
Stochastic Optimization of Service Provision with

Selfish Users

Fabrizio Altarelli

Alfredo Braunstein

Carla Fabiana Chiasserini

Luca Dall’Asta

Paolo Giaccone

Emilio Leonardi

Riccardo Zecchina

No. 395

December 2014

www.carloalberto.org/research/working-papers

© 2014 by Fabrizio Altarelli, Alfredo Braunstein, Carla Fabiana Chiasserini, Luca Dall’Asta, Paolo
Giaccone, Emilio Leonardi and Riccardo Zecchina. Any opinions expressed here are those of the
authors and not those of the Collegio Carlo Alberto.

ISSN 2279-9362

Stochastic Optimization of Service Provision with Selfish Users

F. Altarelli,1, 2 A. Braunstein,1, 3, 2 C.F. Chiasserini,4 L. Dall’Asta,1, 2 P. Giaccone,4 E. Leonardi,4 and R. Zecchina1, 3, 2

1DISAT and Center for Computational Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
2Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri, Italy

3Human Genetics Foundation, Via Nizza 52, 10126 Torino, Italy
4DET, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

We develop a computationally efficient technique to solve a fairly general distributed service provision prob-
lem with selfish users and imperfect information. In particular, in a context in which the service capacity of
the existing infrastructure can be partially adapted to the user load by activating just some of the service units,
we aim at finding the configuration of active service units that achieves the best trade-off between maintenance
(e.g. energetic) costs for the provider and user satisfaction. The core of our technique resides in the implemen-
tation of a belief-propagation (BP) algorithm to evaluate the cost configurations. Numerical results confirm the
effectiveness of our approach.

I. INTRODUCTION

Mathematical models of the distributed service provision problem have been studied thoroughly in computer science under
the name of selfish load balancing [1] and congestion games [2, 3]. Most results apply concepts borrowed from Game Theory
and concern worst-case analysis, in particular the computation of the so-called “price of anarchy”, i.e. the ratio between the cost
of the worst Nash Equilibrium (NE) and the optimal social cost [4]. Several works also address algorithmic issues, such as the
question of designing distributed dynamics that converge to NEs, their convergence time [5], or computational complexity [6].
In many practical problems, service providers should be more interested in the average-case scenario, in particular in the average
cost of service/resource allocations determined by the selfish behavior of users. In order to be able to compare the expected
cost of different service allocations, a service provider is called to the arduous computational task of evaluating an average over
the possibly huge number of different NEs that are obtained as result of the allocation. In addition, service providers do not
always have perfect information about the user behavior – a fact that is usually modeled by including some stochastic parameter
into the problem [7–10]. In the presence of stochasticity, algorithms based on Monte Carlo methods are extremely inefficient
even for moderately large problem sizes, whereas recent works [11] have shown that much better results can be obtained using
message-passing algorithms inspired by statistical physics methods.

In our formulation, we assume that the total service capacity of the existing infrastructure can be partially adapted by activating
or deactivating some of the service units. Our goal is to find the configuration of active server units that achieves the best trade-
off between maintenance costs for the provider and user satisfaction. For the sake of example, we assume maintenance costs
expressed in terms of energy costs to keep the service unit active. For any given configuration of service units and users, we
propose to use a belief-propagation (BP) algorithm to evaluate the cost of every service configuration. Moreover, we put forward
an approximate method, also based on BP, which allows to perform the average over the stochastic parameters within the same
message-passing algorithm used to average over the NEs. The information obtained is then used to optimize the service units
allocation. This can be done easily either exhaustively or by means of decimation methods.

II. SYSTEM MODEL

The service provision problem is represented by a bipartite graph G = (U ,S; E), in which U = {1, . . . , U} and S =

{1, . . . , S} are the sets of nodes, users and service units respectively, and E is the set of edges (u, s) connecting nodes u 2 U
and s 2 S . In general the graph is not complete, i.e., users cannot connect to any service unit. In addition, every service unit
s has an operational energy cost, rs. Thus, in some time periods it may be convenient to keep active only part of the existing
service units (xs = 1) and deactivate the others (xs = 0).

