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Abstract. The recent empirical evidence of a downward sloping term structure of equity
risk is viewed as a challenge to many leading asset pricing models. This paper analytically
characterizes conditions under which a continuous-time long-run risk model can accom-
modate the stylized facts about dividend and equity risk, when dividends are a stationary
stochastic fraction of aggregate consumption. Such a cointegrating relation makes div-
idends riskier in the short-run than at medium horizons but also preserves the role of
long-run risk: consequently, the model captures both the traditional puzzles, like the high
equity premium, as well as the new evidence about the term structure of equity risk.
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1. Introduction

Recent empirical evidence, as in van Binsbergen, Brandt, and Koijen (2012) and van
Binsbergen, Hueskes, Koijen, and Vrugt (2013), questions the short-term implications of
leading asset pricing models such as Bansal and Yaron (2004) and Campbell and Cochrane
(1999). These models provide a long-term explanation of traditional puzzles like the equity
premium and the excess volatility but are inconsistent with the highly risky returns of div-
idend strips in the short-term and the downward sloping term-structures of the volatility
of dividends and dividend strips returns at short and medium horizons.

This paper shows that a one-channel long-run risk model can accommodate for both
short-term and long-term patterns of equity returns as long as dividends are modelled as
a stochastic fraction of aggregate consumption. Then, I consider an endowment economy
and model fundamentals in a similar fashion to Longstaff and Piazzesi (2004) and Santos
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and Veronesi (2006) and in spirit of Bansal, Dittmar, and Lundblad (2005): the corpo-
rate fraction or dividend-share –that is dividends relative to consumption– captures the
cointegrating relation between the two cash-flows streams.

The intuition of the main mechanism driving the results of the paper is as follows.
When the corporate fraction is small and most of consumption is funded by labor income,
financial assets constitute a claim on a small fraction of consumption which covaries little
with it. The opposite holds when the corporate fraction is large. However, if consumption
and dividends are cointegrated, fluctuations in the corporate fraction –even if persistent–
do not alter the riskiness of long-term cash-flows. Hence, risk due to the corporate frac-
tion dynamics concentrates in the short-run, inducing uncertainty in short-term cash-flows.
Consequently, short-term equity claims, such as the dividend strips, are highly volatile and
feature a downward sloping term structure of risk. Even if fluctuations in the corporate
fraction would not covary with either short- or long-run risk in consumption, highly risky
short-term cash-flows can significantly contribute to the equity premium. Such a short-
run explanation of the premium is both alternative and complementary to the mechanism
driving the premium in leading equilibrium models, that is highly volatile long-term dis-
counted cash-flows.1

I analytically characterize many results about the dividend strips as well as the market
asset. If dividends relative to consumption are volatile enough, the model generates, on
the one hand, i) a downward sloping term-structure of volatility of dividends and dividend
strips’ returns and ii) the countercyclical dynamics of the equity yields and, on the other
hand, iii) a low and smooth risk-free rate and iv) a high equity premium and excess
volatility of the stock returns. These results obtain under standard preferences and without
stochastic volatility or jumps in fundamentals. The latter can be easily introduced in the
framework and can help to fit additional moments.2

The model is defined in continuous time by use of the differential stochastic utility of
Duffie and Epstein (1992), which guarantees analytic tractability. The model has closed-
form solutions with unitary elasticity of intertemporal substitution or closed form solutions
up to a log-linearization of the consumption-wealth ratio around its endogenous steady-
state for any value for the elasticity of intertemporal substitution. Analytic tractability
allows to characterize conditions under which the model can generate simultaneously short-
term and long-term patterns of equity returns and how these relate with macroeconomic
fundamentals. Moreover, the model allows for a transparent comparison with the standard
long-run risk model.

The model first sheds lights on the role of preferences on the equilibrium term structure
of equity. When the corporate fraction is independent of consumption dynamics, the term-
structure of risk is U-shaped and the term-structure of premia is monotone. The latter
has positive slope if the intertemporal substitution effect dominates the wealth effect and

1 In the habit model of Campbell and Cochrane (1999), long-term discounted cash-
flows are highly volatile because variations in the aggregate relative risk aversion induce
uncertainty in discount rates, which integrates with the horizon. In the long-run risk model
of Bansal and Yaron (2004), the high riskiness of long-term discounted cash-flows is due
to the pricing of small but persistent uncertainty in consumption dynamics, amplified by
the degree of preference for the early resolution of uncertainty.
2 The setting automatically extends to the whole class of jump-diffusion affine processes
–providing an alternative framework to Eraker and Shaliastovich (2008)– and allows for
the pricing of derivatives on the term structure of equity.
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vice-versa. Instead, when the corporate fraction affects consumption dynamics, it becomes
a priced factor under recursive utility and both the term structures of risk and premia are
non-monotone. The latter can be decreasing at short and medium horizons and increasing
in the long-run if the wealth effect dominates the intertemporal substitution effect. In
particular, the price of risk associated to the fluctuations in the corporate fraction is non-
monotone in the intertemporal elasticity of substitution. Those non-trivial effects obtain
endogenously at equilibrium and enrich the standard long-run risk model. Then, the latter
can accommodate the recent evidence about downward-sloping dividend and equity risk
up to a minimal modification.3

The model calibration exploits information from the term-structure of dividend risk.
This is interesting for two main reasons. First, downward-sloping dividend volatility is
consistent with the predictability of dividend growth by the dividend-share that we see
in the real data and, hence, supports the main model mechanism that relates the timing
of dividend risk to the cointegrating relationship between consumption and dividends.
Second, the term-structure of dividend risk provides information about the persistence of
latent factors and, hence, about the strength of the long-run risk channel. Matching the
empirical evidence about the timing of dividend risk leads to a dynamics for the long-run
growth factor which is in line with most of the long-run risk literature.

Beyond the traditional asset pricing moments and the slope of equity risk, the analysis
of the quantitative predictions of the model investigates a number of testable implications
and compares them with the available empirical evidence. Consistently with the data, the
model produces: declining volatilities of the forward equity yields; the countercylical slope
of the equity yields; the variance decomposition of equity yields in which the cash-flows
channel dominates the discount rate channel; conditional CAPM beta of dividend strips
lower than unity and increasing with the horizon.

The paper is closely related to Ai, Croce, Diercks, and Li (2012) and Belo, Collin-
Dufresne, and Goldstein (2014), which focus respectively on investment and financing
decisions.4 Namely, Belo et al. (2014) assume an exogenous financial leverage process that,
in a partial equilibrium framework, makes aggregate EBIT and dividends cointegrated.
Similarly to this paper, the key ingredient is modelled exogenously in such a way that
the dividend-share does not affect the dynamics of aggregate consumption and, in turn,
that of the state price density. However, I provide empirical evidence that the dividend-
share conveys additional information, with respect to financial leverage, concerning the
properties of short-run dividend risk.

An interesting challenge is to model the firm behavior, in order to generate endoge-
nously the cash-flows dynamics. Marfè (2013) provides some economic foundation to the
endowment equilibrium model of this paper. A mechanism of income insurance from share-
holders to workers endogenizes the cointegrating relationship between consumption and

3 Notice that, while downward-sloping dividend risk (and, in turn, equity risk) is a very
robust feature of the data, downward-sloping equity premia is a stylized fact still under
debate. See Boguth, Carlson, Fisher, and Simutin (2012), van Binsbergen and Koijen
(2012b) and Muir (2014) on the empirical evidence from currently available data.
4 Berrada, Detemple, and Rindisbacher (2013), Croce, Lettau, and Ludvigson (2014),
Curatola (2015), Khapko (2014) and Marfè (2014) focus on non-standard beliefs and
preferences.
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dividends, its pricing at equilibrium as well as the downward sloping term-structures of
dividend and equity risk.5

2. Empirical Support

In this section, I document some properties of aggregate dividends in the US data. These
properties provide empirical support for the key features of the model and drive the main
results. First, I document that various measures of dividend-share are smooth, persistent
and stationary. Second, I document that these measures predict dividend growth and
provide additional explanatory power with respect to aggregate financial leverage. Third, I
provide support to the idea that variations in the dividend-share capture more information
about the term-structure of dividend risk than aggregate financial leverage. Indeed, the
effect of the latter –which can be understood through the term-structures of variance
ratios of EBIT and dividends as in Belo et al. (2014)– does not capture the huge distance
between the upward-sloping consumption risk and the downward-sloping dividend risk.
In a nutshell, the analysis offers empirical support to the main economic mechanism of
the model, that is the role of the co-integrating relationship between consumption and
dividends on the timing of dividend risk.

2.1 DATA

The key variable of the analysis is an aggregate measure of shareholders’ remuneration.
The main data source is the National Income and Products Account (NIPA), available
through the Bureau of Economic Analysis (BEA) website. Real GDP levels are from sec-
tion 1.1.6, aggregate consumption (“Nondurable goods” plus “Services”) is from the same
section and aggregate wages (“Compensation of employees paid”) are from section 1.10.
Two alternative measures of shareholders’ remuneration are: aggregate dividends (“Net
dividends”) and aggregate corporate profits after tax (“Profits after tax with inventory
valuation and capital consumption adjustments”) both from section 1.10. Data are col-
lected at yearly frequency since 1929 to 2012. I also consider a measure of the aggregate
leverage ratio, computed as in Belo et al. (2014), from the Flow of Funds Accounts of the
US (Board of Governors of the Federal Reserve System) table B.102, since 1945 to 2012.

2.2 DIVIDENDS AND CORPORATE FRACTION

Both net dividends (D1) and after tax corporate profits (D2) are high volatile, in particular
profits are extremely volatile in the pre-war sub-sample. In order to measure the fraction
of total resources devoted to shareholders’ remuneration, I compute the dividend-share or
corporate fraction in three ways for both D1 and D2:

si1 =
Di

Y
, si2 =

Di

C
, si3 =

Di

W +Di
, i = {1, 2}, (1)

5 Such an approach is in spirit of Danthine and Donaldson (1992, 2002) and is consistent
with a few recent contributions relating labor frictions to finance. See Uhlig (2007), Merz
and Yashiv (2007), Kuehn, Petrosky-Nadeau, and Zhang (2012) and Favilukis and Lin
(2013). Marfè (2015) empirically and theoretically supports the idea that aggregate labor
rigidity drives the value premium by means of its effect on the timing of dividend risk.
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where Y, C and W denote real GDP, aggregate consumption and aggregate wages. All
these measures of dividend-share are small in average, smooth and strongly persistent.

Panel A of Table 1 reports some summary statistics: their unconditional first and sec-
ond moments vary respectively in the range (2.6%, 9.2%) and (0.9%, 1.8%). I verify for
stationarity by regressing first differences on the lagged level. Panel B of Table 1 reports
the estimation results. All the six measures of dividend-share are stationary and feature
a similar rate of mean reversion, ranging in the interval (14%, 32.1%).

Table 1 Measures of the corporate fraction. Panel A reports yearly mean, standard devi-
ation, min and max from time-series of the six measures of dividend-shares computed as
in Eq. (1). Panel B reports the estimates with Newey-West corrected t-statistics in paren-
theses from univariate regressions of first differences in the six dividend-share measures on
a constant and their lagged levels: ∆sijt = b0 + b1s

ij
t−1 + εt. Data are yearly on the sample

1929:2012 from NIPA tables.

Panel A

s11 s12 s13 s21 s22 s23

mean 0.026 0.046 0.045 0.051 0.092 0.084
std. dev. 0.009 0.012 0.015 0.009 0.018 0.016
min 0.015 0.029 0.025 0.033 0.054 0.055
max 0.054 0.082 0.094 0.071 0.135 0.118

Panel B

∆s11 ∆s12 ∆s13 ∆s21 ∆s22 ∆s23

b0 0.039 0.009 0.006 0.015 0.022 0.025
(2.63) (3.23) (2.62) (3.95) (3.41) (4.10)

b1 -0.149 -0.215 -.140 -0.309 -0.256 -0.321
(-2.95) (-3.45) (-2.97) (-4.14) (-3.57) (-4.30)

adj-R2 0.09 0.12 0.09 0.16 0.13 0.18
N 78 78 78 78 78 78

2.3 PREDICTABILITY OF DIVIDEND GROWTH

The economic mechanism of the model implies that the current dividend-share should have
predictive power for dividend growth. A stationary dividend-share implies that periods
with a low fraction of total consumption (or GDP) devoted to shareholders’ remuneration
are followed by periods in which dividend growth is larger than in average, in order to
push the dividend-share back toward its long-run mean. This leads to short-term risk of
dividends and to dividend growth predictability. If fluctuations of the dividend-share are a
main determinant of the dividend dynamics, then we expect that the forecasting power of
the dividend-share survives over other sources of dividend predicability (e.g. time-varying
expected growth in consumption or GDP) and, hence, is observable from the real data.

Similarly to Belo et al. (2014), I test the main model mechanism by verifying if the
variable, responsible of the short-term risk of dividends in the model, forecasts dividend
growth. Here, I consider the six measures of dividend-share commented above, whereas
Belo et al. (2014) uses the aggregate leverage ratio. Then, I regress future dividend growth,
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computed over several horizons, on each measure of dividend-share:

1
τ

log
Di
t+τ

Di
t

= b0 + b1s
ij
t + εt, i = {1, 2}, j = {1, 2, 3},

with horizon τ = {1, 3, 5, 10, 15, 20} years.

Table 2 Corporate fraction and net dividends growth predictability. The table reports the
estimates of the regression in Eq. (2), where net dividends growth is regressed on the
dividend-shares computed as in Eq. (1) and the aggregate financial leverage ratio. Panel
A and B restrict the regression equation to only one independent variable. Data are yearly
on the sample 1929:2012 from NIPA tables and 1945:2012 from Flow of Funds. Newey-
West corrected t-statistics are reported in parentheses. The symbols *, **, and *** denote
statistical significance at the 10%, 5%, and 1% levels.

Panel A

Horizon 1 3 5 10 15 20

s11 -4.135** -2.875*** -2.056*** -1.693*** -1.641*** -1.664***
(-2.22) (-2.88) (-4.02) (-4.35) (-6.47) (-5.23)

adj-R2 0.05 0.18 0.20 0.26 0.35 0.48
N 77 75 73 68 63 58

s12 -3.771*** -2.252*** -1.585*** -1.321*** -1.348*** -1.393***
(-3.01) (-3.14) (-4.53) (-3.93) (-7.05) (-5.60)

adj-R2 0.09 0.23 0.25 0.30 0.44 0.59
N 77 75 73 68 63 58

s13 -2.138* -1.644*** -1.186*** -0.967*** -0.919*** -0.921***
(-1.97) (-2.93) (-4.00) (-4.61) (-6.49) (-5.43)

adj-R2 0.04 0.18 0.21 0.27 0.36 0.49
N 77 75 73 68 63 58

Panel B

Horizon 1 3 5 10 15 20

lev 0.079 0.145** 0.164*** 0.167*** 0.160*** 0.120***
(0.88) (2.31) (3.13) (5.81) (16.65) (8.17)

adj-R2 -0.01 0.04 0.17 0.52 0.73 0.60
N 67 65 63 58 53 48

Panel C

Horizon 1 3 5 10 15 20

lev -0.001 0.104 0.139** 0.165*** 0.150*** 0.093***
(-0.01) (1.40) (2.26) (5.26) (15.06) (8.73)

s11 -4.650* -2.386 -1.236 -0.110 -0.866*** -2.656***
(-1.91) (-1.26) (-1.17) (-0.17) (-2.79) (-10.00)

adj-R2 0.04 0.12 0.21 0.51 0.76 0.78
N 67 65 63 58 53 48

lev -0.038 0.087 0.131** 0.163*** 0.147*** 0.083***
(-0.29) (1.11) (2.08) (5.03) (14.48) (7.20)

s12 -3.561** -1.762 -0.899 -0.114 -0.573*** -1.725***
(-2.18) (-1.45) (-1.37) (-0.26) (-3.34) (-10.29)

adj-R2 0.06 0.15 0.23 0.51 0.76 0.79
N 67 65 63 58 53 48

lev 0.006 0.105 0.139** 0.165*** 0.150*** 0.094***
(0.05) (1.39) (2.23) (5.24) (15.61) (9.75)

s13 -2.521* -1.386 -0.739 -0.087 -0.545*** -1.486***
(-1.78) (-1.24) (-1.18) (-0.23) (-3.42) (-11.85)

adj-R2 0.03 0.12 0.21 0.51 0.77 0.80
N 67 65 63 58 53 48
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Table 3 Corporate fraction and after tax corporate profits growth predictability. The table
reports the estimates of the regression in Eq. (2), where after tax corporate profits growth
is regressed on the dividend-shares computed as in Eq. (1) and the aggregate financial
leverage ratio. Panel A and B restrict the regression equation to only one independent
variable. Data are yearly on the sample 1929:2012 from NIPA tables and 1945:2012 from
Flow of Funds. Newey-West corrected t-statistics are reported in parentheses. The symbols
*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels.

