameters as follows. First, we match the short term (e.g., one-year)

empirical level of volatility. Second, we match the empirical observation that output growth

volatility is flat across horizons. Evidence of this empirical observation is provided in Hasler

and Marfè (2016) and Marfè (2017), who document that the variance ratios of output growth

rates in the U.S. are approximatively flat around unity. Also, Dew-Becker (2017) documents

that robust estimators of long-run growth volatility are very close to estimates of the one-year

volatility.

Therefore, we set the output growth parameter µ = 2.5% and obtain the other output

dynamics parameters Θ = {σy, σx, λx, σz, λz} by minimizing the following objective:

Θ? = arg min

{[
σC(t, 1)− 3%

]2
+ α

∫ 50

0

[
V RC(t, τ)− 1

]2
dτ

}

where α is a weighting constant. This minimization procedure yields: σy = 0.0002, σx =

0.040, λx = 1.346, σz = 0.033, and λz = 0.549.

In addition we set βd = µ(φ− 1) such that the long-run growth rate of dividends equals

that of output. The parameter φ captures the excessive volatility of dividends relative to

output. We use φ = 7.5 to approximatively match the one-year volatility of shareholders’

remuneration in the U.S., which is about 20% (see Belo et al. (2015)). Therefore, we use the

label dividend with slight abuse of terminology, as we actually consider the more appropriate
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full shareholders’ remuneration consisting of dividends plus net repurchases. Finally, we

choose a relative risk aversion, γ = 7.5, an elasticity of intertemporal substitution, ψ = 1.5,

and a time discount factor, δ = 0.99.

Figure 5 shows the calibrated model-implied term structures of volatility and variance ra-

tios for both output growth and dividend growth. Under full information, the term structure

of output growth variance ratios is about flat because it was calibrated accordingly. This

shows that the model dynamics are flexible enough to match the observed term structure of

output growth variance ratios together with a 3% output growth volatility. Note that these

flat variance ratios could also be obtained by assuming an i.i.d. process for output. However,

the presence of the latent variables xt and zt in our model is key for asset pricing because

the agent’s estimates of these variables are priced risk factors in equilibrium. We note that,

given our calibration, learning does not significantly affect the overall level of output growth

volatility and dividend growth volatility. Indeed, the former lies in the interval 2.5-3%, while

the latter lies in the interval 21-24%.

Importantly, learning alters the timing of output growth risk and dividend growth risk

across different horizons. We observe that the variance ratios of both output growth and

dividend growth are decreasing with the horizon under partial information. The reason is

the following. The transitory process z is mean-reverting but not highly persistent under

our calibration. This implies that the horizon at which the filtered volatility of z diverges

the most from the true volatility is relatively short. As a result, long horizon variance ratios

lie below unity under partial information. As shown in what follows, learning also affects

the timing of equity risk premia via the impact of the priced risk factors x̂ and ẑ.

We now perform an empirical exercise that provides support for the mechanism of the

model. Our theoretical model predicts that empirically observable equilibrium outcomes are

function of the latent factors filtered by the agent, x̂ and ẑ. Two key equilibrium outcomes

are the risk-free rate and the price-dividend ratio. At the same time, the filtered latent
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Figure 5: Term Structures of Output Growth Risk and Dividend Growth Risk
Calibrated to U.S. Data.
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factors x̂ and ẑ are the drivers of the agent’s belief about expected growth:

1

dt
E[d logCt|Fot ] = µ+ x̂t − λz ẑt.

We aim to verify whether the theoretical link between equilibrium outcomes and beliefs

about expected growth finds support in U.S. data.

First, we use the time series of the risk-free rate and the S&P 500 log price-dividend ratio

obtained from Robert Shiller’s website to infer the model-implied time series of x̂ and ẑ, as
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follows:2

min
{x̂t, ẑt}

∣∣r data
t − r model

t

∣∣2 +
∣∣pd data

t − pd model
t

∣∣2, ∀ t.

Second, we construct the model-implied time series of expected growth (up to a constant),

as follows:

ĝ model
t = x̂t − λz ẑt.

Third, we consider several measures to proxy for agents’ beliefs about expected growth.

Namely, we consider the mean and median forecasts of real GDP growth, industrial pro-

duction growth, and corporate profits growth. Quarterly data available from Q4:1968 to

Q2:2015 are obtained from the Survey of Professional Forecasters. We then regress these

proxies of beliefs about expected growth on the model-implied time series, as follows:

ĝ survey
t = α + β ĝ model

t + εt.

Whether or not the data lend empirical support to the economic mechanism of the model

depends on the sign and significance of the coefficient β. Indeed, if β is positive and signifi-

cant, then the way the model predicts that beliefs about growth shape equilibrium prices is

consistent with empirical evidence.

Table 1 reports the results from the regression. All of the six empirical measures of beliefs

about expected growth are positively and significantly related to the model-implied beliefs

inferred from actual prices. The coefficient β is statistically different from zero at the 1%

level in all of the six cases and the R2 ranges from 6% to 10%. Thus, we recover in actual

data the model mechanism through which beliefs about growth drive prices.

2The risk-free rate and the log price-dividend ratio are affine in x̂ and ẑ. Therefore, by observing the
former we can infer the latter by simply solving a linear system.
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Table 1: Model-Implied Growth Forecasts and Survey Data.
This table reports the regression coefficients, t-statistic, and R2 from the regressions of several
measures of expected growth forecasts on the model-implied expected growth:

ĝ survey
t = α+ β ĝ model

t + εt.