The first ingredient of the model is the rational behavior of the users. In many problems, such as selfish load balancing [1],
this is introduced by assuming that the quality of service received by a user, when selecting a service unit, depends on the load
of the unit at the time of service, defining a correlation between users’ utilities. Here, we simplify the model assuming that
users’ satisfaction in selecting a service unit does not depend on the state of the service unit itself (provided it is available). Each
edge (u, s) has a weight, wus 2 R, that represents the satisfaction obtained by user u when selecting service unit s. However,
users’ decisions are not independent, as there is a limitation to the number of individuals that can be served at the same time by
the same service unit. The weight in the opposite direction, wsu 2 R+, is the workload sustained by the service unit s when
providing the service to user u. If we assume that each service unit s can sustain a maximum load cs, the sum of the workloads
wsu of all users u selecting unit s should not exceed cs. This set of hard capacity constraints introduces an indirect competition
between users. More precisely, suppose that user u considers service unit s to be the preferable one (i.e., wus � wus0 8s0 6= s),

ar
X

iv
:1

30
9.

39
84

v1
 [

cs
.G

T]
 1

6
Se

p
20

13

2

but adding the workload wsu of u to the total load already faced by unit s, it would exceed cs. Then we say that service unit s is
saturated for user u and the latter has to access another of the service units accessible to her. She will thus turn to the unit with
the second best weight. If this one is available, user u will make use of it, otherwise she will try the third one on her list and so
on. Note that multiple connections from the same user to many service units are not allowed.

The second ingredient is stochasticity. We imagine that in any realistic situation the activity of the users could follow very
complex temporal patterns. Users could leave the system and come back, using different service units depending on their
preference and the current availability. The stochastic nature of the problem is summarized into a set of stochastic parameters
{tu}u2U . At any given time, with probability P (tu = 0) the user u is absent from the service system and tu = 0, whereas with
probability P (tu = 1) she is present and tu = 1. For the moment, we can assume that the actual realization tu, 8u 2 U , is
known.

Given the bipartite graph, the configuration of active service units {xs}s2S and the set of parameters {tu}u2U , every user
tries to maximize her own utility using the best service unit available (i.e., among those that are not saturated or inactive). Such a
system model can represent several different application scenarios. For example, we can represent videoconferencing, including
several Multipoint Control Units (MCUs) or a heterogeneous wireless access network, where points of access, possibly using
different technologies, are available (e.g., 3G/LTE, WiFi, WiMax) to the users. In these scenarios, indeed, it would be convenient
to switch off service units when underloaded.

III. PROBLEM DEFINITION

The system outlined above poses the following service provision problem: at any given time period, which service units should
be activated by a central controller, in order to maximize the users’ satisfaction and minimize the system energy consumption?
Since the decision of the central controller has to account for the rational behavior of the users, we address the optimization
problem as follows.

First, we consider a system configuration, where the active service units are given, and model the users’ association process
as a game. The players of the game are the users that have to select a service unit among the active ones. We solve the game
so that, for each user pattern, {tu}u2U , the corresponding NE strategy profiles can be identified; note that, given {tu}u2U , there
may exist multiple NEs. Then, in order to evaluate the performance of the system configuration, we define an objective function,
which accounts for the energy cost of the active units and for the users’ satisfaction. Since, for a given {tu}u2U , different NEs
are reached depending on the order of arrival of the users, we average the objective function first over all NEs corresponding to
{tu}u2U , and then over all possible realizations of the users arrival process. Finally, we use the obtained result as an indication
of the system configuration performance, and we select the system configuration that optimizes such an index.

Let us now detail the procedure outlined above. We denote the tagged system configuration by x, and define Su as the set of
service units that can be selected by user u 2 U . Also, let Us be the set of users that can select service unit s 2 S and let Us,u be
the set of nodes v 2 Us \ u with s 2 Su.

In the game, the action of the generic user (player) u consists in choosing one of the service units connected to her, e.g.,
zu = s with s 2 Su. The payoff is wus � 0 if unit s is active and not saturated otherwise it is �1. If no unit is chosen, zu = ;
and the payoff is �!, being ! a penalty value. More precisely:

⇡u(zu, {zv}v2Us,u |tu = 1) =

8
>>>>><

>>>>>:

�!, if zu = ;
wus, if zu = s, and

wsu +

P
v2Us,u

�(zv, s)wsv csxs

�1, if zu = s, and
wsu +

P
v2Us,u

�(zv, s)wsv > csxs

(1)

If instead user u is absent, zu = ; is the only possible value and we set

⇡u(zu, {zv}v2Us,u |tu = 0) =

(
0, if zu = ;
�1, otherwise.