Panel A

Horizon 1 3 5 10 15 20

s21 -11.800 -18.947*** -8.970*** -4.589*** -2.992*** -2.266***
(-1.54) (-3.70) (-3.88) (-3.05) (-2.99) (-3.17)

adj-R2 0.06 0.53 0.66 0.58 0.57 0.60
N 77 75 73 68 63 58

s22 -5.440 -8.768*** -4.750*** -2.494*** -1.667*** -1.249***
(-1.18) (-3.61) (-3.79) (-3.25) (-3.50) (-3.60)

adj-R2 0.04 0.39 0.63 0.61 0.62 0.64
N 77 75 73 68 63 58

s23 -7.480 -11.826*** -5.417*** -2.738*** -1.765*** -1.334***
(-1.64) (-3.76) (-3.80) (-2.90) (-2.75) (-2.91)

adj-R2 0.07 0.56 0.65 0.56 0.54 0.56
N 77 75 73 68 63 58

Panel B

Horizon 1 3 5 10 15 20

lev 0.141 0.028 -0.064 0.012 0.046 0.054**
(0.63) (0.19) (-0.65) (0.22) (1.15) (2.25)

adj-R2 -0.01 -0.01 -0.00 -0.02 0.04 0.14
N 67 65 63 58 53 48

Panel C

Horizon 1 3 5 10 15 20

lev -0.090 -0.325*** -0.294*** -0.073* -0.022 0.008
(-0.35) (-2.66) (-4.41) (-1.76) (-0.70) (0.31)

s21 -4.796*** -7.393*** -4.908*** -1.892*** -1.356*** -0.946***
(-2.86) (-9.00) (-8.06) (-6.42) (-3.62) (-3.87)

adj-R2 0.05 0.47 0.62 0.37 0.35 0.41
N 67 65 63 58 53 48

lev -0.172 -0.343*** -0.298*** -0.077** -0.033 0.002
(-0.67) (-3.02) (-4.83) (-2.07) (-1.27) (0.08)

s22 -3.405*** -4.050*** -2.642*** -1.021*** -0.799*** -0.544***
(-3.32) (-8.44) (-11.28) (-7.89) (-5.33) (-4.88)

adj-R2 0.10 0.51 0.64 0.42 0.44 0.48
N 67 65 63 58 53 48

lev -0.062 -0.297** -0.275*** -0.064 -0.011 0.016
(-0.24) (-2.27) (-3.77) (-1.46) (-0.31) (0.58)

s23 -2.754*** -4.456*** -2.944*** -1.118*** -0.743*** -0.521***
(-2.76) (-8.24) (-6.44) (-5.23) (-2.75) (-3.16)

adj-R2 0.04 0.45 0.58 0.32 0.28 0.34
N 67 65 63 58 53 48

Panel A of Table 2 and 3 show that all the six measures of dividend-share feature
substantial predictive power at both short and long horizons. Coefficients are negative,
as expected, and strongly statistically significant (t-statistics are computed by means of
Newey-West corrected standard errors). Adjusted R2 varies from about 5% to 60% over the
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one year to 20 years horizon. Results are similar when the dependent variable is measured
using either net dividends or after tax corporate profits.

The stationarity of the dividend-share mechanically induces predictability in dividend
growth. The result here is a quantitative one: the extent to which the dividend-share
forecasts dividend growth is quite large. Therefore, the co-integrating relationship be-
tween dividends and consumption (or GDP) seems to be an important determinant of
the dynamics of dividends. Hence, the dividend-share is an important building block of
an equilibrium model, in addition to time-varying long-run growth, in particular if we are
interested at capturing the short-run properties of cash-flows growth rates and, in turn,
of equity returns.

Belo et al. (2014) argue that the short-run risk of dividends should be imputed to
variation in stationary financial leverage ratios. From the perspective of an endowment
economy equilibrium model I am interested into the joint dynamics of consumption and
dividends. Therefore, I wonder whether the dynamics of the dividend-share essentially
captures the same economic channel pointed out by Belo et al. (2014) or the dividend-
share also conveys additional important information which I lose by focusing on financial
leverage only. In order to answer such a question, I verify the predictability of future
dividend growth by both financial leverage and dividend-share:

1
τ

log
Di
t+τ

Di
t

= b0 + b1s
ij
t + b2levt + εt, i = {1, 2}, j = {1, 2, 3}, (2)

where levt is the aggregate financial leverage ratio. Panel B of Table 2 and 3 shows that,
consistently with Belo et al. (2014), financial leverage, as the only independent variable,
positively explains dividend growth at both short and long horizons –when it is measured
using net dividends– but only at very long horizons –when it is measured using after tax
corporate profits. However, panel C of Table 2 and 3 reports the estimation results from
the case in which both financial leverage and dividend-share are used as independent vari-
ables. When the dependent variable is measured by net dividends, both financial leverage
and dividend-share are statistically significant at medium and long horizons and feature
respectively a positive and negative coefficient in accord with the theory. Moreover, the
adjusted R2 increases with respect to Panels A and B. Instead, when the dependent vari-
able is measured by after tax corporate profits, financial leverage is significant at short
horizons only and features a negative coefficient in contrast with the positive theoretical
relation of Belo et al. (2014)’s model; the dividend-share is still significant at both short
and long horizons and its negative relation with dividend growth is preserved.

These results suggest that financial leverage is not the only determinant of the short-
term risk of dividends and that the dividend-share conveys substantially more information
about the dividend dynamics. Such a conclusion is not surprising if we consider the em-
pirical evidence documented by Belo et al. (2014) about aggregate EBIT. Their model
implies that financial leverage shifts risk toward the short-run from EBIT to dividends.
Indeed they assume that EBIT risk is upward-sloping and, as a result of stationary finan-
cial leverage, dividend risk is downward-sloping. However, they also document that the
term-structure of the variance ratios of aggregate EBIT is decreasing with a shape similar
to that of dividends. Figure 1 reports the term-structures of variance-ratios of aggrgeate
EBIT and two measures of aggregate dividends from Belo et al. (2014). Moreover, Figure
1 also shows the variance-ratios of aggregate consumption.

While the variance-ratios of consumption are larger than unity and increase with the
horizon, those of EBIT and dividends are both decreasing and lower than one. Therefore,
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Fig. 1. The term structures of aggregate consumption, dividends and EBIT
variance-ratios. The variance-ratios of net dividends (dot-dashed line), dividends
with repurchases (dashed line) and EBIT (solid line) are from Belo et al. (2014).
The variance-ratios of consumption (marked solid line) are computed using data
from Beeler and Campbell (2012). Horizon τ denotes years. The variance-ratios
procedure uses the theoretical exposition of Campbell, Lo and MacKinlay (1997,
pp. 48-55), which accounts for heteroscedasticity and overlapping observations.

at least at the aggregate level, the financial leverage channel seems to be small and most
of the short-term risk of dividends is determined by something else than financial leverage.
Marfè (2013) provides empirical evidence and theoretical support to the idea that the shift
of long-run consumption (or GDP) risk toward short-run dividend risk should be imputed
to labor relations and to the determination of aggregate wages.

In conclusion, this empirical analysis supports the idea that various economic channels
contribute to the determination of the short-run risk of dividends. The co-integrating
relationship between dividends and consumption (or GDP) embeds such an economic
mechanism. And, hence, the modelling of the dynamics of the dividend-share is a crucial
ingredient of an endowment economy equilibrium model which aims to capture the short-
run properties of dividends growth rates and equity returns.

3. The Economy

3.1 PREFERENCES

A representative agent features recursive preferences in spirit of Kreps and Porteus (1979),
Epstein and Zin (1989) and Weil (1989). These preferences allow for the separation be-
tween the coefficient of relative risk aversion (RRA) and the elasticity of intertemporal
substitution (EIS). For the sake of tractability, I assume their continuous time counter-
part which takes the form of stochastic differential utility, as in Duffie and Epstein (1992).
Given an initial consumption C, the utility at each time t is defined as U(Ct) = Jt where
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J is the unique solution to the SDE:

dJt =
(
−f(Ct, Jt)− 1

2
A(Jt)σJσ

′
J

)
dt+ σJdBt. (3)

Under certain technical conditions, Eq. (3) is well defined and hence the utility function
exists and is monotonic and risk averse for A ≤ 0.6 As usual, I consider the case A = 0
with normalized aggregator given by

f(C, J) = βθJ

(
C

1− 1
ψ ((1− γ)J)−

1
θ − 1

)
, (4)

where θ = (1− γ)/(1− 1/ψ), γ is RRA, ψ is EIS and β is a discount rate. In the special
case ψ → 1, the aggregator reduces to

f(C, J) = β(1− γ)J
(
logC − log((1−γ)J)

1−γ

)
,

and for ψ → γ−1 CRRA preferences obtain.

3.2 DYNAMICS

The representative agent receives income from two sources, financial and non-financial,
and where the mix between these two sources of income varies over time. In particular, I
focus on the aggregate consumption and on its fraction funded by market dividends.

Consumption dynamics is modelled in spirit of long-run risk literature.7 In particular,
I assume that aggregate consumption growth follows a geometric process with stochastic
growth rate:

dCt
Ct

=µtdt+ σdBC,t, (5)

dµt =λ(µ̄− µt)dt+ νdBµ,t, (6)

where d〈BC , Bµ〉t = ρC,µdt. Parameters µ̄, λ, σ and ν are positive constants and ρC,µ ∈
(−1, 1). Heteroscedasticity is not included in the model for the sake of simplicity and ex-
position. Instead, one element of interest is the latent growth rate µt, which captures the
small predictable component of the expected growth rate of aggregate consumption, as
suggested by empirical evidence.8 In line with the findings of Constantinides and Ghosh
(2011), I propose a continuous time version of the one-channel model of Bansal and Yaron
(2004). However, conditional variances as well as jumps can be easily added to the frame-
work.

6 Namely, for any consumption process C ∈ L2, utility U : L2 → R is a map defined by
two primitive functions (f,A), where f : R+ ×R → R and A : R → R, and J is unique
with boundary condition JT = 0. Let U ′ and U ′′ be the utilities associated to (f,A′) and
(f,A′′), then U ′ is more risk averse than U ′′ if A′ ≤ A′′.
7 A different specification of cash-flows dynamics is proposed in Section 5.2 and different
economic implications are analyzed.
8 Expected growth, µt, is assumed to be an observable variable even if it is instead
a latent factor. Because of the affine specification, a straightforward application of the
Kalman-Bucy filter allows to model Bayesian learning, which is omitted for the sake of
exposition since it does not add economic content to the core of the paper.
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In spirit of Longstaff and Piazzesi (2004), Bansal, Dittmar, and Lundblad (2005) and
Santos and Veronesi (2006), I explicitly model the dividend-share, St: at each point in
time, the dividend and non-dividend components of consumption are given by:

Dt = CtSt and Lt = Ct(1− St), (7)

where

St = eδ̄+δt . (8)

The process δt leads to fluctuations over time in the component of aggregate consumption
funded by market dividends and, hence, to the correlation of the latter with the investor’s
marginal utility. Henceforth, I refer to δt as dividend-share or corporate fraction with
a slight abuse of terminology (namely, δt represents the deviation from the steady-state
of the logarithm of the dividend-share). The dynamics of the dividend-share follows an
Ornstein-Uhlenbeck process:

dδt = −κδtdt+ ηdBδ,t, (9)

where d〈BC , Bδ〉t = ρC,δdt and d〈Bµ, Bδ〉t = ρµ,δdt. Parameters κ and η are positive con-
stants, δ̄ is a negative constant, ρC,δ, ρµ,δ ∈ (−1, 1) and heteroscedasticity is omitted for
the sake of simplicity. Therefore, St is a strictly positive process with negligible probability
of being above one, once parameters are set to match the empirical data.9

By an application of Itô’s Lemma, market dividends have dynamics given by

dDt
Dt

= (µt − κδt + (η/2 + σρC,δ)η) dt+ σdBC,t + ηdBδ,t (10)

and, hence, the instantaneous growth rate of dividends depends on both the expected
growth rate and the dividend-share, whereas the instantaneous volatility is constant. The
pair {µt, δt} characterizes at each point in time dividend growth as well as asset prices:
therefore, the role of the corporate fraction δt can be understood in terms of its implications
over a standard one-channel long run-risk model in continuous time.10

The focus now turns on the term structure of cash-flows and in particular on the slope
of their volatility with respect to the time horizon. The specification in Eq. (7)-(8)-(9)
leads to the following result.

9 In real data St is quite small (about 5%) and strongly persistent: therefore, reasonable
values for δ̄, κ and η allow St to belong to the range (0, 1) most of the times. Alternatively,

St can be modelled as a Wright-Fisher process: dSt = κ(S̄ − St)dt+ η
√
St(1− St)dBS,t

which guarantees the property St ∈ (0, 1) as long as κS̄ > η2/2. The choice of Eq. (8)-(9)
provides more tractability and intuition to the results of the paper.
10 Including stochastic volatility in consumption growth would lead to the same consump-
tion dynamics and, hence, the same state-price density of the standard long-run risk model.
The scope of the paper is to analyze the term structure of equity in equilibrium: adding
stochastic volatility to the model would not be particularly interesting because its effect
would be very similar to that of the growth factor µt –that is, to increase the uncertainty
of cash-flows in the long-run. Instead, the model of Section 5.2 features a different type
of stochastic volatility, induced by the share process, which affects the riskiness short-run
cash-flows.
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Proposition 1. The moment generating functions of the logarithm of aggregate con-
sumption and market dividends are given by

Ct(τ, α) =Et[Cαt+τ ] = eα logCt+a0(τ,0,α,0)+a1(τ,0,α,0)µt+a2(τ,0,α,0)δt , (11)

Dt(τ, α) =Et[Dα
t+τ ] = eα logCt+a0(τ,0,α,α)+a1(τ,0,α,α)µt+a2(τ,0,α,α)δt , (12)

CDt(τ, α, β) =Et[Cαt+τD
β
t+τ ] = e(α+β) logCt+a0(τ,0,α,β)+a1(τ,0,α,β)µt+a2(τ,0,α,β)δt , (13)

where a0(τ, x, y, z), a1(τ, x, y, z) and a2(τ, x, y, z) are deterministic functions of time de-
fined in the Appendix B.

With this result in hand, the term structures of the volatility of consumption and
dividends growth rates are computed in closed form as:

σC,t,τ =

√
1
τ

log
(

Ct(τ,2)

Ct(τ,1)2

)
, σD,t,τ =

√
1
τ

log
(

Dt(τ,2)

Dt(τ,1)2

)
. (14)

The term structure of the correlation among consumption and dividend growth is given
by:

ρC,D,t,τ =
1

τ σC,t,τσD,t,τ
log

(
CDt(τ, 1, 1)

Ct(τ, 1)Dt(τ, 1)

)
. (15)

The term structure of the expected growth rates can be computed using the growth rates

gC,t,τ = 1
τ

log
(

Ct(τ,1)
Ct(0,1)

)
, gD,t,τ = 1

τ
log
(

Dt(τ,1)
Dt(0,1)

)
, (16)

or the log growth rates

ĝC,t,τ = 1
τ

(Et[logCt+τ ]− logCt) , ĝD,t,τ = 1
τ

(Et[logDt+τ ]− logDt) . (17)

In the former case a Jensen adjustment term affects the term-structures, whereas in the
latter case the steady-state term-structures are flat at any horizon.

To gain intuition consider the case where instantaneous correlations are turned off. The
next corollary determines the slopes of the term structures in Eq. (14) at the steady state.

Corollary 1. When ρC,µ = ρC,δ = ρµ,δ = 0, µt = µ̄ and δt = 0, the slopes of the term
structures of expected aggregate consumption and market dividends and their volatility are
characterized as follows:

sign (∂τgC,t,τ ) = sign (∂τσC,t,τ ) (18)

= sign
(
3 + λτe−λτ + (1 + λτ)e−λτ (e−λτ − 4)

)
,

sign (∂τgD,t,τ ) = sign (∂τσD,t,τ ) (19)

= sign
(
(e−2κτ (1 + 2κτ)− 1)η2ν3 + (e−2λτ (1 + 2λτ)− 4e−2λτ (1 + λτ) + 3)κν2

)
.