The expected growth forecasts are either the cross-sectional mean or median from the Survey of
Professional Forecasters (SPF) about real GDP, industrial production, and corporate profits. The
data are quarterly from Q4:1968 to Q2:2015. The model-implied time series of expected growth is
computed as

ĝ model
t = x̂t − λz ẑt,

where x̂t and ẑt are extracted by minimizing the distance between the time series of the risk-free
rate and the S&P 500 log price-dividend ratio obtained from Robert Shiller’s website and their
model-implied counterparts.

Growth Forecasts: Gross Domestic Industrial Corporate
Product Production Profits

mean median mean median mean median

constant 0.029∗∗∗ 0.029∗∗∗ 0.035∗∗∗ 0.034∗∗∗ 0.094∗∗∗ 0.085∗∗∗

t-stat (13.88) (13.65) (8.31) (8.09) (8.53) (7.89)

slope 0.133∗∗∗ 0.131∗∗∗ 0.243∗∗∗ 0.229∗∗∗ 0.762∗∗∗ 0.742∗∗∗

t-stat (4.06) (3.90) (3.64) (3.40) (4.35) (4.33)

R2 (%) 8.18 7.61 6.69 5.87 9.27 9.10
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4.2 Term Structures

This section studies the term structures of equity risk, equity risk premia, and interest rates.

The former are computed using the instantaneous return volatility and risk premium of

dividend strips with different maturities. The latter is obtained by computing the yield of

zero-coupon bonds with different maturities.

Figure 6 depicts the term structures under both full information and partial information

with learning. The upper panel shows that, under full information, the risk premium for

the dividend strip with short maturity (e.g. one-year) is close to zero. Risk premia increase

sharply up to the three-year maturity and then are flat around a level of about 4.2%. As a

consequence of learning, the behavior of the dividend strip risk premium is opposite under

partial information. We note that the risk premium at short maturity (e.g. one-year) is

about 6.2%. Risk premia decrease uniformly up to the ten-year maturity and then are

almost flat around a level of about 5.0%. To summarize, the slope of the term structure of

equity risk premia switches from positive in the full information economy to negative in the

partial information economy with learning.

Since it is typically easier for investors to acquire accurate information in good times

than in bad times (Bloom, 2009, 2014; Jurado et al., 2015), our economies with full and

partial information can be interpreted as bounds of a single economy with counter-cyclical

uncertainty. In good times uncertainty is low, and therefore investors are well informed.

According to our model with full information, this predicts an upward-sloping term structure

of risk premia. In bad times uncertainty is high, thereby forcing investors to actively learn.

In this case, our model with partial information and learning predicts a downward-sloping

term structure of risk premia. This reasoning shows that our model can explain why the

slope of the term structure of equity risk premia is pro-cyclical in the data (van Binsbergen

et al., 2013; Bansal et al., 2019).

The middle panel of Figure 6 depicts the dividend strip return volatility. Equity risk is

downward-sloping under both full information and partial information with learning. In the
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Figure 6: Term Structures of Equity Premia, Equity Risk, and Bond Yields.
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latter case, the level of volatility is somewhat higher and the negative slope in the first five

years is steeper than under full information. This result comes from the fact that the term

structure of growth risk is downward-sloping under partial information (see Figure 5).

The lower panel of Figure 6 shows the zero-coupon bond yields. Under full information
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we observe that bond yields are downward-sloping, in contrast with the data. Under partial

information we find that learning produces two results which make the model predictions

conform with the data. First, the short-term bond yield is lower than under full information.

Second, the slope of the term structure is positive, consistent with TIPS data. Indeed,

between 2003 and 2018 the average yields on TIPS were 0.6%, 0.9%, 1.1%, and 1.4% at the

5-year, 7-year, 10-year, and 20-year maturities, respectively.

4.2.1 Why Does Learning Switch the Slope of the Term Structures?

Under full information the risk premium on the dividend strip with maturity τ is given by3

RP Full(t, τ) =
∑
i=y,x,z

Λi σiwi(τ),

where wi(τ) = ∂i logS(t, τ), i = {y, x, z}. That is, the risk premium is a sum of price sensi-

tivities (wi(τ), the only terms depending on τ) weighted by the product of the fundamental

volatilities (σi) and the corresponding prices of risk (Λi).

Under partial information the risk premium on the dividend strip with maturity τ is

given by

RP Partial(t, τ) = Λ
∑
i=ŷ,x̂,ẑ

σ̂iwi(τ),

where wi(τ) = ∂i logS(t, τ), i = {ŷ, x̂, ẑ}. That is, the risk premium is the product of the

unique price of risk in the economy (Λ) and a sum of price sensitivities (wi(τ), the only terms

depending on τ) weighted by the fundamental volatilities (σ̂i).

Note that wy(τ), wx(τ), and wz(τ) are respectively constant, increasing, and decreasing

with the maturity τ . The same holds for wŷ(τ), wx̂(τ), and wẑ(τ).

The positive slope of the term structure of equity risk premia under full information is

due to the fact that the price of risk Λx, which rewards for bearing variations in x, is larger

than the price of risk Λz, which rewards for bearing variations in z. Even if wz(τ) is steeper

3Results pertaining to the full information model are provided in Appendix C.
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Figure 7: Price Elasticities.
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than wx(τ), the price of risk Λx is large enough to dominate the impact of the transitory

shock z. Therefore, the term structure of risk premia is upward-sloping. Note that such a

positive slope obtains in the full information case, although the model has been calibrated

to match the empirically observed flat term structure of growth risk.