The term structures of expected aggregate consumption and market dividends and their
volatility have the following long-run limits:

lim
τ→∞

gC,t,τ = lim
τ→∞

gD,t,τ = µ̄+
ν2

2λ2
+
σνρC,µ
λ

, (20)
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and

lim
τ→∞

σC,t,τ = lim
τ→∞

σD,t,τ =

√
σ2 +

ν2

λ2
+

2σνρC,µ
λ

. (21)

Eq. (18) states that the term structure of aggregate consumption volatility is positive
at any horizon, whereas Eq. (19) states that the term structure of dividend volatility
can be upward or downward sloping depending on the horizon. Namely, λ, κ and η large
enough and ν small enough can capture the negative slope at short or medium horizons
–as observed in the empirical data. In other words, a downward sloping term structure can
obtain if expected growth is not too persistent and too volatile (relative to the dividend-
share).

Corollary 1 characterizes the long-run behavior of the term structures in Eq. (14) in
terms of the model parameters. The long-run expected growth of market dividends ap-
proaches to the expected growth of consumption and is given by three terms associated
respectively to the instantaneous mean of expected growth, its volatility and its correla-
tion with consumption innovations. A similar limit result holds also for the expected log
growth rates and the volatilities of both dividend and consumption.

The stationary dynamics of the dividend-share allows fluctuations of the financial and
non-financial components of aggregate consumption to affect the dynamics of dividends at
short and medium horizons but such an effect diminishes as long as the horizon grows and
disappears in the limit. Therefore, the non-financial component of consumption –which
is mainly funded by labor income– and its dynamics have a crucial role from an asset
pricing perspective. On the one hand, δt can generate the high volatile and downward
sloping term structure of dividend risk in the short run: this is the key ingredient to
model in equilibrium the recent empirical evidence about the pricing of dividends as in
van Binsbergen et al. (2012; 2013). On the other hand, since the effect of δt vanishes in
the long-run, the model can preserve a long-run explanation of standard puzzles such as
the smooth dynamics of the risk-free rate, the equity premium, the return excess volatility
and predictability, as documented in Bansal and Yaron (2004) among others.

4. The Equilibrium

4.1 VALUE FUNCTION AND STATE PRICE DENSITY

I seek for a model solution which emphasizes the role of the two state-variables and their
interaction in the dynamic formation of prices at equilibrium. For EIS 6= 1 it is not possi-
ble to find an exact model solution and an approximation method is necessary. Differently
from the original model by Bansal and Yaron (2004) and its continuous time counterpart
by Eraker and Shaliastovich (2008), I do not log-linearize the return process. Instead, sim-
ilarly to Benzoni, Collin-Dufresne, and Goldstein (2011), I make an approximation around
the (endogenous) steady state of the consumption-wealth ratio and provide closed form
solutions for prices and return moments up to such an approximation. Recent empirical
literature, such as Lustig, Van Nieuwerburgh, and Verdelhan (2013), has documented that
the consumption-wealth ratio is a very smooth variable, making the solution approach not
only qualitatively convenient but also empirically reasonable. Analytical solutions allow
to study the role of the corporate fraction and its asset pricing implications.
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The next proposition characterizes the equilibrium utility process and the state price
density which has form as in Duffie and Epstein (1992): ξt = exp(

∫ t
0
fJds)fc.

Proposition 2. Under preferences in Eq. (4) and dynamics in Eq. (5)-(6)-(10), the
utility process is given by

J(Ct, µt) =
1

1− γ
C1−γ
t exp(u0 + u1µt), (22)

where u0 and u1 are endogenous constants depending on the primitive parameters defined
in the Appendix A. The consumption-wealth ratio is equal to

cwt = logCt/Wt = log β − 1

θ
(u0 + u1µt). (23)

The equilibrium state price density is given by

dξt = −rtξtdt− πCξtdBC,t − πµξtdBµ,t (24)

where the risk-free rate satisfies

rt = r0 + r1µt, (25)

with

r0 =β − γ(1 + 1/ψ)σ2

2
− (γ − 1/ψ)(1− 1/ψ)ν2

2(λ+ ecw)2
−
σνρC,µ(γ − 1/ψ)

λ
, (26)

r1 =
1

ψ
, (27)

and the prices of risk satisfy

πC = γσ, (28)

πµ =
γ − 1/ψ

λ+ ecw
ν. (29)

As usual, the consumption-wealth ratio reduces to β when EIS → 1 and depends neg-
atively on the growth factor µt as long as θ < 0 (i.e. γ > 1, ψ > 1). Coefficients u0 and
u1 satisfy the Bellman equation evaluated with Eq. (22). The former determines the un-
conditional level of the consumption-wealth ratio, whereas the latter determines both the
prices of risk and the growth rate of wealth.

The risk-free rate is an affine function of the growth factor µt and the corresponding
coefficient, r1, decreases with EIS, as usual under recursive preferences. The second term of
r0 represents precautionary savings and is monotonically decreasing with RRA: therefore,
a reasonable value for risk aversion generates an offsetting mechanism which makes low the
unconditional level of the risk-free rate (this is not the case under power utility γ = 1/ψ
which requires a really high γ to produce the same effect). The fourth and the fifth term of
r0 can be interpreted respectively as a second precautionary savings term and a correlation
term due to uncertainty in expected growth (which disappears when γ = 1/ψ).

The prices of risk πC and πµ denote the expositions of the state price density to the
Brownian shocks BC and Bµ. The first, which represents transient risk, has the traditional
price given by γσ. Whereas the second, which represents long-run risk –that is the price
that recursive preferences attach to the stochastic growth rate of consumption– is given by
γ−1/ψ

1−γ u1 times the volatility of µt. namely, the long-run risk is given by −fC,µ/fC , where
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the dependence on µt comes out from the utility process in Eq. (22): it reduces to Jµ/J
when EIS = 1 and disappears when γ = 1/ψ, that is when utility reduces to the power
case.

Two main forces determine the magnitude of the price for long-run risk: i) the larger
the persistence of expected growth, the larger its unconditional volatility and, therefore,
the compensation required by the agent for bearing this risk; ii) the degree of preference
for the early resolution of uncertainty, measured by γ − 1/ψ.

Notice that shock the Bδ does not command a compensation since δt does not enter
the consumption dynamics. Section 5.2 studies the case in which consumption moments
depend on St and, hence, fluctuations in the corporate fraction are priced under recursive
utility.

4.2 EQUILIBRIUM DIVIDEND STRIPS

Given the state price density, the next proposition establishes the equilibrium price of the
market dividend strip.

Proposition 3. The equilibrium price of the market dividend strip with maturity τ is
given by

Pt,τ = Et

[
ξt+τ
ξt

Dt+τ

]
= Dte

b0(τ,1,1,1)−δ̄+b1(τ,1,1,1)µt+(b2(τ,1,1,1)−1)δt , (30)

where

b1(τ, x, y, z) =
y − r1x

λ
(1− e−λτ ), (31)

b2(τ, x, y, z) = e−κτz, (32)

and b0(τ, x, y, z) is a deterministic function of time defined in the Appendix B. The expected
excess return and the volatility of the market dividend strip are given by:

µR,τ =σ (πC + πµρC,µ) + b1(τ, 1, 1, 1) (πCνρC,µ + πµν) + b2(τ, 1, 1, 1) (πCηρC,δ + πµηρµ,δ) ,

(33)

σR,τ =

√
σ2 + b1(τ, 1, 1, 1)2ν2 + b2(τ, 1, 1, 1)2η2 + 2σb1(τ, 1, 1, 1)νρC,µ

+2σb2(τ, 1, 1, 1)ηρC,δ + 2b1(τ, 1, 1, 1)νb2(τ, 1, 1, 1)ηρµ,δ
. (34)

The price of the dividend strip relative to the current dividend value is a stationary
function of the growth factor, the dividend-share and the maturity. The price is exponential
affine in the state-variables and, hence, the conditional volatility is state-independent (as
long as µ and δ are homoscedastic) and is a function of the maturity only.

Since the volatility channel is turned off, the dividend strip has both premium and
volatility which are state-independent and only depend on the maturity. The premium
has two components associated to the shocks to both consumption growth and its ex-
pected growth and other four correlation terms. In particular, the premium depends on
b2(τ, 1, 1, 1) as long as the correlations ρC,δ and ρµ,δ are not zero. Consequently, the term
structure of premia on the dividend strip is affected by the degree of persistence, κ, of
the dividend-share only if these correlations are not null. Instead, the term structure of
volatility of the dividend strip depends on b2(τ, 1, 1, 1) and, hence, on κ, despite the values
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of the correlations. This immediately obtains since the price of the dividend strip directly
depends on the dividend-share, δt.

Notice that the premium and the volatility in Eq. (33) and (34) depend on the maturity
through the functions b1(τ, 1, 1, 1) and b2(τ, 1, 1, 1). The former is increasing (decreasing)
with maturity τ if r1 < 1 (r1 > 1), which obtains if ψ > 1 (ψ < 1); the latter is always
decreasing with the maturity and can offset the effect of the former. Therefore, even with
EIS > 1 fluctuations in the dividend-share can lead to a downward sloping term structure
of the volatility of dividend strip returns. This is not the case in the standard long-run
risk model.

To gain intuition consider the case where correlations are turned off.11 The next corol-
lary determines the slopes of the term structures in Eq. (33) and (34) in terms of the
model parameters.

Corollary 2. When ρC,µ = ρC,δ = ρµ,δ = 0, the slopes of the term structures of expected
excess return and volatility of the market dividend strip are characterized as follows:

sign (∂τµR,t,τ ) = sign ((1− 1/ψ)(γ − 1/ψ)), (35)

sign (∂τσR,t,τ ) = sign
(
−e−2κτη2κλ+ e−λτ (1− 1/ψ)2ν2(1− e−λτ )

)
. (36)

The term structures of the expected excess return and the return volatility of the dividend
strips of the aggregate consumption and of the market dividends have the following long-run
limits:

lim
τ→∞

µ̃R,t,τ = lim
τ→∞

µR,t,τ = πC

(
σ +

νρC,µ
λ

(1− 1/ψ)
)

+ πµ

(
σρC,µ +

ν

λ
(1− 1/ψ)

)
, (37)

and

lim
τ→∞

σ̃R,t,τ = lim
τ→∞

σR,t,τ =

√
σ2 +

ν2

λ2
(1− 1/ψ)2 +

2σνρC,µ
λ

(1− 1/ψ), (38)

where µ̃R,τ and σ̃R,τ are the counterparts of µR,τ and σR,τ associated to the consumption
claim PCt,τ and are defined in the Appendix B.

Under the simple assumptions about the dynamics of C and D, the slope of the term
structure of premia only depends on the preference parameters since the moments of the
aggregate consumption and, in turn, of the state price density are not affected by the
dividend-share. In particular, the term structure of premia is upward-sloping if either
i) the intertemporal substitution effect dominates the wealth effect and the agent has
preference for the early resolution of uncertainty, or ii) the wealth effect dominates the
intertemporal substitution effect and the agent has preference for the late resolution of
uncertainty. Otherwise, the slope is negative. Therefore, in the usual case γ > ψ > 1,
the term structure of premia is monotonically increasing; whereas it is monotonically
decreasing when ψ is smaller than the risk tolerance γ−1, provided γ > 1.12

11 The general case is reported in the Appendix B.
12 A different specification of cash-flows dynamics could instead model the dividend-share
as a priced factor under recursive utility. In such a case the term structure of equity premia
is not necessarily monotone and depends both on preference and cash-flows parameters as
well as the horizon (see Section 5.2 for the details). Here I consider a simpler framework
to provide a better intuition of the main model mechanism and to show the implications
of minimal modifications of the standard long-run risk model.
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The term structure of the volatility of the dividend strips is instead more flexible. The
volatility of expected growth, ν and the elasticity of intertemporal substitution, ψ, unam-
biguously increase the slope whereas the volatility of the dividend-share, η, unambiguously
reduces the slope. The degree of persistence in the two state-variables, λ and κ, instead has
an effect on the slope which depends on the maturity. As long as expected growth is not
too volatile and not too persistent relative to the dividend-share, the model endogenously
produces a downward sloping term structure of volatility at short and medium horizons,
in line with the recent empirical findings.

Corollary 2 characterizes the long-run behavior of the term structures in Eq. (33) and
(34) in terms of the model parameters and in comparison with the term structures as-

sociated to the claim on the aggregate consumption, PCt,τ = Et[
ξt+τ
ξt

Ct+τ ]. The long-run
expected excess return on the market dividend strip approaches to the corresponding pre-
mium on the consumption claim and is given by two terms associated respectively to both
the transient and long-run prices of risk. The limit reduces to γσ2 if EIS → 1. A similar
limit result holds also for the return volatility of the dividend and the consumption strips:
it depends on the instantaneous volatility of consumption innovations, the volatility of the
expected growth and their correlation, where the last two terms disappear if EIS → 1.

In a similar fashion to the dynamics of cash-flows, variations in the corporate fraction
affect the price dynamics of the dividend strip at short and medium horizons but such
an impact reduces as long as the horizon increases and disappears in the limit. Hence,
the non-financial component of consumption has an important role for asset pricing. On
the one hand, δt leads to the high volatile and downward sloping term structure of the
dividend strips in the short-run: this is the required ingredient to capture in equilibrium
the recent empirical evidence about the pricing of dividends, as in van Binsbergen et al.
(2012; 2013). On the other hand, δt does not rule out the long-run explanation of standard
puzzles, such as the smooth dynamics of the risk-free rate, the equity premium, the return
excess volatility and predictability, as documented in Bansal and Yaron (2004) among
others.

Option pricing on dividend strips and other derivatives on the term-structure of equity
could become an important new practice of financial markets. The present model provides
a general and tractable framework for the understanding of their properties in equilibrium.
Indeed, the affine specification of both the state-price density and the price of the dividend
strip allow to adapt, for instance, the pricing formula by Lewis (2000) and, hence, to obtain
option prices up to a single numerical integration.

4.3 EQUILIBRIUM BOND AND EQUITY YIELDS

Given the state price density, the next proposition establishes the equilibrium price of
risk-less zero-coupon bonds.

Proposition 4. The equilibrium price of the zero-coupon bond with maturity τ is given
by

Bt,τ = Et

[
ξt+τ
ξt

]
= eb0(τ,1,0,0)+b1(τ,1,0,0)µt+b2(τ,1,0,0)δt , (39)

where and b0(τ, x, y, z), b1(τ, x, y, z) and b2(τ, x, y, z) are deterministic functions of time
from Proposition 3.
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Notice that b2(τ, 1, 0, 0) = 0 for any τ and, hence, the dividend-share disappears from
the bond price, which is instead a function of expected growth and maturity only. The
zero-coupon bond has price which is exponential affine in expected growth such that the
real bond yield:

εt,τ = − 1

τ
(b0(τ, 1, 0, 0) + b1(τ, 1, 0, 0)µt) , (40)

is linear in µt and its conditional volatility is a state-independent function of the maturity
only. Instead, a bond which continuously pays a coupon c(τ) over a finite or infinite horizon

T , Bt =
∫ T

0
c(τ)Bt,τdτ , leads to a nonlinear real yields and to state-dependent conditional

volatilities.
Armed with these results, I turn on the equity yields as introduced by van Binsbergen,

Hueskes, Koijen, and Vrugt (2013). The model equity yield is defined as

pt,τ = − 1

τ
log

(
Pt,τ
Dt

)
= − 1

τ

(
b0(τ, 1, 1, 1)− δ̄ + b1(τ, 1, 1, 1)µt + (b2(τ, 1, 1, 1)− 1)δt

)
,

(41)
and can be decomposed as follows:

pt,τ = εt,τ − ĝD,t,τ + %t,τ . (42)

The equity yield is given by the difference among the yield on the risk-less bond, εt,τ , and
the dividend expected growth, ĝD,t,τ , plus a premium %t,τ . The latter is implicitly defined
by Eq. (14)-(40)-(41) and is a state-independent function of the maturity.

To gain intuition consider the case where correlations are turned off. The next corollary
characterizes the term structure of the premium on the equity yield.

Corollary 3. When ρC,µ = ρC,δ = ρµ,δ = 0, the premium on the equity yield is given by

%t,τ = mC,τσ +mµ,τν +mδ,τη, (43)

where

mC,τ =πC −
σ

2
,

mµ,τ =πµ
e−λτ + λτ − 1

λ2τ
+ ν

ψ − 2

4λ3τψ
(e−2λτ − 4e−λτ + 3− 2λτ),

mδ,τ = − η 1− e−2κτ

4κτ
,

and has limit equal to

lim
τ→∞

%t,τ = πCσ −
σ2

2
+

(
πµ
λ

+ ν
2− ψ
2λ2ψ

)
ν. (44)

The premium is state-independent but moves with the maturity. The first term is
constant and affine in the price of transient risk, whereas the second and the third term
vary with the maturity and depend on the rates of mean-reversion of both µt and δt. The
time limit of the premium on the equity yield in Eq. (44) has two terms. The first is again
affine in the price of transient risk; the second term is non-monotone in the EIS. The latter
term is positive and decreasing with λ for γ > 1/ψ > 1/2.
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4.4 EQUILIBRIUM MARKET ASSET

Given the state price density, the next proposition establishes the equilibrium price of the
market asset.

Proposition 5. The equilibrium price of the market asset is given by

Pt = Et

[∫ ∞

t

ξu
ξt
Dudu

]
= Dt

∫ ∞

0

eb0(τ,1,1,1)−δ̄+b1(τ,1,1,1)µt+(b2(τ,1,1,1)−1)δtdτ, (45)

where b0(τ, x, y, z), b1(τ, x, y, z) and b2(τ, x, y, z) are deterministic functions of time from
Proposition 3. The excess return dynamics for the market asset is given by

dRt =P−1
t (dPt +Dtdt)− rtdt,

=µR,tdt+ σR,C,tdBC,t + σR,µ,tdBµ,t + σR,δ,tdBδ,t. (46)

The instantaneous return volatility and equity premium are equal to

σR,t =
√
σ2
R,C,t + σ2

R,µ,t + σ2
R,δ,t + 2ρC,µσR,C,tσR,µ,t + 2ρC,δσR,C,tσR,δ,t + 2ρµ,δσR,µ,tσR,δ,t,

(47)

µR,t =σR,C,t (πC + πµρC,µ) + σR,µ,t (πCρC,µ + πµ) + σR,δ,t (πCρC,δ + πµρµ,δ) , (48)

where

σR,C,t =σ, (49)

σR,µ,t = ν ∂
∂µ

logPt, (50)

σR,δ,t = η ∂
∂δ

logPt. (51)

Notice that the market asset price is given by the time integral of the dividend strip
prices over the infinite horizon: Pt =

∫ ∞
0
Pt,τdτ . The price-dividend ratio is a stationary

function of the growth factor and the dividend-share. The price-dividend ratio is not ex-
ponentially affine in the state-variables but is highly nonlinear in µt and δt. Therefore,
the conditional volatility of the price-dividend ratio is state-dependent even under ho-
moscedasticity of fundamentals. The instantaneous return volatility in Eq. (47) has three
components which are associated to the three Brownian shocks and three correlation terms.
The expositions to BC,t and Bδ,t lead to transient risk, while the exposition to Bµ,t leads
to long-run risk. Namely, σR,C,t denotes the constant volatility of aggregate consumption,
whereas σR,δ,t denotes the time-varying volatility due to fluctuations in the dividend-
share. Instead, σR,µ,t captures the sensitivity of the market asset price to the expected
growth factor. The terms σR,µ,t and σR,δ,t are time-varying since the model generates
endogenously stochastic volatility despite the homoscedasticity of the state-variables.

The effects of µt and δt on the price-dividend ratio are the key channels driving the
asset pricing implications of the market return. Notice that:

∂(Pt/Dt)

∂µ
= 1−1/ψ

λ

∫ ∞

0

(1− e−λτ )
Pt,τ
Dt

dτ and
∂(Pt/Dt)

∂δ
= −

∫ ∞

0

(1− e−κτ )
Pt,τ
Dt

dτ.

(52)
The price-dividend ratio moves positively with expected growth if the intertemporal sub-
stitution effect dominates the wealth effect –that is, EIS > 1– and vice-versa. The mag-
nitude of such sensitivity depends on both the expected growth and the dividend-share.
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Instead, the price-dividend ratio moves negatively with the dividend-share despite the
values of preference parameters. This obtains because in the present framework aggregate
consumption has dynamics independent of the dividend-share. The negative and time-
varying sensitivity of Pt/Dt to δ has the following rationale. The relation between the
dividend-share and asset prices operates through the cash-flows channel. Expected divi-
dend growth negatively depends on the dividend-share: when δ is high, dividends are high
but expect to decrease in the future; the opposite holds when δ is low. Therefore, high
(low) dividend-share is a bad (good) news for expected dividend growth. This depresses
(raises) equity prices and raises (depresses) dividend yields.

The equity premium varies with both the state-variables. If ρC,µ = ρC,δ = ρµ,δ = 0, the
expected excess return increases with µt if the representative investor features preferences
for the early resolution of uncertainty, γ > 1/ψ. Intuitively, an increase in expected growth
induces the investors to buy more the stock, whose price rises relative to the dividends.
Therefore, investors face a higher risk which requires a higher premium since the price of
risk is constant.

The effect of the dividend-share on the equity premium is less obvious. As long as
ρC,µ = ρC,δ = ρµ,δ = 0, the dividend-share affects the equity premium through the pricing
of long-run risk (the second term of Eq. (48)).

Corollary 4. When ρC,µ = ρC,δ = ρµ,δ = 0, the sensitivity of the equity premium on the
dividend-share has sign given by

sign(∂δ µR,t) = sign((γ − 1/ψ)(1− ψ)).

Under the usual parametrization γ > ψ > 1, the equity premium is negatively related
to the dividend-share. The rationale is as follows. A high (low) dividend-share negatively
(positively) impacts expected dividend growth. This quantitatively weakens (strengthens)
the sensitivity of prices with respect to long-run growth, that is the channel through which
long-run risk is priced under preference for the early resolution of uncertainty. Intuitively,
we have

∂µEt[ξt+τDt+τ ] = (∂µEt[ξt+τCt+τ ])× Et[St+τ ],

where the first term on the right hand side can be interpreted as the long-run risk channel,
that is the sensitivity of discounted cash-flows with respect to expected growth. The second
term is the dividend-share channel. The latter works as a multiplier of the former and is
negatively related to the current dividend-share because of the co-integrating relationship
between consumption and dividends. As a consequence, the equity premium decreases
with the dividend-share.

Instead, if ρC,δ 6= 0, ρµ,δ 6= 0, the third term in Eq. (48) has sign determined by the
product of these correlations and σR,δ,t, that is the semi-elasticity of the price-dividend
ratio with respect to δt. The latter is negative and, hence, the equity premium increases
if δ is negatively correlated with C and µ for γ > 1/ψ.
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5. Discussion

5.1 QUANTITATIVE IMPLICATIONS

5.1.1 Model calibration and main results

Model parameters are set by choosing cash-flows parameters in order to match some
moments from the time-series of consumption and dividends growth rates and by choosing
preference parameters to provide a good fit of standard asset pricing moments.

This paper for the first time uses the information from the term-structures of cash-flows
to calibrate an equilibrium asset pricing model. Namely, I exploit analytical solutions to set
the cash-flows parameters. The model has seven parameters Θ = {µ, σ, λ, ν, δ̄, κ, η} which
characterize the joint dynamics of consumption and dividends.13 I choose seven empirical
moments: the first two moments of consumption and dividends growth rates, the average
level of the dividend-share and the variance-ratios of dividends at two and fifteen years.
The latter two moments capture the short- and long-run properties of dividend risk. The
model counterparts of these moments are:

m(Θ) =
{
ĝC(t, 1), σC(t, 1), ĝD(t, 1), σD(t, 1), S̄, V RD(t, 2), V RD(t, 15)

}
,

at the steady-state µt = µ̄ and δt = 0. The variance ratios are defined as the ratio of
annualized variances over the horizon τ relative to the one year variance:

V RD(t, τ) =
σ2
D(t, τ)

σ2
D(t, 1)

.

Then, I obtain the parameter vector Θ by minimizing the root-mean-square-error (RMSE):

Θ = arg min
θ

RMSE(θ) = arg min
θ

√√√√1

7

7∑
i=1

(mi(θ)−mempirical

i )2 .

The empirical moments are as follows: I set the expected growth rate of consumption and
dividends to 2% and the volatility of consumption to 3%, which are the usual values from
the literature; the volatility of dividends is set to 15%, which is the value reported in Belo,
Collin-Dufresne, and Goldstein (2014); the average value of the dividend-share is set to
5%, which is the average value in Table 1 and is close to the values considered in Longstaff
and Piazzesi (2004), Lettau and Ludvigson (2005) and Santos and Veronesi (2006); finally,
the variance-ratios at 2 and 15 years are about 85% and 50% as in Belo, Collin-Dufresne,
and Goldstein (2014).

Table 4 reports the model parameters and Table 5 reports both the empirical and the
model-implied moments of cash-flows as well as the calibration errors.

13 Correlation parameters are set to zero for the sake of simplicity and comparability with
most of long-run risk literature.
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Table 4 Model parameters.

Preferences
β ∈[.015,.043] time-discount rate
γ {5, 7.5, 10} relative risk aversion
ψ {1.5, 2, 2.5} elasticity of intertemporal substitution

Cash-flows
µ̄ .0204 unconditional mean of consumption growth
σ .0292 volatility of consumption growth
λ .0637 speed of reversion of expected growth
ν .0124 volatility of expected growth

exp(δ̄) .050 unconditional dividend-share
κ .1967 speed of reversion of log dividend-share
η .1616 volatility of log dividend-share

A number of insights are noteworthy. First, the RMSE is about 5.7×10−7, which is very
small and essentially means that the model dynamics are flexible enough to capture the
main properties of the empirical data. Indeed, the maximum relative error (i.e. |mi(Θ)−
mempirical

i |/mempirical

i ) is about 1.0×10−4 and, hence, all the 7 moments are exactly matched.
Second, in order to further support these results I look at additional moment conditions

which are related to the co-integrating relationship between consumption and dividends
and their model-implied counterparts. Results are reported in Table 5. Namely, Constan-
tinides and Ghosh (2011) document that the correlation among consumption and dividends
growth rates is between 16% and 25%: the model-implied correlation is about 20% and,
hence, is consistent with the data. The volatility of the dividend-share is between 0.9%
and 1.8% and its first-order autocorrelation is between 0.68 and 0.86 as documented in
Table 1:14 the model-implied volatility and autocorrelation are respectively 1.35% and
0.80 and, hence, are consistent with the data.

Table 5 Cash-flows moments. Unconditional statistics of yearly moments are computed
from simulations of the model. All parameters are from Table 4.

Moments used for calibration
Data Model Rel. error

gC,1 consumption growth .02 .02 1.0×10−4

σC,1 consumption volatility .03 .03 7.8×10−5

gD,1 dividends growth .02 .02 1.0×10−4

σD,1 dividends volatility .15 .15 4.1×10−5

S̄ unconditional dividend-share .05 .05 7.6×10−7

VRD(2) 2-years variance ratio of dividends .85 .85 4.5×10−6

VRD(15) 15-years variance ratio of dividends .50 .50 8.2×10−7

Implied moments
Data Model

ρC,D,1 consumption and dividends correlation (.16,.25) .200
σS,1 dividend-share volatility (.009,.018) .014
ACS,1 dividend-share autocorrelation (.68,.86) .803

Third, the long-run growth factor µt has very persistent and smooth dynamics (λ =
6.37% and κ = 1.24%). These values are quite in line with most of long-run risk literature.

14 These results are similar to those in Longstaff and Piazzesi (2004), Lettau and Ludvig-
son (2005) and Santos and Veronesi (2006).
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Hence, the information from the term-structure of dividend risk seems to be consistent
with the long-run risk channel, although the model-implied term-structure of dividend
volatilities is substantially different from that implied by the standard long-run risk model.
To point out this result I consider an alternative dynamics for dividends:

dD̃t

D̃t
= µtdt+ ασdBC,t,

which can be interpreted as a levered version of consumption: the leverage parameter α =
5.15 is set to produce the same dividend volatility of 15%. This is the usual model choice in
the long-run risk literature, which disregards the mean-reverting dynamics of the dividend-
share. Figure 2 shows the model implied term-structures of variance-ratios for both the
two dividends dynamics. Dividends in the model (solid line) feature a U-shaped term-
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Fig. 2. The term structure of dividend risk. The left and right panels show the term
structure of respectively variance-ratios and volatilities of dividends D (solid lines)

and D̃ (dashed lines) as a function of time horizon. Markers denote the 2 and 15
years horizons. All parameters are from Table 4.

structure, which is strongly downward-sloping at short horizons and where the two marked
points denote the empirical variance-ratios V RD(t, 2) and V RD(t, 15) from Belo, Collin-
Dufresne, and Goldstein (2014). Instead, the alternative dividends dynamics (dashed line)
feature a monotone increasing term-structure, which fails to match the variance-ratios
from the real data. Notice that the above dynamics for D̃ loads the whole excess-volatility
of dividends relative to consumption on the transient risk. Alternatively, I could have load
the excess volatility on the dividend drift, through a levered exposition to the expected
growth factor (e.g. dD̃t = D̃t(αµtdt+ σdBC,t) with α > 1). In such a case the upward-
sloping term structure of variance-ratios would have been steeper and, hence, even more
distant from the real data.

Fourth, the shape of the term-structure of dividend risk is the result of the combination
of a downward-sloping effect due to δt and an upward-sloping effect due to µt. One issue
with long-run risk models is that the main model mechanism essentially relies on a latent
factor which is difficult to estimate. However, the dividend-share is observable and, hence,
allows to fix the downward-sloping effect. Therefore, exploiting the information implied
by the term-structure of dividend risk i) not only allows to calibrate a model consistently
with additional empirical moments but ii) also offers a way to infer about the strength
of the long-run risk channel. The above calibration shows that a good match of both
the dynamics of the dividend-share as well as the term-structure of variance-ratios is
compatible with a dynamics of µt, which is in line with most of long-run risk literature.
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Fig. 3. The term structures of aggregate consumption and dividends. The upper
panel shows the term structure of the volatility of aggregate consumption growth
as a function of the time horizon. The middle panels show the term structure of the
volatility of dividend growth as a function of the time horizon. The lower panels
show the term structure of the correlation between aggregate consumption and
dividend growth as a function of the time horizon. Solid lines denote the baseline
calibration from Table 4. Dashed lines denote the case of either κ = .1 (left) or
η = .1 (right) and dot-dashed lines denote the case of either κ = .3 (left) or η = .3.
The state-variables are set µ = µ̄ and δ = 0.

Figure 3 shows σC,t,τ and σD,t,τ as functions of the maturity. The term structure of
consumption volatility is monotonically upward sloping since expected growth is stochas-
tic. Instead, σD,t,τ can be both increasing and decreasing with the maturity depending on
the horizon. In particular, a steeper negative slope obtains in the short-run by decreasing
κ or increasing η, whereas less pronounced slopes obtain for either κ or η respectively large
or small enough. Figure 3 also shows ρC,D,t,τ as a function of the maturity: the correlation
can be low in the short-run and monotonically increases with the horizon. A lower rate
of reversion or a large volatility of δt reduce the rate of convergence towards one. The
short-run level of correlation is decreasing with the dividend-share volatility η.

Preference parameters are set as follows. Asset pricing implications are investigated un-
der several pairs of relative risk aversion and elasticity of intertemporal substitution, in the
range of values considered in the literature: γ = {5, 7.5, 10} and ψ = {1.5, 2, 2.5}. These
preferences are consistent with most of long-run risk literature and imply that i) the in-
tertemporal substitution effect dominates the wealth effect and ii) the agent has preference
for the early resolution of uncertainty. For the sake of comparison, for each pair (γ, ψ), the
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time-discount rate β is set to match a steady-state risk-free rate of 0.8% (Constantinides
and Ghosh (2011) document that the risk-free rate is in the range (0.6%,1.0%)). Results
are reported in Table 6.

The model generates a sizeable equity premium of about 4.6% under the usual
parametrization γ = 10 and ψ = 1.5. Such a result is quite remarkable since it obtains
without heteroscedasticity in fundamentals. As a consequence, the model leads to a re-
turn volatility of about 14.4% which is somewhat lower than in the real data. Moreover,
the model captures quite well the levels of the Sharpe ratio and of the price-dividend
ratio. However, the latter is less volatile than in the real data. Similar results obtain also
under lower risk aversion but higher elasticity of intertemporal substitution. For instance,
the pairs γ = 7.5, ψ = 2 and γ = 5, ψ = 2.5 generate an equity premium of about 4.5%,
whereas the empirical level of about 6% obtains for the pair γ = 10, ψ = 2.5. A well known
shortcoming of increasing the elasticity of intertemporal substitution consists of a too low
implied volatility of the risk-free rate.