Consider now the partial information case and the role of learning. While the processes y,
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x, and z have independent increments, learning leads to an endogenous correlation structure

between the dynamics of the filtered variables, ŷ, x̂, and ẑ. More precisely, learning implies

perfect correlations among these filtered variables because the investor updates her beliefs by

observing a single source of information (the history of output). In turn, the unique source

of risk commands a unique price of risk Λ. Therefore, learning neutralizes the role of the

prices of risk in determining the shape of the term structure. Hence, its slope is solely driven

by the magnitude and the steepness of the price elasticities. In our case, the range of values

taken by the price elasticity with respect to ẑ (i.e., σ̂z wz(τ)) is substantially larger than the

range of values taken by the price elasticity with respect to x̂ (i.e., σ̂xwx̂(τ)). Formally, we

have

lim
τ→0

σ̂z wẑ(τ) − lim
τ→∞

σ̂z wẑ(τ) > lim
τ→∞

σ̂xwx̂(τ) − lim
τ→0

σ̂xwx̂(τ)

when

σ̂z >
σ̂x
λx
,

provided that φ > 1/ψ. Therefore, learning leads to a downward-sloping term structure of

equity risk premia via its impact on both the quantity of risk across horizons (driven by the

perception of downward-sloping growth risk) and the price of risk (driven by the endogenous

correlation structure among the filtered variables).

4.2.2 Robustness: The Impact of Preferences

For robustness, we investigate the impact of preference parameters on the term structures

of equity risk premia, equity return volatility, and interest rates. We compare the baseline

setting (γ = 7.5, ψ = 1.5) with two alternative parametrizations: (γ = 10, ψ = 1.5) and

(γ = 7.5, ψ = 1.25). Note that, for each parametrization, the representative agent has a

preference for early resolution of uncertainty.

Figure 8 depicts the term structures. An increase in relative risk aversion increases all

the three prices of risk under full information as well as the unique price of risk under partial
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Figure 8: The Impact of Preferences on the Term Structures.
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information with learning. However, an increase in relative risk aversion does not alter

the relative size of price elasticities. In turn, we observe an increase in the level of equity

risk premia while preserving the sign switch of the slope of the term structure of equity

risk premia implied by learning. That is, with a risk aversion γ = 10 the model predicts

simultaneously a high equity premium (about 7%) and a downward-sloping term structure of

dividend strip risk premia. This is a remarkable result of learning, which obtains in absence

of any stochastic volatility in fundamentals; all fundamental processes were assumed to be

homoscedastic for the sake of highlighting the impact of learning on the term structures.

An increase in relative risk aversion decreases slightly the level of the risk-free rate, but it

does not alter the impact of learning. The slope of the term structure of bond yields switches

from negative under full information to positive under partial information. That is, learning

yields an increasing term structure of interest rates, as in the data. Finally, an increase in

relative risk aversion does not affect substantially the term structure of dividend strip return

volatility because the relative size of price elasticities are weakly sensitive to changes in risk

aversion.

Consider now the case of a decrease in the elasticity of intertemporal substitution. Under

full information, the price of risk for the permanent component x decreases and the price

of risk for the transitory component z increases. Since the former is much larger than the

latter in our calibration, the net effect reduces the level of the equity premium. Under

partial information, the unique price of risk decreases. At the same time, price elasticities

with respect to x and z move in opposite directions but with the former being smaller than

the latter. In turn, learning still switches the sign of the term structure of equity risk premia.

A lower elasticity of intertemporal substitution leads bond yields to be more sensitive

to the long-run growth rate. In turn, bond yields are slightly higher than in the baseline

economy under both full information and partial information with learning. However, even in

this case the effect of learning is preserved. Bond yields are decreasing under full information

and increasing under partial information. Finally, the term structure of dividend strip return
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volatility is barely affected by a decrease in the elasticity of intertemporal substitution. The

relative size of price elasticities is unaffected and the downward-sloping shape is driven by

the price elasticity with respect to z under both full and partial information.

4.3 Asset Pricing Moments

This section highlights how partial information and learning affect the asset pricing moments.

Table 2 compares the average model-implied and empirical risk-free rate, equity risk

premium, equity return volatility, and dividend yield.

Table 2: Model-Implied and Empirical Asset Pricing Moments.
The first and second columns use real S&P 500 prices and dividends as well as real interest rates.
Monthly data from 1871 to 2018 are obtained from Robert Shiller’s website. The first column uses
pre- and post-war data, while the second column uses post-war data only. The last six columns
provide the model-implied counterparts.

Data Preference Parameters
1871-2018 1946-2018 γ = 7.5, ψ = 1.5 γ = 10, ψ = 1.5 γ = 7.5, ψ = 1.25

Information Information Information
Full Partial Full Partial Full Partial

Risk-free rate (%) 4.2 2.0 2.5 2.1 2.5 1.9 2.9 2.4

Equity premium (%) 3.5 5.5 4.1 5.2 5.6 6.9 4.0 5.2

Return volatility (%) 14.4 12.0 20.3 22.8 20.2 23.0 20.0 22.9

Sharpe ratio (%) 24.1 46.0 20.4 22.8 27.7 30.1 20.0 22.7

Dividend yield (%) 4.3 3.4 2.1 2.1 3.5 3.7 2.4 2.4

Under full information and using our benchmark parameters (γ = 7.5, ψ = 1.5), the

risk-free rate, equity premium, and return volatility are 2.5%, 4.1%, and 20.3%, respectively.

The risk premium and risk-free rate are respectively lower and higher than their post-war

counterparts. As a result, the Sharpe ratio is lower that its empirical counterpart. Also, the

dividend yield (2.1%) is lower than in actual data.

Under partial information, learning yields a lower risk-free rate (2.1%) and a higher equity

premium (5.2%) than under full information. This corresponds to a decrease in the risk-free
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rate and an increase in the equity premium of about 25%. Both the equity premium and the

risk-free rate are fairly close to their post-war counterparts under partial information, which

shows that learning helps to solve the equity premium and risk-free rate puzzles.