Table 6 Steady-state asset pricing moments. Steady-state yearly moments for the risk-free
rate (r) and its volatility (σr), the excess stock return (µR) and volatility (σR), the Sharpe
ratio (SR) and the log price-dividend ratio (logP/D) and its volatility (σlogP/D) for
both the dividend claim and the consumption levered claim are compared with empirical
moments from Constantinides and Ghosh (2011). All unreported parameters are from
Table 4.

Data

r σr µR σR SR logP/D σlogP/D

1931-2009 .006 .030 .062 .198 .313 3.38 .450
1947-2009 .010 .027 .063 .176 .358 3.47 .429

Model

Preferences Risk-less claim Dividend claim Levered consumption claim

γ ψ β∗ r∗ σr µR σR SR logP/D σlogP/D µR σR SR logP/D σlogP/D

5 1.5 .015 .008 .009 .034 .156 .216 3.94 .153 .047 .156 .303 3.39 .040
7.5 1.5 .021 .008 .009 .043 .148 .289 3.56 .145 .063 .154 .407 3.00 .034
10 1.5 .026 .008 .009 .050 .142 .352 3.34 .139 .077 .153 .501 2.75 .030

5 2 .023 .008 .007 .042 .157 .267 3.64 .154 .055 .160 .341 3.21 .056
7.5 2 .031 .008 .007 .052 .147 .351 3.32 .144 .071 .157 .450 2.86 .047
10 2 .037 .008 .007 .060 .140 .424 3.12 .137 .085 .156 .548 2.63 .041

5 2.5 .029 .008 .005 .046 .159 .291 3.52 .156 .059 .163 .359 3.13 .064
7.5 2.5 .037 .008 .005 .056 .148 .379 3.22 .145 .075 .160 .470 2.80 .054
10 2.5 .043 .008 .005 .064 .141 .457 3.03 .138 .090 .158 .569 2.58 .048

For the sake of comparison, Table 6 also reports the moments associated to the claim on
the alternative specification of dividends D̃, which rules out the mean-reverting dynamics
of the dividend-share. Overall, the steady-state moments are quite similar: the claim on
D̃ improves somewhat on the description of the first two moments of stock returns but is
somewhat poorer in the description of the first two moments of the price-dividend ratio.
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These results are interesting because they imply that the standard asset pricing moments
of a long-run risk model do not deteriorate by modelling the co-integrating relationship
between consumption and dividends. Therefore, those standard moments are consistent
with the downward-sloping term-structures of dividend and equity risk. In a nutshell, it
is possible to reconcile both the short- and long-run patterns of equity returns.

The three panels of Figure 4 report respectively the price-dividend ratio, the return
volatility and the equity premium as functions of both the expected growth and the
dividend-share, when instantaneous correlations are turned off and the representative
agent has preferences for the early resolution of uncertainty.

Fig. 4. The price-dividend ratio, return volatility and premium of the market asset.
The left, middle and right panels show respectively the log price-dividend ratio,
the return volatility and the premium of the market asset as a function of expected
growth µ and log dividend-share δ. Preferences are set γ = 10 and ψ = 1.5. All
parameters are from Table 4.

The term-structures of the returns of the dividend strips are reported in Figure 5 for
the case γ = 10, ψ = 1.5. Namely, the three panels show the premia, the volatilities and
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Fig. 5. The term structures of equity returns. The left, middle and right panels show
the term structure of respectively premia, volatilities and Sharpe ratios of dividend
strip returns associated to D (solid lines) and D̃ (dashed lines) as a function of
time horizon. Markers denote the 2 and 15 years horizons. Preference parameters
are: γ = 10 and ψ = 1.5. All unreported parameters are from Table 4.

the Sharpe ratios of the dividend strips for both the two dynamics of dividends D and
D̃. Under preference for the early resolution of uncertainty, premia are upward-sloping.
Since fluctuations in the dividend-share are not priced, the slope of the term-structures
of premia associated to D and D̃ are essentially equal and the only difference concerns
the level of premia. Instead, the term-structure of return volatilities are quite different:
the co-integrating relationship between consumption and dividends leads to downward-
sloping equity risk for about ten years and then a slightly positive slope. Instead, the
alternative dynamics of dividends implies upward-sloping equity risk at any horizon. As
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a consequence, the term-structure of Sharpe ratios is increasing for both D and D̃: the
co-integrating relationship between consumption and dividends leads to a steeper slope
up to about ten years.

Figure 6 reports the term-structure of equity risk associated to D for three pairs of
preference parameters: γ = 10, ψ = 1.5, γ = 7.5, ψ = 2 and γ = 5, ψ = 2.5. As commented
above, these pairs lead to similar implications for the standard asset pricing moments.
However, these pairs imply different combinations of aversion for transient risk (captured
by γ) and for long-run risk (captured by γ − 1/ψ). Figure 6 shows that the term-structures
of equity risk are essentially equal up to about 5 years and then diverge at longer horizons.
The interpretation is that the three combinations of aversion for transient and long-run
risks compensate each other in the short-run. Instead, the degree of preference for the
resolution of uncertainty (γ − 1/ψ) dominates the determination of the slope of equity risk
in the long-run. The larger ψ, the steeper the positive long-run slope of equity risk. Notice
that all the above combinations are consistent with a dynamics of dividends which nicely
fits the term-structure of dividend risk. Therefore, the correct specification of downward-
sloping dividend risk is not inconsistent with the idea that long-run risk of fundamentals
is a main determinant of equity risk.

0 5 10 15 20
Τ

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Volatilities of dividend strips

Fig. 6. Preferences and the term structures of equity returns. The figure shows the
term structure of volatilities of dividend strip returns associated to D as a function
of time horizon. Markers denote the 2 and 15 years horizons. Preference parameters
are: γ = 10, ψ = 1.5 (solid line), γ = 7.5, ψ = 2 (dashed line) and γ = 5, ψ = 2.5
(dotted line),. All unreported parameters are from Table 4.

The upper panels of Figure 7 show that σR,t,τ can be decreasing with the horizon in
the short-run and then upward sloping for τ large enough. The level of the volatility is
positively and negatively related with η and κ, but the larger the speed of reversion of the
dividend-share, the larger the horizon at which the volatility reaches its minimum. The
lower panels of Figure 7 show µR,t,τ as a function of the maturity. The term structure
of the premium on the dividend strip is upward sloping if EIS > 1 and ρC,δ = ρµ,δ = 0.
However, in such a case reversion and volatility of the dividend-share do not affect the
premium.

To assess whether the model quantitatively captures the declining volatilities of equity
yields, I compare the empirical evidence from van Binsbergen, Hueskes, Koijen, and Vrugt
(2013) with the model counterparts under various preference settings. Namely, van Bins-
bergen, Hueskes, Koijen, and Vrugt (2013) document that the volatilities of US forward
equity yields decrease with the maturity in the range 10%-3% from one to seven years.
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Fig. 7. The term structures of dividend strip returns. The upper panels show the
term structure of the dividend strip return volatility as a function of the time
horizon. The lower panels show the term structure of the dividend strip return
premia as a function of the time horizon. Solid lines denote the baseline calibration
from Table 4. Dashed lines denote the case of either κ = .1 (left) or η = .1 (right)
and dot-dashed lines denote the case of either κ = .3 (left) or η = .3. The state-
variables are set µ = µ̄ and δ = 0. Preferences are set γ = 10 and ψ = 1.5.

The model forward equity yield is defined as pt,τ − εt,τ or, equivalently, as %t,τ − ĝD,t,τ
(see Eq. (42)). Results are reported in Table 7.

The baseline model calibration captures the declining pattern of volatilities as well as
the long-run level, whereas it underestimates the short-run level. This can be eventually
due to the simplifying assumption of homoscedastic state-variables.

Table 7 The volatility of forward equity yields. Unconditional yearly volatilities of forward
equity yields with maturity τ (in years) are computed from simulations of the model. All
parameters are from Table 4. Empirical data are from van Binsbergen, Hueskes, Koijen,
and Vrugt (2013).

τ 1 2 3 4 5 6 7

Data .102 .080 .057 .047 .040 .035 .032

Model .057 .053 .049 .047 .044 .041 .039

The left upper panel of Figure 8 shows the equity yield as a function of the maturity
when µt and δt are set at the steady-state. The other three panels report the three compo-
nents of the equity yield: namely, the real yield of the bond, the growth rate of dividends
and the premium on the equity yield. In the long-run, the upward-sloping equity yield is
due entirely to the premium since the real yield decreases with the horizon.

Figure 9 shows the equity yield as a function of the dividend-share and the maturity.
The term structure approaches to a flat long-run limit from above or from below depend-
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Fig. 8. The term structure of the equity yield and its components. The term struc-
ture of the equity yield pt,τ (upper left panel), of the bond yield εt,τ (upper right
panel), of the dividend growth gD,t,τ (lower left panel) and of the premium on the
equity yield %t,τ (lower right panel) are plotted as functions of the maturity τ . The
state-variables are set µ = µ̄ and δ = 0. Preferences are set γ = 10 and ψ = 1.5. All
parameters are from Table 4.

ing if the current dividend-share is respectively above or below its steady-state. Therefore,

Fig. 9. The dynamic term structure of the equity yield. The term structure of the
equity yield pt,τ is plotted as a function of the maturity τ and of the log dividend-
share δ. The state-variables are set µ = µ̄ and δ = 0. Preferences are set γ = 10 and
ψ = 1.5. All parameters are from Table 4.

the equity yield moves positively with the dividend-share and, hence, moves negatively
with the price-dividend ratio of the market asset (if γ > ψ > 1). Intuitively, the larger the
fraction of aggregate consumption funded by dividends, the lower the expected growth of
dividends, given the stationary dynamics of the dividend-share. This bad cash-flows news
pushes down prices relative to dividends and, hence, increases equity yields. Such a coun-
tercyclical behavior of the equity yield is strong at short horizons whereas it disappears at
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longer ones. Consequently, the slope of the term structure of equity yields is countercycli-
cal: that is, the term structure is upward sloping when the market price-dividend ratio is
high and, vice-versa, it is downward sloping when the market price-dividend ratio is low.
Then such an equilibrium dynamics of the term structure seems to be consistent with the
recent empirical findings in van Binsbergen, Hueskes, Koijen, and Vrugt (2013).

5.1.2 Additional testable implications

In order to better understand the properties of the model, I focus on three additional
testable implications: i) the predictability of dividend growth; ii) the variance decomposi-
tion of equity yields; iii) the term-structure of conditional CAPM betas.

Dividend growth predictability. I study the long-horizon predictability of dividend
growth and cumulative excess returns by the price-dividend ratio, the equity yields as well
as the state-variables µt and δt. Table 8 reports the results.

Prices predict both dividend and consumption growth: such an effect is likely larger than
in the real data but this is a well known shortcoming of long-run risk models. Moreover,
the price-dividend ratio negatively covaries with cumulative excess returns but statisti-
cal significance and explanatory power are very limited. This is likely due to, first, an
offsetting mechanism between the two sources of predictability µt and δt and, second,
state-independent prices of risk, due to the simplicity of the framework. In line with the
empirical evidence by van Binsbergen, Hueskes, Koijen, and Vrugt (2013), the equity
yields with both short (one year) and long (ten years) maturity predict both dividend
and consumption growth rates: the explanatory power does not change substantially with
the maturity of the yield. The expected growth factor µt predicts positively consumption
and dividend growth but, similarly to the price dividend ratio, its correlation with excess
returns is not statistically significant.

The role of δt is crucial to the model implications: since prices move with δt, we expect
that the corporate fraction would predict either returns or dividends growth rates or both.
Namely, the dividend-share δt barely predicts excess returns and strongly predicts dividend
growth rates with negative sign, whereas by construction it cannot predict consumption
growth rates. The negative relation among the corporate fraction and future dividend
growth is consistent with the empirical findings in Section 2. and Table 2 and 3.

Notice that the cointegration among consumption and dividends mechanically leads
to a source of dividend growth predictability. However the model captures the fact that,
in line with the data, such a source of predictability is not offset by other sources of
predictability, such as time-variation in long-run growth. Notice that the model calibration
exploits information from the term-structure of dividend variance ratios. Therefore, this
result provides further support to the idea that the cointegration among consumption and
dividends is closely related to the timing of dividend risk.



CORPORATE FRACTION AND THE TERM-STRUCTURE OF EQUITY RISK 31

Table 8 Long horizon regressions. Coefficients, t-statistics and R2 from OLS regressions of
one to ten years cumulative excess returns (R− rf ), dividends (∆ logD) and consumption
(∆ logC) growth rates on respectively the logarithm of the price-dividend ratio (logP/D),
the equity yields with one (p1) and ten (p10) years maturity, the logarithm of the dividend
share (δ) and the expected growth (µ). Regressions are based on one thousand simulations
each one accounting for one hundred years of data. Model parameters are from Table 4.

logP/D R− rf ∆ logD ∆ logC
1 2 3 5 7 1 2 3 5 7 1 2 3 5 7

Coeff -0.01 -0.01 -0.02 -0.02 -0.02 0.27 0.50 0.68 0.95 1.29 0.05 0.09 0.12 0.18 0.27
t-stat -0.33 -0.38 -0.41 -0.42 -0.25 3.73 5.28 6.42 7.91 8.73 2.63 2.99 3.06 2.97 2.43
R2 (%) 1.19 2.15 2.94 3.94 5.53 12.70 22.56 30.03 39.23 44.22 9.31 11.76 12.60 12.92 11.51

p1 R− rf ∆ logD ∆ logC
1 2 3 5 7 1 2 3 5 7 1 2 3 5 7

Coeff 0.02 0.03 0.04 0.05 0.02 -1.26 -2.28 -3.10 -4.30 -5.77 -0.11 -0.21 -0.29 -0.43 -0.63
t-stat 0.24 0.25 0.26 0.23 0.00 -3.56 -4.99 -6.00 -7.26 -7.84 -1.28 -1.44 -1.47 -1.42 -1.15
R2 (%) 1.12 2.01 2.73 3.62 5.17 11.78 20.76 27.42 35.43 39.28 5.10 6.71 7.43 8.17 8.34

p10 R− rf ∆ logD ∆ logC
1 2 3 5 7 1 2 3 5 7 1 2 3 5 7

Coeff 0.06 0.09 0.12 0.17 0.14 -2.66 -4.84 -6.62 -9.22 -12.48 -0.36 -0.68 -0.97 -1.44 -2.14
t-stat 0.30 0.33 0.35 0.34 0.15 -3.68 -5.19 -6.29 -7.69 -8.41 -2.06 -2.34 -2.39 -2.32 -1.90
R2 (%) 1.16 2.09 2.85 3.80 5.35 12.43 22.01 29.20 37.96 42.46 7.25 9.29 10.06 10.58 9.92

δ R− rf ∆ logD ∆ logC
1 2 3 5 7 1 2 3 5 7 1 2 3 5 7

Coeff 0.00 0.00 0.00 -0.00 -0.02 -0.22 -0.39 -0.53 -0.72 -0.95 0.00 0.00 0.00 0.01 0.02
t-stat 0.15 0.12 0.10 0.03 -0.25 -3.24 -4.47 -5.31 -6.28 -6.63 0.07 0.09 0.10 0.11 0.13
R2 (%) 1.03 1.86 2.52 3.38 5.08 10.08 17.61 23.07 29.52 32.45 3.70 5.07 5.79 6.75 7.61

µ R− rf ∆ logD ∆ logC
1 2 3 5 7 1 2 3 5 7 1 2 3 5 7

Coeff -0.14 -0.27 -0.38 -0.59 -0.96 0.95 1.83 2.61 3.88 5.91 0.95 1.79 2.53 3.76 5.67
t-stat -0.57 -0.78 -0.92 -1.14 -1.46 1.65 2.35 2.86 3.54 4.27 8.79 11.09 11.77 11.24 8.25
R2 (%) 1.40 2.60 3.72 5.65 9.28 3.31 6.35 9.12 13.39 18.88 42.84 53.37 55.86 53.66 40.77

Variance decomposition. The variance decomposition of the price-dividend ratio of the
market asset is a well known approach to understand the sources of variation of prices.
In the model, the price-dividend ratio covaries more with the expected dividend growth
than with the discount rates. The recent empirical evidence is quite controversial because
of empirical issues in the proper measurement of shareholders’ remunerations.

A similar variance decomposition can also be used to understand the variation in the
equity yields, pt,τ . Namely, for any τ , I look at the relative role of expected returns and
expected dividend growth:

cov(pt,τ , εt,τ + %t,τ )

var(pt,τ )
, and −

cov(pt,τ , gD,t,τ )

var(pt,τ )
.

Table 9 shows the the two above quantities implied by the model for the maturity 2, 5 and
10 years. Similarly to the case of the price-dividend ratio of the market asset, expected
dividend growth contributes more than discount rates to the variance of the equity yields.
Moreover such an effect is increasing with the horizon. The term-structure of the variance
decomposition of equity yields is barely insensitive to different specifications of the pair
(γ, ψ): changing the importance of long-run risk relative to transient risk does not alter the
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relative contribution of cash-flows and discount rates news about the variation of equity
yields.

Table 9 Variance decomposition of equity yields. The table reports the variance decompo-
sition of 2, 5 and 10 years equity yields by means of cash-flows news (CF) and discount

rates news (DR), computed as respectively −cov(pt,τ ,gD,t,τ )

var(pt,τ )
and

cov(pt,τ ,εt,τ+%t,τ )

var(pt,τ )
. All un-

reported parameters are from Table 4. Empirical data are from van Binsbergen, Hueskes,
Koijen, and Vrugt (2013).

Data

US EU Japan
τ CF DR CF DR CF DR

2 .80 .20 .73 .27 .62 .38

5 .73 .27 .78 .22 .78 .21

Model

γ = 10, ψ = 1.5 γ = 7.5, ψ = 2 γ = 5, ψ = 2.5
τ CF DR CF DR CF DR

2 1.10 -.10 1.10 -.10 1.09 -.09

5 1.13 -.13 1.13 -.13 1.12 -.12

10 1.21 -.21 1.20 -.20 1.17 -.17

These results are in line with the empirical findings of van Binsbergen, Hueskes, Koijen,
and Vrugt (2013), reported in Table 9. They provide international evidence about the vari-
ance decomposition of equity yields and document that: i) news about expected dividend
growth dominate those about expected returns; ii) in two regions (EU and Japan) out
of three (US) the distance in the contribution of the two components increases with the
maturity. The model accounts for both these stylized facts, but produces somewhat more
extreme numbers.

Term-structure of betas. It is worth noting how premia on the dividend strips relate
with the premium on the market asset. The CAPM does not hold in general in the economy
under analysis. Namely, the CAPM would hold if preferences reduce to the logarithmic
utility and the wealth portfolio (i.e. the claim on aggregate consumption) substitutes
for the market asset. However, I test for a conditional CAPM in spirit of van Binsbergen,
Hueskes, Koijen, and Vrugt (2013). They show that the coefficient of market excess returns
is positive, lower than one and increasing with the maturity of the dividend strip. Moreover,
the coefficient of market excess returns multiplied by a measure of economic conditions
implies countercyclical conditional betas.

To verify whether such stylized facts also hold within the model, I run the following
regression from simulated data:

rxt,τ = ατ + β0,τ rxt + β1,τ rxt ×D/Pt−1 + εt (53)
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where rxt,τ and rxt are the excess returns respectively on the dividend strip with maturity
τ and on the market asset. The lagged dividend-to-price ratio of the market asset is used
as a measure of economic conditions.

I verify the model implications under the following pairs of preference parameters:
γ = 10, ψ = 1.5, γ = 7.5, ψ = 2 and γ = 5, ψ = 2.5. This allows to infer about the role of
both transient and long-run risks. Results are reported in Table 10.

Table 10 The term-structure of conditional CAPM beta. Coefficients and t-statistics from
OLS regressions of dividend strip excess returns with 2, 5 and 10 years maturity on the
market asset excess return and on the market asset excess return multiplied by the lagged
dividend yield, as in Eq. (53). Regressions are based on one thousand simulations each
one accounting for one hundred years of data. All unreported parameters are from Table
4.

γ = 10, ψ = 1.5 γ = 7.5, ψ = 2 γ = 5, ψ = 2.5
τ β0,τ β1,τ β0,τ β1,τ β0,τ β1,τ

(t) (t) (t) (t) (t) (t)

2 .47 22.18 .44 13.41 .28 13.12
(.75) (1.16) (.84) (.90) (.65) (.84)

5 .67 9.46 .61 6.23 .49 6.89
(2.25) (1.09) (2.53) (.91) (2.28) (.92)

10 .91 -1.05 .84 .37 .75 2.07
(20.50) (-.90) (21.81) (.35) (18.54) (1.56)

Three results are noteworthy. First, short equity claims covary with the market asset
less than long equity claims. Indeed, the coefficient β0,τ is positive, lower than unity and
increasing with the horizon under all the pairs of preference parameters. These properties
of the betas are in line with the real data. In particular, van Binsbergen, Hueskes, Koijen,
and Vrugt (2013) document coefficients ranging between .41 and .48 for τ = 2 and between
.60 and .81 for τ = 5. These numbers are quite well matched by the model for γ = 10 and
ψ = 1.5.

Second, equity claims covary with the market asset more in bad times than in good
times. Indeed, the coefficient β1,τ is positive, implying a countercyclical dynamics of con-
ditional betas. Also this result is consistent with the empirical findings of van Binsbergen,
Hueskes, Koijen, and Vrugt (2013).15

Third, the three pairs of preference parameters show that the positive slope of the
term-structure of beta is not very sensitive to the importance of long-run risk relative to
transient risk. Instead, the stronger the long-run risk channel, the lower the level of the
term-structure. Namely, shifting preferences from γ = 10, ψ = 1.5 to γ = 5, ψ = 2.5 leads
to substantially smaller coefficients β0,τ for both short and long equity claims. Therefore,
the long-run risk channel seems to be consistent with the stylized facts documented by
van Binsbergen, Hueskes, Koijen, and Vrugt (2013). The larger the compensation that the
agent requires for variation in expected long-run growth, the lower the covariance between

15 van Binsbergen, Hueskes, Koijen, and Vrugt (2013) use the lagged 2-years equity yield
as a (countercyclical) measure of economic conditions: such a choice appears somewhat
unconventional and I substitute it with the more usual market dividend-to-price ratio.
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the market asset and short equity claims. Indeed, the latter are similar to dividends and,
hence, have dynamics dominated by the short-run fluctuations of the dividend-share.

5.2 PRICING CORPORATE FRACTION FLUCTUATIONS

The cash-flows specification in Eq. (5)-(7)-(8) is somewhat simplistic but allows for a
tractable characterization of all important formulas about dividends, dividend strips and
the market asset. However, on the one hand, from a general equilibrium perspective it
is difficult to imagine why the dividend-share dynamics could be independent from the
consumption dynamics; on the other hand, such a dynamics of the dividend-share seems
at odds with either downward-sloping premia on the dividend strips or a high equity
premium on the market asset.

This section investigates the equilibrium implications of a different specification of the
cash-flows. Namely, the dividend-share is defined in such a way that it positively affects
both consumption and dividends dynamics. This is consistent with the real data: the
fraction of total resources devoted to shareholders’ remuneration is procyclical. The main
implications are as follows: i) the term structures of volatility of both consumption and
dividends are not necessarily monotone increasing with the horizon; ii) both consump-
tion and dividends growth rates feature stochastic volatility, due to fluctuations in the
dividend-share; iii) since the dividend-share affects consumption dynamics, it also enters
the dynamics of the state-price density and, hence, its innovations command a price of
risk due to recursive utility.

Assume to directly model the non-financial components of aggregate consumption L =
C −D as follows:

dLt = µtLtdt+ σLLtdBL,t, (54)

where µt has dynamics as in Eq. (6). Then, define the dividend-share as given by

St =
Dt
Ct

= 1− e−`t , (55)

where

d`t = κ(¯̀− `t)dt+ η
√
`tdB`,t, (56)

such that

dCt
Ct

= (µt − (κ− η2/2)`t + κ¯̀)dt+ σLdBL,t + η
√
`tdB`,t. (57)

As long as ¯̀, `0 > 0, then C > L and both the instantaneous drift and volatility of aggre-
gate consumption move with `t. All Brownian motions are assumed to be independent
for the sake of exposition. Consumption Ct = Lte

`t is given by the product of an inte-
grated process Lt and a stationary one e`t : such a dynamics is consistent with Bansal,
Kiku, and Yaron (2010), but here the cyclical component `t also governs the cointegrating
relationship between consumption and dividends and their stochastic volatility.

On a technical side, notice that consumption dynamics belongs to the affine class and,
hence, a solution methodology similar to that of the previous sections is still available.16

Instead, dividends dynamics is not any more in the affine class but dividends can be

16 All the results of this Section are derived in Appendix C.
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Fig. 10. The term structures of cash-flows and equity. The left panel shows the
term structure of the volatility of aggregate consumption (solid line) and dividends
(dashed line) growth as a function of the horizon. The right panel shows the term
structure of dividend strip return premia (solid line) and volatility (dashed line) as a
function of the horizon. The model is as in Section 5.2 and parameters are: µ̄ = .01,
σL = .035, λ = .10, ν = .001, ¯̀= −2.996, κ = .05, η = .04, β = .035, γ = 25 and
ψ = .75. The implied steady-state risk-free rate and log price-dividend ratio are
rt = 1% and logPt/Dt = 3.41.

written as the difference among two exponential affine terms: Dt = Lt(e
`t − 1). Such a

specification has two implications. On the one hand, closed form expectations can be
easily computed. On the other hand, the price of the dividend strip is not an exponential
affine functional of the states. Therefore, premium and return volatility on the dividend
strips depend on both the states and the maturity, whereas they are state-independent in
the model of the previous sections.

Figure 10 shows the term structures implied by the model. The left panel displays
the volatility of consumption and dividends. Consumption risk is barely flat instead of
monotone increasing with the horizon, as in the data (see Figure 3). Indeed, long-run risk
due to fluctuations in µt is offset by short-term risk due to fluctuations in the corporate
fraction, driven by `t. The term structure of dividend risk features a negative slope and
higher short-term risk, as suggested by the empirical evidence (see Figure 3).

In equilibrium, the logarithm of the consumption-wealth ratio is affine in the states µt
and `t and the state-price density has dynamics:

dξt = −ξt(r0 + r1µt + r2`t)dt− ξt(πLdBL,t + πµdBµ,t + π`
√
`dB`,t). (58)

Notice that the factor `t enters the risk-free rate and that a price of risk is associated to
its innovations dB`,t. In particular, the prices of risk are given by:

πL = γσL, (59)

πµ = ν(γ−1/ψ)
λ+ecw

, (60)

π` = η
ψ

+ γ−1/ψ
η(1−γ)

(
ecw + κ−

√
(ecw + κ)2 + 2ecwη2(γ − 1)

)
. (61)

The first two prices of risk exactly resemble their counterparts in the model of the previous
sections. Instead, the price of risk π`

√
`t has the following interpretation. The first term

on the right hand side of Eq. (61), η/ψ, is the price of transient risk: that is, it is the price
of the contribution of `t to the instantaneous volatility of consumption. The second term
on the right hand side of Eq. (61) is the price of non-transient risk: that is, it is the price
for the effect of fluctuations in the corporate fraction on the continuation utility value of
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the representative agent. Such a type of risk is absent in the model of the previous sections
and disappears in the power utility case (ψ → γ−1). Notice that the price of transient risk
is decreasing with the EIS, whereas the price of non-transient risk is increasing with the
EIS as well as with the degree of early resolution of uncertainty, provided γ > 1.

The price of the dividend strip (relative to the current dividend value) as well as its
premium and return volatility are stationary functions of the states µt, `t and the maturity
only:

Pt,τ =h0(µt, `t, τ)Dt, (62)

µR,t,τ =h1(µt, `t, τ), (63)

σR,t,τ =h2(µt, `t, τ), (64)

where h0, h1 and h2 are derived in closed form in the Appendix C.
The right panel of Figure 10 shows the term structures of the premium and the return

volatility of the dividend strips. They are both decreasing with the horizon and roughly
capture the magnitude of their empirical counterparts. It is worth noting how this result
obtains and how the model differs from the standard long-run risk model. The price of
risk associated to expected growth, πµ, allows to price the risk at long horizons through a
large degree of early resolution of uncertainty. Hence, the term structure of equity premia
is upward sloping when ψ > 1 and µt is the only priced factor at equilibrium. This is
the mechanism driving the equity premium in long-run risk literature as well as in the
model of the previous sections. Instead, the current model commands a high premium
in equilibrium either by pricing long-horizon cash-flows through fluctuations in µt and
high EIS or by pricing short-horizon cash-flows through fluctuations in the corporate
fraction, driven by `t, and low EIS. The latter case also leads to term structures of both
equity premia and risk which are downward sloping at short and middle horizons and
potentially increasing in the long-run, depending on the model parameters. The right
panel of Figure 10 captures negative slopes because of a low EIS (ψ < 1). In the current
model, the corporate fraction fluctuations alter both the covariance between consumption
and dividends as well as conditional consumption moments and, in turn, the equilibrium
discount rates.

Similarly to the dividend strips, the price of the market asset (relative to the current
dividend value) as well as its premium and return volatility are stationary functions of
the states µt and `t:

Pt =w0(µt, `t)Dt, (65)

µR,t =w1(µt, `t), (66)

σR,t =w2(µt, `t), (67)

where w0, w1 and w2 are derived in closed form in the Appendix C. Market returns fea-
ture stochastic volatility which is partly exogenous (due to the effect of `t on cash-flows
dynamics) and partly endogenous (due to the pricing at equilibrium of both µt and `t).
Such a form of stochastic volatility, due to `t, differs from the usual channel of economic
uncertainty included in most of long-run risk literature. Indeed, here, time-varying volatil-
ity leads to uncertainty which disappears with the horizon, whereas in standard long-run
risk models it integrates over the horizon, generating highly risky long-term cash-flows.
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6. Conclusion

This paper shows that a one-channel long-run risk model can accommodate for both
short-term and long-term patterns of equity returns as long as dividends are modelled as
a stochastic fraction of aggregate consumption. The model leads to a good fit of standard
asset pricing moments together with downward sloping term-structures of volatility of both
dividends and dividend strip returns at short and medium horizons. Moreover, such results
obtain in absence of stochastic volatility in fundamentals and under standard preferences.

An empirical analysis supports the main model mechanism and the close connection
between the dividend-share dynamics, the timing of dividend risk and the predictability of
dividend growth. The model calibration exploits the information from the term-structure
of dividend risk and helps to infer about the strength of the long-run risk channel, which
is consistent with most of long-run risk literature.

Analytic tractability and the possibility of extending the present framework to the
jump-diffusion affine class allow to develop the model in a number of directions. Divi-
dend strips are receiving growing attention by on-going empirical research: a general and
tractable equilibrium framework could provide the starting point for a deep understanding
of such new results.

A Value function and state price density

Proof of Proposition 2: Under the infinite horizon, the utility process J satisfies the
following Bellman equation:

DJ(C,µ) + f(C, J) = 0, (A1)

where D denotes the differential operator. The Bellman equation can be written as

JCµC + 1
2
JC,Cσ

2C2 + Jµλ(µ̄− µ) + 1
2
Jµ,µν

2 + JC,µσCνρC,µ + f(C, J) = 0. (A2)

Guess a solution of the form J(C,µ) = 1
1−γC

1−γg(µ). The Bellman equation reduces to

µ− γ
2
σ2 +

gµ
g
λ(µ̄−µ)

1−γ +
gµ,µ
g

ν2

2(1−γ)
+

gµ
g
σνρC,µ + β

1−1/ψ

(
g(µ)−1/θ − 1

)
= 0. (A3)

The pricing kernel for stochastic differential utility can be written as

dξ = ξ dfC
fC

+ ξfJdt = −rξ − πCξdBC − πµξdBµ, (A4)

where, by use of Itô’s Lemma and Eq. (A3), we get

r =β + µ
ψ
− γ(1+ψ)σ2

2
− (γ−1/ψ)(1−1/ψ)ν2

2(1−γ)2

(
gµ
g

)2 − (γ−1/ψ)σνρC,µ
λ

, (A5)

πC =σγ, (A6)

πµ = γ−1/ψ
1−γ

gµ
g
ν. (A7)

An exact solution for g(µ) satisfying Eq. (A3) does not exist for ψ 6= 1. Therefore, I look
for a solution of g(µ) around the unconditional mean of the consumption-wealth ratio.
Aggregate wealth is given by

Wt = Et

[∫ ∞

t

ξu
ξt
Cudu

]
,
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and, applying Fubini’s Theorem and taking standard limits, the consumption-wealth ratio
satisfies

Ct
Wt

= rt − 1
dt
Et
[
dW
W

]
− 1

dt
Et
[
dξ
ξ
dW
W

]
. (A8)

Guess Wt = Ctβ
−1g(µ)1/θ and apply Itô’s Lemma:

dW
W

=
(
µ− 1

θ

gµ
g
λ(µ̄− µ) + 1

θ
ν2

2

(
gµ,µ
g

+ γ−1/ψ
1−γ

(
gµ
g

)2))
dt+ σdBC + 1

θ

gµ
g
νdBµ.