An increase in risk aversion (γ = 10, ψ = 1.5) modifies the results as follows. The risk-free

rate decreases slightly and the equity premium increases substantially, which implies that

the Sharpe ratio increases substantially too. This result obtains under both full and partial

information. In addition, the dividend yields are fairly close to their empirical counterparts.

A decrease in the elasticity of intertemporal substitution (γ = 7.5, ψ = 1.25) has minor

effects on the model-implied moments. The risk-free rate increases marginally, while the

equity premium is unaffected. The reason is that a lower elasticity of intertemporal substi-

tution reduces the compensation associated with the permanent shock x but increases the

compensation associated with the transitory shock zt. That is, these two effects offset each

other.

While our main goal is to study the role of learning on the term structures, it is important

to note that the model provides a good fit to the main asset pricing moments. In particular,

partial information and learning yield a lower risk-free rate, a higher equity premium, and a

higher Sharpe ratio than in the full information economy.

5 Conclusion

This paper shows that rational learning about expected output growth helps explain the

term structures of equity and interest rates. While the term structures of equity risk pre-

mia and interest rates would be respectively upward-sloping and downward-sloping under

full information, rational learning implies a switch of sign in the slope of these term struc-

tures. The fact that the agent has to filter out unobservable economic fundamentals alters

the way different sources of risk are priced in equilibrium. The term structure of equity

risk premia becomes downward-sloping, while the term structure of interest rates becomes
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upward-sloping. This economic channel is simple and novel, and arises naturally given the

latent nature of expected growth. Economic growth forecast data lends support to the model

mechanism. Moreover, this mechanism can explain the pro-cyclical variation in the slope of

the term structure of equity risk premia as incomplete information and the need for learning

become more pronounced in bad times.
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Appendix

A Notation Summary

Parameter Interpretation
µ Average growth in log consumption
σy > 0 Volatility of the permanent component of consumption growth
λx > 0 Mean reversion of the stochastic drift of the permanent component
σx > 0 Volatility of of the stochastic drift of the permanent component
λz > 0 Mean reversion of the transitory component
σz > 0 Volatility of of the transitory component
βd Parameter that determines the growth rate of dividends
φ ≥ 1 Leverage
δ ∈ (0, 1) Rate of time preference
γ > 0 Relative risk aversion
ψ > 0 Elasticity of intertemporal substitution

B Proofs

B.1 Proposition 1

Proof. See Liptser and Shiryaev (2001).
The steady-state volatilities σ̂x and σ̂z satisfy

σ̂x =
γ̄x − λzγ̄xz√

v
, σ̂z =

σ2
z + γ̄xz − λzγ̄z√

v
,

where the steady-state posterior variances γ̄x and γ̄z, and the steady-state posterior covari-
ance γ̄xz solve the following system of equations

0 =σ2
x − 2λxγ̄x − v−1 (γ̄x − λzγ̄xz)2 ,

0 =σ2
z − 2λzγ̄z − v−1

(
σ2
z − λzγ̄z + γ̄xz

)2
,

0 = − (λx + λz) γ̄xz − v−1 (γ̄x − λzγ̄xz)
(
σ2
z − λzγ̄z + γ̄xz

)
.

�

B.2 Proposition 2

Proof. Using the moment generating function of consumption under the full information
filtration and the definition of consumption volatility in (13), we can compute the annualized
variance of consumption as

σ2
C(t, τ) = σ2

y +
σ2
xe
−2λxτ

(
e2λxτ (2λxτ − 3) + 4eλxτ − 1

)
2λ3xτ

. (20)
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Partial derivatives with respect to the horizon τ , volatility σx, and the mean-reversion speed
λx are as follows:

∂σ2
C(t, τ)

∂τ
=
σ2
xe
−2λxτ

(
1 + 3e2λxτ + 2λxτ − 4eλxτ (λxτ + 1)

)
2λ3xτ

2
,

∂σ2
C(t, τ)

∂σx
= −

σx
(
3 + e−2λxτ − 4e−λxτ − 2λxτ

)
λ3xτ

,

∂σ2
C(t, τ)

∂λx
=
σ2
xe
−2λxτ

(
2λxτ + e2λxτ (9− 4λxτ)− 4eλxτ (λxτ + 3) + 3

)
2λ4xτ

.

For τ > 0 the following holds:
∂σ2
C(t,τ)

∂τ
> 0,

∂σ2
C(t,τ)

∂σx
> 0, and

∂σ2
C(t,τ)

∂λx
< 0. The fist inequality

holds since

1 + 3e2λxτ + 2λxτ − 4eλxτ (λxτ + 1)

= 2
(
eλxτ − 1

) (
eλxτ − 2λxτ − 1

)
+
(
e2λxτ − 2λxτ − 1

)
>
(
eλxτ − 1

) (
eλxτ − 2λxτ − 1

)
+
(
e2λxτ − 2λxτ − 1

)
= 2eλxτ

(
eλxτ − λxτ − 1

)
> 0 for τ > 0.

The second inequality holds since

e2λxτ
(
3 + e−2λxτ − 4e−λxτ − 2λxτ

)
= 1− 4eλxτ + e2λxτ (2− 3λxτ)

< 1− 4eλxτ + eλxτ (2− 3λxτ)

= 1− eλxτ (1 + λxτ) < 0 for τ > 0.

The third inequality,
∂σ2
C(t,τ)

∂λx
< 0, holds since 3+2λxτ +e2λxτ (9−4λxτ)−4eλxτ (λxτ +3) < 0.

Similarly, using the moment generating function of consumption under the partial infor-
mation filtration and the definition of consumption volatility in (14), we can compute the
agent’s estimate of the annualized variance of consumption as

σ̂2
C(t, τ) =

e−2λxτ

2λ3xτ

(
2λxσy

((
eλxτ − 1

)2√
λ2xσ

2
y + σ2

x + λ2xσyτe
2λxτ − λxσy

(
eλxτ − 1

)2)
+ σ2

x

(
e2λxτ (2λxτ − 3) + 4eλxτ − 1

) )
. (21)

Partial derivatives with respect to the horizon τ , volatility σx, and the mean-reversion speed
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λx are as follows:

∂σ̂2
C(t, τ)

∂τ
=
e−2λxτ

2λ3xτ
2

(
2λxσy

(
eλxτ − 1

) (
1 + 2λxτ − eλxτ

) (√
λ2xσ

2
y + σ2

x − λxσy
)

+ σ2
x

(
1 + 3e2λxτ + 2λxτ − 4eλxτ (λxτ + 1)

) )
,

∂σ̂2
C(t, τ)

∂σx
=
e−2λxτσx
λ3xτ

(
λxσy

(
eλxτ − 1

)2√
λ2xσ

2
y + σ2

x

+ eλxτ
(
4 + eλxτ (2λxτ − 3)

)
− 1

)
,

∂σ̂2
C(t, τ)

∂λx
=

e−2λxτ

2λ4xτ
√
λ2xσ

2
y + σ2

x

(
4λ4xσ

3
yτ
(
eλxτ − 1

)
+ 3σ2

x

(
−4eλxτ + 3e2λxτ + 1

)√
λ2xσ

2
y + σ2

x

+ 2λ2xσy
(
eλxτ − 1

) (
σy
(
eλxτ − 1

)√
λ2xσ

2
y + σ2

x + 2σ2
xτ
)

− 2λxσ
2
x

(
τ
(
2eλxτ

(
eλxτ + 1

)
− 1
)√

λ2xσ
2
y + σ2

x + 2σy
(
eλxτ − 1

)2)
− 2λ3xσ

2
y

(
eλxτ − 1

) (
2τ
√
λ2xσ

2
y + σ2

x + σy
(
eλxτ − 1

)))
.

For τ > 0 we have
∂σ̂2
C(t,τ)

∂τ
> 0,

∂σ̂2
C(t,τ)

∂σx
> 0, and

∂σ̂2
C(t,τ)

∂λx
< 0. The first inequality holds since

2λxσy

(√
λ2xσ

2
y + σ2

x − λxσy
) (
eλxτ − 1

) (
1 + 2λxτ − eλxτ

)
+ σ2

x

(
1 + 3e2λxτ + 2λxτ − 4eλxτ (λxτ + 1)

)
≥ min

{
λxσy

(√
λ2xσ

2
y + σ2

x − λxσy
)
, σ2

x

}(
2
(
eλxτ − 1

) (
1 + 2λxτ − eλxτ

)
+
(
1 + 3e2λxτ + 2λxτ − 4eλxτ (λxτ + 1)

) )
= min

{
λxσy

(√
λ2xσ

2
y + σ2

x − λxσy
)
, σ2

x

}(
e2λxτ − 2λxτ − 1

)
> 0 for τ > 0,

where we use the fact that for 0 < a < b and y > 0 we have ax + by ≥ min {a, b} (x + y).
The second inequality holds since 4 + eλxτ (2λxτ − 3) > 0. Finally, by a lengthy and tedious

calculation, one can show that
∂σ̂2
C(t,τ)

∂λx
< 0.

�

B.3 Proposition 3

Proof. Taking the limits of (20) and (21) as horizon τ approaches zero or infinity gives the
result in (15). Furthermore,

σ̂2
C(t, τ)− σ2

C(t, τ) =
e−2λxτ

(
eλxτ − 1

)2 (√
σ2
y

(
λ2xσ

2
y + σ2

x

)
− λxσ2

y

)
λ2xτ

> 0. (22)
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The derivative of the difference in (22) with respect to horizon is

∂ (σ̂2
C(t, τ)− σ2

C(t, τ))

∂τ
=
e−2λxτ

(
eλxτ − 1

) (
1 + 2λxτ − eλxτ

) (√
σ2
y

(
λ2xσ

2
y + σ2

x

)
− λxσ2

y

)
λ2xτ

2
.

The sign of this derivative depends on the sign of 1 + 2λxτ − eλxτ and the result in (16)
follows.

�

B.4 Proposition 4

Proof. Using the moment generating function of consumption under the full information
filtration and the definition of consumption volatility in (13), we can compute the annualized
variance of consumption as

σ2
C(t, τ) = σ2

y +
σ2
z

(
1− e−2λzτ

)
2λzτ

. (23)

Partial derivatives with respect to the horizon τ , volatility σz, and the mean-reversion speed
λz are as follows:

∂σ2
C(t, τ)

∂τ
= −

σ2
ze
−2λzτ

(
e2λzτ − 1− 2λzτ

)
2λzτ 2

,

∂σ2
C(t, τ)

∂σz
=
σz
(
1− e−2λzτ

)
λzτ

∂σ2
C(t, τ)

∂λz
= −

σ2
ze
−2λzτ

(
e2λzτ − 1− 2λzτ

)
2λ2zτ

.

For τ > 0 we have
∂σ2
C(t,τ)

∂τ
< 0,

∂σ2
C(t,τ)

∂σz
> 0, and

∂σ2
C(t,τ)

∂λz
< 0.