Plugging in wealth dynamics, risk-free rate and the pricing kernel into Eq. (A55), we get

Ct
Wt

=β + ( 1
ψ
− 1)

(
µ− γ

2
σ2 +

gµ
g
λ(µ̄−µ)

1−γ +
gµ,µ
g

ν2

2(1−γ)
+

gµ
g
σνρC,µ

)
(A9)

=β + ( 1
ψ
− 1) β

1−1/ψ

(
1− g(µ)−1/θ

)
(A10)

=βg(µ)−1/θ. (A11)

The second equality comes from the Bellman equation (A3) and the third equality confirms
the guess. Notice that the consumption-wealth ratio approaches to β when ψ → 1 as usual.

Denote cw = E[logC − logW ], hence, a first-order approximation of the consumption-
wealth ratio around cw produces

C
W

= βg(µ)−1/θ ≈ ecw
(
1− cw + log β − 1

θ
log g(µ)

)
.

Using such an approximation in the Bellman equation (A3) leads to

0 =µ− γ
2
σ2 +

gµ
g
λ(µ̄−µ)

1−γ +
gµ,µ
g

ν2

2(1−γ)
+

gµ
g
σνρC,µ

+ 1
1−1/ψ

(
ecw
(
1− cw + log β − 1

θ
log g(µ)

)
− β
)
, (A12)

which has exponentially affine solution g(µ) = eu0+u1µ where

u0 = e−cw
(
λµ̄u1 + ν2u2

1/2 + (γ − 1)γσ2/2− (γ − 1)σνρC,µu1 − θβ
)
− θ (cw − 1− log β) ,

(A13)

u1 = 1−γ
λ+ecw

, (A14)

and the endogenous constant cw satisfies cw = log β − 1
θ

(u0 + u1µ̄).
The risk-free rate and the prices of risk take the form:

r =β + µ
ψ
− γ(1+ψ)σ2

2
− (γ−1/ψ)(1−1/ψ)ν2

2(λ+ecw)2
− (γ−1/ψ)σνρC,µ

λ
, (A15)

πC =σγ, (A16)

πµ = γ−1/ψ
λ+ecw

ν. (A17)

�

B Cash-flows and asset prices

Consider the following conditional expectation:

Mt,u(c̄) = Et[ec0+c1 log ξu+c2 logCu+c3µu+c4δu ], (A18)
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where c̄ = (c0, c1, c2, c3, c4) is a coefficient vector such that the expectation exists, and
guess an exponential affine solution of the kind:

Mt,u(c̄) = ec1 log ξt+c2 logCt+υ(u−t,c̄)+φ(u−t,c̄)µt+ϕ(u−t,c̄)δt . (A19)

Given dynamics in Eq. (5)-(6)-(9)-(24), Feynman-Kac gives that M has to meet the fol-
lowing partial differential equation:

Mt +MCµC +MCC
1
2
σ2C2 +Mµλ(µ̄− µ) +Mµµ

1
2
ν2 −Mδκδ

+Mδδ
1
2
η2 −Mξ(r0 + r1µ)ξ +Mξξ

1
2
(π2
C + π2

µ + 2πCπµρC,µ)ξ2

+MCµσCνρC,µ +MCδσCηρC,δ −MCξσC(πC + πµρC,µ)ξ

+Mµδνηρµ,δ −Mµξν(πCρC,µ + πµ)ξ −Mδξη(πCρC,δ + πµρµ,δ)ξ = 0 (A20)

where the arguments have been omitted for ease of notation. Plugging the resulting partial
derivatives from the guess solution into the pde and simplifying gives

υt + φtµ+ ϕtδ + c2µ+ 1
2
c2(c2 − 1)σ2 + φλ(µ̄− µ) + 1

2
ν2φ2 − ϕκδ

+ 1
2
η2ϕ2 − c1(r0 + r1µ) + 1

2
c1(c1 − 1)(π2

C + π2
µ + 2πCπµρC,µ)

+ c2φσνρC,µ + c2ϕσηρC,δ − c1c2σ(πC + πµρC,µ)

+ φϕνηρµ,δ − c1φν(πCρC,µ + πµ)− c1ϕη(πCρC,δ + πµρµ,δ) = 0. (A21)

This equation has to hold for all µ and δ. We thus get three ordinary differential equations
for υ, φ and ϕ:

υt = 1
2
c2(c2 − 1)σ2 + φλµ̄+ 1

2
ν2φ2 + 1

2
η2ϕ2 − c1r0 + 1

2
c1(c1 − 1)(π2

C + π2
µ + 2πCπµρC,µ)

+ c2φσνρC,µ + c2ϕσηρC,δ − c1c2σ(πC + πµρC,µ) + φϕνηρµ,δ

− c1φν(πCρC,µ + πµ)− c1ϕη(πCρC,δ + πµρµ,δ), (A22)

φt = c2 − c1r1 − λφ, (A23)

ϕt = − κϕ, (A24)

with initial conditions υ(0, c̄) = c0, φ(0, c̄) = c3 and ϕ(0, c̄) = c4. The solution is

φ(τ, c̄) = c2−c1r1
λ

(1− e−λτ ) + c3e
−λτ , (A25)

ϕ(τ, c̄) = c4e
−κτ , (A26)

and υ(τ, c̄) can be computed in closed form but it is too long to be reported.
Proof of Proposition 1: To compute the moment generating function of aggregate
consumption growth, recall that

Ct(τ, α) = Et
[
eα logCt+τ

]
,

where the latter expectation is a conditional Laplace transform of the type in Eq. (A18).
It has solution as in Eq. (A19) where the system (A22)-(A23)-(A24) is solved for c̄ =
(0, 0, α, 0, 0). Therefore, the expectation becomes

Ct(τ, α) = eα logCt+υ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)δt

which leads to Eq. (11) when a0(τ, 0, α, 0), a1(τ, 0, α, 0) and a2(τ, 0, α, 0) replace respec-
tively υ(τ, c̄), φ(τ, c̄) and ϕ(τ, c̄) for c̄ = (0, 0, α, 0, 0). Consequently, the moment generating
function of aggregate consumption growth relative to the current consumption value is a
stationary function of µt and the maturity, since a2(τ, 0, α, 0) = 0 for any τ .
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To compute the moment generating function of market dividends growth, recall that

Dt(τ, α) = Et
[
eα logDt+τ

]
,

where the latter expectation is a conditional Laplace transform of the type in Eq. (A18).
It has solution as in Eq. (A19) where the system (A22)-(A23)-(A24) is solved for c̄ =
(αδ̄, 0, α, 0, α). Therefore, the expectation becomes

Dt(τ, α) = eα logCt+υ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)δt

which leads to Eq. (11) when a0(τ, 0, α, α), a1(τ, 0, α, α) and a2(τ, 0, α, α) replace respec-
tively υ(τ, c̄), φ(τ, c̄) and ϕ(τ, c̄) for c̄ = (αδ̄, 0, α, 0, α). Consequently, the moment gen-
erating function of market dividends growth relative to the current dividend value is a
stationary function of µt, δt and the maturity.

To compute the joint moment generating function of consumption and dividend growth,
recall that

CDt(τ, α, β) = Et
[
eα logCt+τ+β logDt+τ

]
,

where the latter expectation is a conditional Laplace transform of the type in Eq. (A18).
It has solution as in Eq. (A19) where the system (A22)-(A23)-(A24) is solved for c̄ =
(βδ̄, 0, α+ β, 0, β). Therefore, the expectation becomes

CDt(τ, α, β) = e(α+β) logCt+υ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)δt

which leads to Eq. (13) when a0(τ, 0, α+ β, β), a1(τ, 0, α+ β, β) and a2(τ, 0, α+ β, β) re-
place respectively υ(τ, c̄), φ(τ, c̄) and ϕ(τ, c̄) for c̄ = (βδ̄, 0, α+ β, 0, β). Consequently, the
joint moment generating function of consumption and dividend growth relative to the

current cash-flows value is a stationary function of µt, δt and the maturity. �

Proof of Corollary 1: Given the moment generating function in Eq. (11), it is easy to
compute the term structures in Eq. (14). Armed with the pairs gC,τ , gD,τ and σC,τ , σD,τ ,
straightforward calculus leads to the results in Eq. (18) and (19) as well as in Eq. (20)

and (21). �

Proof of Proposition 3: To compute the price of the dividend strip, recall that

Pt,τ = Et
[
ξt+τ
ξt

Dt+τ

]
= 1

ξt
Et
[
elog ξt+τ+logCt+τ+δ̄+δt+τ

]
,

where the latter expectation is a conditional Laplace transform of the type in Eq. (A18).
It has solution as in Eq. (A19) where the system (A22)-(A23)-(A24) is solved for c̄ =
(δ̄, 1, 1, 0, 1). Therefore, the price becomes

Pt,τ = 1
ξt
elog ξt+logCt+υ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)δt

which leads to Eq. (30) when b0(τ, 1, 1, 1), b1(τ, 1, 1, 1) and b2(τ, 1, 1, 1) replace respectively
υ(τ, c̄), φ(τ, c̄) and ϕ(τ, c̄) for c̄ = (δ̄, 1, 1, 0, 1). Consequently, the price of the dividend strip
relative to the current dividend value is a stationary function of µt, δt and the maturity.

The dynamics of Pt,τ obtains by applying Itô’s Lemma:

dPt,τ = [·]dt+
∂Pt,τ
∂C

σCtdBC,t +
∂Pt,τ
∂µ

νdBµ,t +
∂Pt,τ
∂δ

ηdBδ,t,
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and therefore its return volatility is given by

σR,t,τ = P−1
t,τ

√√√√(
∂Pt,τ
∂C

σCt

)2

+
(
∂Pt,τ
∂µ

ν
)2

+
(
∂Pt,τ
∂δ

η
)2

+ 2
∂Pt,τ
∂C

∂Pt,τ
∂µ

σCtνρC,µ

+2
∂Pt,τ
∂C

∂Pt,τ
∂δ

σCtηρC,δ + 2
∂Pt,τ
∂µ

∂Pt,τ
∂δ

νηρµ,δ
,

which leads to Eq. (34). The premium on the dividend strip is given by − 1
dt

〈
dPτ
Pτ

, dξ
ξ

〉
t
:

µR,t,τ = P−1
t,τ

(
∂Pt,τ
∂C

σCt(πC + πµρC,µ) +
∂Pt,τ
∂µ

ν(πCρC,µ + πµ) +
∂Pt,τ
∂δ

η(πCρC,δ + πµρµ,δ)
)
,

which leads to Eq. (33). �

Proof of Corollary 2: Straightforward calculus leads to

∂τµR,t,τ = e−λτν (1− 1/ψ) (πCρC,µ + πµ)− e−κτηκ (πCρC,δ + πµρµ,δ) ,

whose sign reduces to (1− 1/ψ)(γ − 1/ψ) as in Eq. (35) when ρC,µ = ρC,δ = ρµ,δ = 0. The
slope of the dividend strip volatility is given by

∂τσR,t,τ =
1

λσR,t,τ
×(
−e−2κτη2κλ+ e−(λ+κ)τ (1− 1/ψ)ην(λ+ κ)ρµ,δ − e−2λτν2(1− 1/ψ)2

−e−λτ (1− 1/ψ)ν((1− 1/ψ)ν − λσρC,µ)− e−κτηκ((1− 1/ψ)ρµ,δ + λσρC,δ)

)
whose sign reduces to Eq. (36) when ρC,µ = ρC,δ = ρµ,δ = 0. Following the proof of Propo-
sition 3, it automatically follows that the price of the consumption strip is given by

PCt,τ = Et
[
ξt+τ
ξt

Ct+τ

]
= Cte

b0(τ,1,1,0)+b1(τ,1,1,0)µt+b2(τ,1,1,0)δt ,

where when b0(τ, 1, 1, 0), b1(τ, 1, 1, 0) and b2(τ, 1, 1, 0) replace respectively υ(τ, c̄), φ(τ, c̄)
and ϕ(τ, c̄) for c̄ = (0, 1, 1, 0, 0). Moreover, b2(τ, 1, 1, 0) = 0 for any τ . Let µ̃R,τ and σ̃R,τ
denote respectively the expected excess return and the return volatility of the consumption
strip, which can be computed as in Proposition 3. Armed with the pairs µR,t,τ , σR,t,τ and

µ̃R,t,τ , σ̃R,t,τ , straightforward calculus leads to the limits of Eq. (37) and (38). �

Proof of Proposition 4: To compute the price of the non-defaultable zero-coupon bond,
recall that

Bt,τ = Et
[
ξt+τ
ξt

]
= 1

ξt
Et
[
elog ξt+τ

]
,

where the latter expectation is a conditional Laplace transform of the type in Eq. (A18).
It has solution as in Eq. (A19) where the system (A22)-(A23)-(A24) is solved for c̄ =
(0, 1, 0, 0, 0). Therefore, the price becomes

Bt,τ = 1
ξt
elog ξt+υ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)δt

which leads to Eq. (39) when b0(τ, 1, 0, 0), b1(τ, 1, 0, 0) and b2(τ, 1, 0, 0) replace respectively
υ(τ, c̄), φ(τ, c̄) and ϕ(τ, c̄) for c̄ = (0, 1, 0, 0, 0). Consequently, the price of the zero-coupon

bond is a stationary function of µt and the maturity, since b2(τ, 1, 0, 0) = 0 for any τ . �
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Proof of Corollary 3: Given the expressions from previous results in Eq. (14), (40),
(41) and (42), the formula for the premium on the equity yield in Eq. (43) automatically

obtains. �

Proof of Proposition 5: To compute the price of the market asset, recall that

Pt = Et

[∫ ∞

t

ξu
ξt
Dudu

]
=

∫ ∞

0

Pt,τdτ

and, hence, the price automatically obtains as in Eq. (45). Consequently, the price of the
market asset relative to the current dividend value is a stationary function of µt and δt.

The dynamics of Pt obtains by applying Itô’s Lemma:

dPt = [·]dt+ ∂Pt
∂C

σCtdBC,t + ∂Pt
∂µ
νdBµ,t + ∂Pt

∂δ
ηdBδ,t,

and therefore its return volatility is given by

σR,t = P−1
t

√(
∂Pt
∂C

σCt
)2

+
(
∂Pt
∂µ
ν
)2

+
(
∂Pt
∂δ
η
)2

+ 2 ∂Pt
∂C

∂Pt
∂µ
σCtνρC,µ

+2 ∂Pt
∂C

∂Pt
∂δ
σCtηρC,δ + 2 ∂Pt

∂µ
∂Pt
∂δ
νηρµ,δ

,

which leads to Eq. (47). The premium on the market asset is given by − 1
dt

〈
dP
P
, dξ
ξ

〉
t
:

µR,t = P−1
t

(
∂Pt
∂C

σCt(πC + πµρC,µ) + ∂Pt
∂µ
ν(πCρC,µ + πµ) + ∂Pt

∂δ
η(πCρC,δ + πµρµ,δ)

)
,

which leads to Eq. (48). �

Proof of Corollary 4: For ρC,µ = ρC,δ = ρµ,δ = 0, the equity premium reduces to

µR,t =σR,C,tπC + σR,µ,tπµ

=σCπC + ν
Dt
Pt

∂

∂µ

Pt
Dt

πµ

=σCπC + πµν
1− 1ψ

λ

∫ ∞

0

Pt,τ
Pt

(1− e−λτ )dτ.

Therefore, the sign of ∂δ µR,t is given by the sign of

sign

(
πµ(ψ − 1)

∂

∂δ

∫ ∞

0

Pt,τ
Pt

(1− e−λτ )dτ

)
.

Denote g, h and m as

g(δt) =

∫ ∞

0

Pt,τ
Pt

(1− e−λτ )dτ =

∫ ∞
0
Pt,τ (1− e−λτ )dτ∫ ∞

0
Pt,τdτ

=
h(δt)

m(δt)
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and, hence, we have

∂g(δ)

∂δ
=
m(δ)h′(δ)− h(δ)m′(δ)

m(δ)2

=
−Pt

∫ ∞
0

(1− e−λτ )(1− e−κτ )Pt,τdτ +
∫ ∞

0
(1− e−λτ )Pt,τdτ

∫ ∞
0

(1− e−κτ )Pt,τdτ

P 2
t

=
[
∫ ∞

0
a(τ)Pt,τdτ ][

∫ ∞
0
b(τ)Pt,τdτ ]− [

∫ ∞
0
Pt,τdτ ][

∫ ∞
0
a(τ)b(τ)Pt,τdτ ]

P 2
t

=
[
∫ ∞

0
a(τ)Pt,τdτ ][

∫ ∞
0
b(τ)Pt,τdτ ]− [

∫ ∞
0
Pt,τdτ ][

∫ ∞
0
a(τ)b(τ)Pt,τdτ ]

P 2
t

where a(τ) = (1− e−λτ ) and b(τ) = (1− e−κτ ). The numerator can be written as

1

2

∫ ∞

0

∫ ∞

0

Pt,τ1Pt,τ2 [a(τ1)− a(τ2)][b(τ2)− b(τ1)]dτ1dτ2.