Similarly, using the moment generating function of consumption under the partial infor-
mation filtration and the definition of consumption volatility in (14), we can compute the
agent’s estimate of the annualized variance of consumption as

σ̂2
C(t, τ) =

e−2λzτ

2λzτ

( (
eλzτ − 1

)(
2
√
σ2
y

(
σ2
y + σ2

z

) (
eλzτ − 1

)
+ σ2

z

(
eλzτ + 1

))
(24)

+ 2σ2
y

(
e2λzτ (λzτ − 1) + 2eλzτ − 1

) )
.

Partial derivatives with respect to the horizon τ , volatility σz, and the mean-reversion speed
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λz are as follows:

∂σ̂2
C(t, τ)

∂τ
= −e

−2λzτ

2λzτ 2

(
2σy

(√
σ2
y + σ2

z − σy
) (
eλzτ − 1

) (
eλzτ − 2λzτ − 1

)
+ σ2

z

(
e2λzτ − 2λzτ − 1

) )
,

∂σ̂2
C(t, τ)

∂σz
=
σze
−2λzτ

λzτ

(
eλzτ − 1

) σ2
y

(
eλzτ − 1

)√
σ2
y

(
σ2
y + σ2

z

) + eλzτ + 1

 ,

∂σ̂2
C(t, τ)

∂λz
= −e

−2λzτ

2λ2zτ

(
2σy

(√
σ2
y + σ2

z − σy
) (
eλzτ − 1

) (
eλzτ − 2λzτ − 1

)
+ σ2

z

(
e2λzτ − 2λzτ − 1

) )
.

For τ > 0 we have
∂σ̂2
C(t,τ)

∂τ
< 0,

∂σ̂2
C(t,τ)

∂σz
> 0, and

∂σ̂2
C(t,τ)

∂λz
< 0. The second inequality is

obvious, the first and last inequalities follow since

2σy

(√
σ2
y + σ2

z − σy
) (
eλzτ − 1

) (
eλzτ − 2λzτ − 1

)
+ σ2

z

(
e2λzτ − 2λzτ − 1

)
≥ min

{
2σy

(√
σ2
y + σ2

z − σy
)
, σ2

z

}( (
eλzτ − 1

) (
eλzτ − 2λzτ − 1

)
+
(
e2λzτ − 2λzτ − 1

) )
= min

{
2σy

(√
σ2
y + σ2

z − σy
)
, σ2

z

}
2eλzτ

(
eλzτ − λzτ − 1

)
> 0 for τ > 0,

where we use the fact that for 0 < a < b and y > 0 we have ax+ by ≥ min {a, b} (x+ y).

�

B.5 Proposition 5

Proof. Taking the limits of (23) and (24) as horizon τ approaches zero or infinity gives the
result in (17). Furthermore,

σ̂2
C(t, τ)− σ2

C(t, τ) =

(√
σ2
y

(
σ2
y + σ2

z

)
− σ2

y

)
e−2λzτ

(
eλzτ − 1

)2
λzτ

> 0. (25)

The derivative of the difference in (25) with respect to horizon is

∂ (σ̂2
C(t, τ)− σ2

C(t, τ))

∂τ
=
e−2λzτ

(
eλzτ − 1

) (
1 + 2λzτ − eλzτ

) (√
σ2
y

(
σ2
y + σ2

z

)
− σ2

y

)
λzτ 2

.

The sign of this derivative depends on the sign of 1 + 2λzτ − eλzτ and the result in (18)
follows.

�
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B.6 Proposition 6

Proof. This proof follows closely Eraker and Shaliastovich (2008). We conjecture that the
log wealth-consumption ratio is affine in the state variables Xt = (ŷt, ŷd,t, x̂t, ẑt)

>, where
ŷt ≡ logCt − ẑt and ŷd,t ≡ φŷt − βdt4 , so that

wct ≡ log
Wt

Ct
= A+B>Xt, (26)

and use the fact that the state variables belong to the affine class, so that their dynamics
can be written as:

dXt = µ(Xt)dt+ Σ(Xt)dB̂t

µ(Xt) =M+KXt

Σ(Xt)Σ(Xt)
> = h+

4∑
i=1

H iX i
t ,

where Xt is the vector of the filtered state variables, Σ(Xt) ∈ R4×1 encodes the diffusions

of the state variables, M ∈ R4, K ∈ R4×4, h ∈ R4×4, H ∈ R4×4×4, and B̂t is a standard
Brownian motion.

The dynamics of the state-price density then can be written as

d logMt = (θ log δ − (θ − 1) log k1 + (θ − 1)(k1 − 1)B′(Xt − µX)dt− Ω′dXt, (27)

where Xt = (ŷt, ŷd,t, x̂t, ẑt)
>, µX = (0, 0, 0, 0)>, Ω = γ(1, 0, 0, 1)> + (1 − θ)k1B, and the

coefficients A ∈ R and B ∈ R4 are the loadings defined in (26).
The coefficients A ∈ R, B ∈ R4 solve the following system of equations

0 = K>χ− θ(1− k1)B +
1

2
χ>Hχ, (28)

0 = θ(log δ + k0 − (1− k1)A) +M>χ+
1

2
χ>hχ, (29)

and the linearization coefficient k1 ∈ R satisfies

θ log k1 = θ(log δ + (1− k1)B>µX) +M>χ+
1

2
χ>hχ,

where χ = θ
(

(1− 1
ψ

)(1, 0, 0, 1)> + k1B
)

.

4Note that the dividend dynamics on the full filtration can be equivalently written as

d logDt = dyd,t + φdzt,

where

dyd,t = (µd + φxt) dt+ φσydBy,t,

with µd ≡ φµ− βd.
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Solving (28) for the vector of loadings B ∈ R4 gives

B> =

(
0, 0,

1− 1/ψ

1− k1 (1− λx)
,− λz(1− 1/ψ)

1− k1(1− λz)

)
.