Note that a(τ) and b(τ) are both positive and monotonically increasing. The integration
region can be divided into two parts: τ1 < τ2 and τ1 > τ2. In each one the integrand is
negative. Consequently, ∂δ g < 0 and

sign(∂δ µR,t) = sign ((γ − 1/ψ)(1− ψ)) .

�

C Pricing corporate fraction fluctuations

Recall the model dynamics for cash-flows:

dLt =µtdtLtdt+ σLLtdBL,t, (A27)

dµt =λ(µ̄− µt)dt+ νdBµ,t, (A28)

with labor-share Lt/Ct = 1− St = e−`t :

d`t = κ(¯̀− `t)dt+ η
√
`tdB`,t, (A29)

such that

dCt = (µt + κ¯̀− (κ− η2/2)`t)Ctdt+ σLCtdBL,t + η
√
`tCtdB`,t. (A30)

The representative agent is equipped with stochastic differential utility, as in Duffie and
Epstein (1992). Given an initial consumption C, the utility at each time t is defined as
U(Ct) = Jt where J is the unique solution to the SDE:

dJt =
(
−f(Ct, Jt)− 1

2
A(Jt)σJσ

′
J

)
dt+ σJdBt (A31)

where

f(C, J) = βθJ

(
C

1− 1
ψ ((1− γ)J)−

1
θ − 1

)
. (A32)

Under the infinite horizon, the utility process J satisfies the following Bellman equation:

DJ(C,µ) + f(C, J) = 0, (A33)
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where D denotes the differential operator. The solution to Eq. (A33) is given by

J(Lt, µt, `t) =
1

1− γ
L1−γ
t g(µt, `t) =

1

1− γ
L1−γ
t exp(u0 + u1µt + u2`t), (A34)

where u0, u1 and u2 are endogenous constants depending on the primitive parameters.
Indeed, the Bellman equation can be written as

JLµL+ 1
2
JL,Lσ

2
LL

2 + Jµλ(µ̄− µ) + 1
2
Jµ,µν

2 + J`κ(¯̀− `) + 1
2
J`,`η

2`+ f(C, J) = 0.
(A35)

Guessing the above solution, the Bellman equation reduces to

µ− γ
2
σ2
L +

gµ
g
λ(µ̄−µ)

1−γ +
gµ,µ
g

ν2

2(1−γ)
+ g`

g
κ(¯̀−`)
1−γ +

g`,`
g

η2`
2(1−γ)

+ β
1−1/ψ

(
g(µ, `)−1/θ − 1

)
= 0.

(A36)
The pricing kernel for stochastic differential utility can be written as

dξ = ξ dfC
fC

+ ξfJdt = −rξ − πLξdBL − πµξdBµ − π`
√
` ξdB`, (A37)

where, by use of Itô’s Lemma, we get

r = r0 + r1µt + r2`t, (A38)

r0 = − fJ,0 − 1
2

fC,L,L
fC

L2
tσ

2
L −

fC,`
fC

κ¯̀− fC,µ
fC

λµ̄− 1
2

fC,µ,µ
fC

ν2, (A39)

r1 = − fJ,µ +
fC,µ
fC

λ− fC,L
fC

Lt, (A40)

r2 = − fJ,` +
fC,`
fC

κ− 1
2

fC,`,`
fC

η2, (A41)

πL = − fC,L
fC

LtσL, (A42)

πµ = − fC,µ
fC

ν, (A43)

π` = − fC,`
fC

η. (A44)

The partial derivatives of f(C, J) satisfy

fC,L
fC

= − γ/Lt, (A45)

fC,L,L
fC

= γ(1 + γ)/L2
t , (A46)

fC,µ
fC

= u1(γψ−1)
(γ−1)ψ

, (A47)

fC,µ,µ
fC

= (u1(γψ−1))2

(γ−1)2ψ2 , (A48)

fC,`
fC

= (1−γ−u2(1−γψ))
(γ−1)ψ

, (A49)

fC,`,`
fC

= (1−γ−u2(1−γψ))2

(γ−1)2ψ2 , (A50)

fJ = fJ,0 + fJ,µµt + fJ,``t, (A51)

fJ,0 =
β(γ−1)ψ+ecw(1−γψ)(1−cw−u0θ

−1+logβ)
ψ−1

, (A52)

fJ,µ =
ecw(−u1θ

−1)(1−γψ)

ψ−1
, (A53)

fJ,` =
ecw((1−γ−u2)θ−1)(1−γψ)

ψ−1
, (A54)

where cw = E[logCt − logWt].
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To recognize the exponential affine form of g(µt, `t) satisfying Eq. (A36), we need to look
for a solution around the unconditional mean of the consumption-wealth ratio. Aggregate
wealth is given by

Wt = Et

[∫ ∞

t

ξu
ξt
Cudu

]
,

and, applying Fubini’s Theorem and taking standard limits, the consumption-wealth ratio
satisfies

Ct
Wt

= rt − 1
dt
Et
[
dW
W

]
− 1

dt
Et
[
dξ
ξ
dW
W

]
. (A55)

Guessing Wt = Cte
(1/ψ−1)`tβ−1g(µt, `t)

1/θ and applying Itô’s Lemma, we can compute
wealth dynamics dW

W
. Therefore, plugging the wealth dynamics, the risk-free rate and the

pricing kernel into Ct
Wt

, we find the above guess for Wt. Notice that the consumption-wealth
ratio approaches to β when ψ → 1 as usual.

Hence, a first-order approximation of the consumption-wealth ratio around cw produces

Ct
Wt

= βg(µt, `t)
−1/θe(1−1/ψ)`t ≈ ecw

(
1− cw + log β − 1

θ
log g(µt, `t) + (1− 1/ψ)`t

)
.

Using such approximation in the Bellman equation (A33) we recognize the exponentially
affine solution g(µ, `) = eu0+u1µ+u2` where

u0 = e−cw(γ−1)
2(ψ−1)

(
1

(ecw+λ)2

(
−2λ (ecw + λ) µ̄(ψ − 1) + 1

η2(γ−1)

(
2κ (ecw + λ)2 ¯̀× (A56)(

ecw + κ−
√
e2cw + κ2 + 2ecw (κ+ η2(γ − 1))

)
(ψ − 1) + η2(γ − 1)

(
ν2(γ − 1)(ψ − 1) +

(ecw + λ)2
(
γσ2

L(ψ − 1) + 2 ((cw − 1)ecw + β)ψ
))))

− 2ecwψ log β
)
,

u1 = (1− γ)(λ+ ecw)−1, (A57)

u2 = η−2
(
ecw + κ−

√
e2cw + κ2 + 2ecw (κ+ η2(γ − 1))

)
, (A58)

and the endogenous constant cw satisfies cw = log β − 1
θ

(
u0 + u1µ̄+ (γ − 1 + u2)¯̀

)
. Then

the above coefficients u0, u1 and u2 can be used to express the risk-free rate and the prices
of risk in terms of the primitive parameters.

Consider the following conditional expectation:

Mt,u(c̄) = Et[ec0+c1 log ξu+c2 logLu+c3µu+c4`u ], (A59)

where c̄ = (c0, c1, c2, c3, c4) is a coefficient vector such that the expectation exists, and
guess an exponential affine solution of the kind:

Mt,u(c̄) = ec1 log ξt+c2 logLt+υ(u−t,c̄)+φ(u−t,c̄)µt+ϕ(u−t,c̄)`t . (A60)

Given dynamics in Eq. (A27)-(A28)-(A29)-(A37), Feynman-Kac gives that M has to meet
the following partial differential equation:

Mt +Mlog ξ(−r0 − r1µ− r2`− π2
L/2− π2

µ/2− π2
` `/2) +Mlog ξ,log ξ

1
2
(π2
L + π2

µ + π2
` `)

+MlogL(µ− σ2
L/2) +MlogL,logL

1
2
σ2
L +Mµλ(µ̄− µ) +Mµ,µ

1
2
ν2

+M`κ(¯̀− `) +M`,`
1
2
η2`+Mlog ξ,logLπLσL +Mlog ξ,µπµν +Mlog ξ,`π`η` = 0, (A61)
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where the arguments have been omitted for ease of notation. Plugging the resulting partial
derivatives from the guess solution into the pde and simplifying gives

υt + φtµ+ ϕt`+ c1(−r0 − r1µ− r2`− π2
L/2− π2

µ/2− π2
` `/2) + c21

1
2
(π2
L + π2

µ + π2
` `)

+ c2(µ− σ2
L/2) + c22

1
2
σ2
L + φλ(µ̄− µ) + φ2 1

2
ν2

+ ϕκ(¯̀− `) + ϕ2 1
2
η2`+ c1c2πLσL + c1φπµν + c2ϕπ`η` = 0. (A62)

This equation has to hold for all µ and `. We thus get three ordinary differential equations
for υ, φ and ϕ:

υt = − c1(r0 + π2
L/2 + π2

µ/2− c1π2
L/2− c1π2

µ/2) + c2(c2 − 1)σ2
L/2

+ φλµ̄+ φ2ν2/2 + ϕκ¯̀− πLσLc1c2 − πµc1φ, (A63)

φt = c2 − c1r1 − λφ, (A64)

ϕt = − c1(r2 + π2
`/2− c1π2

`/2)− κϕ+ η2ϕ2/2− π`ηc1ϕ, (A65)

with initial conditions υ(0, c̄) = c0, φ(0, c̄) = c3 and ϕ(0, c̄) = c4. The solution is

φ(τ, c̄) = c2−c1r1
λ

(1− e−λτ ) + c3e
−λτ , (A66)

ϕ(τ, c̄) = η−2
(
κ+ c1ηπ` −Θ tan

(
− τ

2
Θ + arctan

(
κ+η(c2π`−c4η)

Θ

)))
, (A67)

where Θ =
√
−κ2 − 2c1κηπ` − c1η2(2r2 + π2

` ) and υ(τ, c̄) can be computed in closed form
but it is too long to be reported.

To compute the term structures of the first two moments of cash-flows growth rates:

gC,t,τ = 1
τ

log
(

Et[Ct+τ ]

Ct

)
,

gD,t,τ = 1
τ

log
(

Et[Dt+τ ]

Dt

)
,

σC,t,τ =

√
1
τ

log
(

Et[C2
t+τ

]

Et[Ct+τ ]2

)
,

σD,t,τ =

√
1
τ

log
(

Et[D2
t+τ

]

Et[Dt+τ ]2

)
,

(A68)

we need the following expectations:

Et[Ct+τ ] =Et[Lt+τe`t+τ ] (A69)

=Lte
υ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t , with c̄ = (0, 1, 0, 1),

Et[C2
t+τ ] =Et[L2

t+τe
2`t+τ ] (A70)

=L2
t e
υ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t , with c̄ = (0, 2, 0, 2),

Et[Dt+τ ] =Et[Lt+τ (e`t+τ − 1)] (A71)

=Lt
(
eυ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t − eυ(τ,c̄′)+φ(τ,c̄′)µt+ϕ(τ,c̄′)`t

)
,

with c̄ = (0, 1, 0, 1) and c̄′ = (0, 1, 0, 0),

Et[D2
t+τ ] =Et[L2

t+τ (e2`t+τ − 2e`t+τ + 1)] (A72)

=L2
t

(
eυ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t − 2eυ(τ,c̄′)+φ(τ,c̄′)µt+ϕ(τ,c̄′)`t + eυ(τ,c̄′′)+φ(τ,c̄′′)µt+ϕ(τ,c̄′′)`t

)
,

with c̄ = (0, 2, 0, 2), c̄′ = (0, 2, 0, 1) and c̄′′ = (0, 2, 0, 0).
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To compute the price of the dividend strips and the zero-coupon bonds:

PCt,τ = Et
[
ξt+τ
ξt

Ct+τ

]
,

Pt,τ = Et
[
ξt+τ
ξt

Dt+τ

]
,

Bt,τ = Et
[
ξt+τ
ξt

]
,

(A73)

we need the following expectations:

Et [ξt+τCt+τ ] =Et[ξt+τLt+τe`t+τ ] (A74)

= ξtLte
υ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t , with c̄ = (1, 1, 0, 1),

Et [ξt+τDt+τ ] =Et[ξt+τLt+τ (e`t+τ − 1)] (A75)

= ξtLt
(
eυ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t − eυ(τ,c̄′)+φ(τ,c̄′)µt+ϕ(τ,c̄′)`t

)
,

with c̄ = (1, 1, 0, 1) and c̄′ = (1, 1, 0, 0),

Et [ξt+τ ] = ξte
υ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t , with c̄ = (1, 0, 0, 0).

It easily follows that the bond price and the valuation ratios PCt+τ/Ct and Pt+τ/Dt are
stationary functions of µt, `t and the maturity only.

The dynamics of Pt,τ obtains by applying Itô’s Lemma:

dPt,τ = [·]dt+
∂Pt,τ
∂L

σLLtdBL,t +
∂Pt,τ
∂µ

νdBµ,t +
∂Pt,τ
∂`

η
√
`tdB`,t,

and therefore its return volatility is given by

σR,t,τ = P−1
t,τ

√(
∂Pt,τ
∂L

σLLt

)2

+
(
∂Pt,τ
∂µ

ν
)2

+
(
∂Pt,τ
∂`

η
)2

`t,

which is a function of µt, `t and the maturity only. The premium on the dividend strip is
given by − 1

dt

〈
dPτ
Pτ

, dξ
ξ

〉
t
:

µR,t,τ = P−1
t,τ

(
∂Pt,τ
∂L

σLLtπL +
∂Pt,τ
∂µ

νπµ +
∂Pt,τ
∂`

ηπ``t

)
,

which is a function of µt, `t and the maturity only. Indeed, we have

P−1
t,τ

(
∂Pt,τ
∂L

)
Lt = 1,

P−1
t,τ

(
∂Pt,τ
∂µ

)
= φ(τ,c̄)eυ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t−φ(τ,c̄′)eυ(τ,c̄′)+φ(τ,c̄′)µt+ϕ(τ,c̄′)`t

eυ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t−eυ(τ,c̄′)+φ(τ,c̄′)µt+ϕ(τ,c̄′)`t
,

P−1
t,τ

(
∂Pt,τ
∂`

)
= ϕ(τ,c̄)eυ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t−ϕ(τ,c̄′)eυ(τ,c̄′)+φ(τ,c̄′)µt+ϕ(τ,c̄′)`t

eυ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t−eυ(τ,c̄′)+φ(τ,c̄′)µt+ϕ(τ,c̄′)`t
,

with c̄ = (1, 1, 0, 1) and c̄′ = (1, 1, 0, 0). The functions h0, h1 and h2 in Eq. (62)-(63)-(64)
automatically follow.

The price of the market asset easily follows from that of the dividend strip:

Pt = Et

[∫ ∞

t

ξu
ξt
Dudu

]
=

∫ ∞

0

Pt,τdτ, (A76)
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and, hence, the premium, the return volatility and the valuation ratio, Pt/Dt, are station-
ary functions of µt and `t only. Indeed, we have

P−1
t

(
∂Pt
∂L

)
Lt = 1,

P−1
t

(
∂Pt
∂µ

)
=

∫ ∞
0

(
φ(τ,c̄)eυ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t−φ(τ,c̄′)eυ(τ,c̄′)+φ(τ,c̄′)µt+ϕ(τ,c̄′)`t

)
dτ∫ ∞

0
(eυ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t−eυ(τ,c̄′)+φ(τ,c̄′)µt+ϕ(τ,c̄′)`t)dτ

,

P−1
t

(
∂Pt
∂`

)
=

∫ ∞
0

(
ϕ(τ,c̄)eυ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t−ϕ(τ,c̄′)eυ(τ,c̄′)+φ(τ,c̄′)µt+ϕ(τ,c̄′)`t

)
dτ∫ ∞

0
(eυ(τ,c̄)+φ(τ,c̄)µt+ϕ(τ,c̄)`t−eυ(τ,c̄′)+φ(τ,c̄′)µt+ϕ(τ,c̄′)`t)dτ

,

with c̄ = (1, 1, 0, 1) and c̄′ = (1, 1, 0, 0). The functions w0, w1 and w2 in Eq. (65)-(66)-(67)
automatically follow.
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