Plugging this solution in equation (29) allows to solve for the coefficient A.
From the arbitrage theory we know that the state-price density Mt satisfies

dMt

Mt

= −rtdt− Λ>t dBt.

where rt is the risk-free rate and Λt is the market price of risk vector.
Eraker and Shaliastovich (2008) show that from the expression for the state price density

in (27), the risk free rate and market price of risk vector can be determined as follows:

rt = r0 + r>1 Xt,

Λt = Σ(Xt)
>Ω,

where the vector Ω = γ(1, 0, 0, 1)>+(1−θ)k1B and the coefficients r0 ∈ R and r1 ∈ R4 solve
the system of equations

r1 = (1− θ)(k1 − 1)B +K>Ω− 1

2
Ω>HΩ,

r0 = −θ log δ + (θ − 1)(log k1 + (k1 − 1)B>µX) +M>Ω− 1

2
Ω>hΩ.

Solving for r1, r0 gives r>1 = (0, 0, 1/ψ,−λz/ψ) and

r0 = − 1− γ
1− 1/ψ

log δ +
1/ψ − γ
1− 1/ψ

log k1 + γµ− 1

2
Θ (σ̂y, σ̂x, σ̂z) ,

where

Θ (σ̂y, σ̂x, σ̂z) ≡
1

ψ2(k1(λx − 1) + 1)2(k1(λz − 1) + 1)2
(γψ((k1(λz − 1) + 1)(k1((λx − 1)σ̂y + σ̂x) + σ̂y)

− (k1 − 1)σ̂z(k1(λx − 1) + 1)) + k1λzσ̂z(k1(λx − 1) + 1) + k1σ̂x(k1(−λz) + k1 − 1))2,

where σ̂y ≡
√
v− σ̂z, and σ̂x, σ̂z are defined in Proposition 1. Similarly, market price of risk

can be written as

Λ = γσ̂y +

(
(γ − 1/ψ)

1/k1 − (1− λx)

)
σ̂x +

(
γ − λz(γ − 1/ψ)

1/k1 − (1− λz)

)
σ̂z.

Finally, following Eraker and Shaliastovich (2008), the dynamics of the vector of state
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variables Xt under the risk neutral measure Q are given by

dXt = (MQ +KQXt)dt+ Σ(Xt)dB̂
Q
t ,

where B̂Q
t = B̂t +

∫ t
0

Λsds is a Q-Brownian motion and the coefficients MQ ∈ R4 and
KQ ∈ R4×4 satisfy

MQ =M− hΩ, (30)

KQ = K −HΩ. (31)

�

B.7 Proposition 7

Proof. Price of a zero-coupon bond can be determined from

B (t, τ) = EQ
t

(
e−

∫ t+τ
t rsds

)
= eq0(τ)+q1(τ)Xt ,

where Xt = (ŷt, x̂t, ẑt)
>. Eraker and Shaliastovich (2008) show that the functions q0(τ) ∈ R

and q1(τ) ∈ R4 solve the following system of Ricatti equations

∂

∂τ
q1(τ) = −r1 +KQ>q1(τ) +

1

2
q1(τ)>H q1(τ), (32)

∂

∂τ
q0(τ) = −r0 +MQ>q1(τ) +

1

2
q1(τ)>h q1(τ), (33)

with boundary conditions q0(0) = 0 and q1(0) = (0, 0, 0, 0)>. Coefficients MQ ∈ R4 and
KQ ∈ R4×4 are characterized in (30)–(31).

Solving (32) gives

q1(τ)> =

(
0, 0,− 1

λxψ

(
1− e−λxτ

)
,

1

ψ

(
1− e−λzτ

))
.

Using these results in (33) allows to solve for function q0.

�

B.8 Proposition 8

Proof. Price of a dividend strip can be determined from

S (t, τ) = EQ
t

(
e−

∫ t+τ
t rsdsDt+τ

)
= ew0(τ)+w1(τ)Xt .
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Eraker and Shaliastovich (2008) show that the functions w0(τ) ∈ R and w1(τ) ∈ R4 solve
the following system of Ricatti equations

∂

∂τ
w1(τ) = −r1 +KQ>w1(τ) +

1

2
w1(τ)>H w1(τ), (34)

∂

∂τ
w0(τ) = −r0 +MQ>w1(τ) +

1

2
w1(τ)>hw1(τ), (35)

with boundary conditions w0(0) = 0 and w1(0) = (0, 1, 0, φ)>. Coefficients MQ ∈ R4 and
KQ ∈ R4×4 are characterized in (30)–(31).

Solving (34) gives

w1(τ)> =

(
0, 1,

1

λxψ
(1− e−λxτ )(φψ − 1),

1

ψ

(
1− e−λzτ (1− φψ)

))
.

Using these results in (35) allows to solve for function w0.

�

B.9 Proposition 9

Proof. Following Eraker and Shaliastovich (2008) we consider an approximate equilib-
rium solution for the price-dividend ratio, which is obtained, as wealth-consumption ra-
tio in Proposition 6, through the log-linearization of returns. Namely, the log equilibrium
price–dividend ratio is linear in the state variables,

pdt = ≡ log
Pt
Dt

= Ad +B>d Xt.

The coefficients Ad ∈ R, Bd ∈ R4 solve the following system of equations

0 = K>χd + (θ − 1)(k1 − 1)B + (k1,d − 1)Bd +
1

2
χ>dHχd, (36)

0 = θ ln δ − (θ − 1)
(
ln k1 + (k1 − 1)B>µX

)
−
(
ln k1,d + (k1,d − 1)B>d µX

)
+M>χd +

1

2
χ>d hχd, (37)

where χd = (0, 1, 0, φ)>+k1,dBd−Ω and k1,d ∈ R is the linearization coefficient for the stock
return.

Solving (36) for the vector of loadings Bd ∈ R4 gives

B>d =

(
0, 0,

φ− 1/ψ

1− k1,d(1− λx)
,− λz(φ− 1/ψ)

1− k1,d(1− λz)
.

)
.

Plugging this solution in equation (37) allows to solve for k1,d. Then we obtain the intercept
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Ad as

Ad = log
k1,d

1− k1,d
−B>d µX .

�

C Asset Prices in the Full Information Economy

Proposition C.1. The equilibrium state-price density in the full information economy has
dynamics given by

dMt

Mt

= −rtdt− Λ>dBt,

where Bt = (By,t, Bx,t, Bz,t)
>. The risk-free rate satisfies

rt = r0 + rxxt + rzzt,

with

r0 = − 1− γ
1− 1/ψ

log δ +
1/ψ − γ
1− 1/ψ

log k1 + γµ

− 1

2

(
γ2σ2

y +

(
(γ − 1/ψ)

1/k1 − (1− λx)

)2

σ2
x +

(
γ − λz(γ − 1/ψ)

1/k1 − (1− λz)

)2

σ2
z

)
,

rx =
1

ψ
,

rz = − λz
ψ
,

and the market price of risk vector is

Λ> =

(
γσy,

(γ − 1/ψ)

1/k1 − (1− λx)
σx,

(
γ − λz(γ − 1/ψ)

1/k1 − (1− λz)

)
σz

)
.

Proof. The proof is similar to the proof of analogous proposition for the partial information
economy, Proposition 6. We conjecture that the log wealth-consumption ratio is affine in the
state variables Xt = (yt, yd,t, xt, zt)

>, where yd,t ≡ φyt − βdt and use the fact that the state
variables belong to the affine class, so that their dynamics can be written as5:

dXt = µ(Xt)dt+ Σ(Xt)dBt

µ(Xt) =M+KXt

Σ(Xt)Σ(Xt)
> = h+

4∑
i=1

H iX i
t .

5Note that in this appendix we use X to denote the vector of state variables in the full information
economy and not the vector of their filter estimates as we did in Appendix B.
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Moreover, following Eraker and Shaliastovich (2008), the dynamics of the vector of state
variables Xt under the risk neutral measure Q are given by

dXt = (MQ +KQXt)dt+ Σ(Xt)dB
Q
t ,

where the coefficients can be identified analogously to (30)-(31).

�

Proposition C.2. The equilibrium price of the zero-coupon bond with time to maturity τ in
the full information economy is given by

B(t, τ) = E
[
Mt+τ

Mt

∣∣Ft] = eq0(τ)+qx(τ)xt+qz(τ)zt ,

where

qx(τ) = − 1

λxψ

(
1− e−λxτ

)
,

qz(τ) =
1

ψ

(
1− e−λzτ

)
.

and q0(τ) solves

∂

∂τ
q0(τ) = −r0 +MQ>q1(τ) +

1

2
q1(τ)>h q1(τ)

with q1(τ)> ≡ (0, 0, qx(τ), qz(τ)).

Proof. Analogous to the proof of Proposition 7.

�

Proposition C.3. The equilibrium price of the dividend strip with time to maturity τ in the
full information economy is given by

S(t, τ) =E
[
Mt+τ

Mt

Dt+τ

∣∣Ft] = e−βdt+φyt+w0(τ)+wx(τ)xt+wz(τ)zt ,

where

wx(τ) =
1

λxψ
(1− e−λxτ )(φψ − 1)

wz(τ) =
1

ψ

(
1− e−λzτ (1− φψ)

)
.

and w0(τ) solves

∂

∂τ
w0(τ) = −r0 +MQ>w1(τ) +

1

2
w1(τ)>hw1(τ)

51



with w1(τ)> = (0, 1, wx(τ), wz(τ)) and w0(0) = 0. The return premium of the dividend strip
with time to maturity τ is given by

RP(t, τ) = − 1

dt

〈dMt

Mt

,
dS(t, τ)

S(t, τ)

〉
= (φσy, wx(τ)σx, wz(τ)σz)

> Λ.

The return volatility of the dividend strip with time to maturity τ is given by

Vol(t, τ) =

√
1

dt

〈dS(t, τ)

S(t, τ)

〉
= ‖(φσy, wx(τ)σx, wz(τ)σz)

>‖,

where ‖·‖ is the Euclidean norm.

Proof. Analogous to the proof of Proposition 8.

�

Proposition C.4. The equilibrium price of equity in the full information economy is given
by

Pt =

∫ ∞
0

Et
[
Mt+τ

Mt

Dt+τ

∣∣Ft] dτ ≈ Dte
Ad+Bx,dxt+Bz,dzt ,

where

Bx,d =
φ− 1/ψ

1− k1,d(1− λx)
,

Bz,d = − λz(φ− 1/ψ)

1− k1,d(1− λz)
.

and Ad is satisfies

Ad = log
k1,d

1− k1,d
−B>d µX ,

where B>d = (0, 0, Bx,d, Bz,d) and the linearization coefficient k1,d solves a full information
analogue of (37). The return premium of equity is given by

RP(t) = − 1

dt

〈dMt

Mt

,
dPt
Pt

〉
= (φσy, Bx,dσx, (φ+Bz,d)σz)

> Λ.

The return volatility of equity is given by

Vol(t) =

√
1

dt

〈dPt
Pt

〉
= ‖(φσy, Bx,dσx, (φ+Bz,d)σz)

>‖,

where ‖·‖ is the Euclidean norm.

Proof. Analogous to the proof of Proposition 9.

�
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