Note that, at every perturbation in the system, e.g. due to the departure of a user, a player may decide to connect to another
service unit than the currently selected one, if she can increase her payoff.

It is useful to represent the NE conditions in terms of best-response relations: a strategy profile z

⇤
= (z⇤

1 , . . . , z
⇤
N) is a pure

NE if and only if, for each user u, z⇤
u is the best response to the actions of the others, i.e.,

z⇤
u = arg max

zu

⇡u(zu, {z⇤
v}v2Us,u |tu), 8u 2 U . (2)

In principle, the weight given to each NE should depend on specific details of the dynamics of the users (e.g. on the order of
arrival of the users and on the order according to which users unilaterally deviate from the current strategy profile if they find it

3

convenient). Unfortunately these details are largely unknown in any realistic setup. It is thus worth considering a simplifying
hypothesis in which all the NEs are weighted uniformly and the complex user dynamics is summarized in the average over the
realizations of the stochastic parameters t. In general we do not know which users are actually present in the system, but we
assume to know the probability pu that user u is present, 8u 2 U .

The problem consists in optimizing the trade-off between the system energy cost and the expected users’ satisfaction, i.e. in
finding the configuration of active service units {xs} which maximizes the following objective function:

F(x) =

t

"*
X

u2U
⇡u(zu, {zv}v2Us,u |tu)

+#
� ↵

X

s

rsxs

where h· · · i represents the average over the values of z 2 NASH(x, t) that satisfy the NE conditions (which depend implicitly
on x and t). The objective function is composed of two contrasting terms: a first contribution that measures the overall quality
of the service, and a second term that quantifies the total cost of active service units (alternatively, the service provider’s revenue
could depend explicitly on the perceived quality of the service). The parameter ↵ is used to set the relative importance of the
two objectives.

We can finally formulate the optimization goal of the central controller which is, given G = (U ,S, E), the vector of unit
capacities c, the payoff matrix W, the vector of presence probabilities t, and the parameter ↵, to find a minimizing x

⇤ such that
F (x

⇤
) = min

x

F (x). In conclusion, the vector x⇤ represents the system configuration that corresponds to the best tradeoff
between the system energy cost and the user satisfaction.

IV. PROBLEM SOLUTION

The NE conditions define a set of local hard constraints on the individual actions, such that finding a pure NE can be translated
into finding a solution of a Constraint-Satisfaction Problem (CSP). Using the node variables {zu}u2U , we can formulate the
associate CSP over a factor graph with many small loops even when the original graph had none, which is not appropriate to
develop a solution algorithm based on message passing [12]. In the following we switch to an equivalent representation, using
edge variables, that is much more convenient for message passing applications.

A. CSP Representation Using Edge Variables

The actions of the users can be described using three-states variables yus defined on the undirected edges (u, s) 2 E (see
Figure 1)

yus =

8
><

>:

�1, if s is inactive or saturated for u

0, if s is available but not used by u

1, if s is used by u

(3)

where “saturated for u” refers to the case in which if u connects to s, the latter violates the capacity constraint, while “available”
refers to the case where s is active and able to accommodate user u. The NEs are the configurations taken by the variables
{yus} that satisfy the following set of constraints. First, users cannot have access to more than one service unit at the same time:P

s2Su
[yus = 1] tu (8u 2 U). Second, the capacity of each service unit cannot be exceeded:

P
u [yus = 1] wsu

csxs (8u 2 Us, s 2 S). And third, users try to use the best service unit available: {yus = 1, yus0
= 0}) {wus �

wus0} 8(s, s0 2 Su, u 2 U).
The stochastic optimization problem consists in finding the configuration of active service units x such that it maximizes the

objective function

F(x) =

t

2

4
*

X

(u,s)2E
[yus=1]wus

+3

5� ↵
X

s

rsxs. (4)

The most difficult part of this optimization problem is that of performing the average over the NEs in the presence of stochasticity,
that is the essential step to be able to evaluate the average costs and benefits from activating/deactivating different service units.
Once this is done, the optimization step over the {xs} becomes trivial and it can be done either exhaustively or by means of
decimation methods. In the next section we describe an approximate method to perform the average over the NEs and the
stochastic parameters in a computationally efficient way.

4

yua

Hu

Hs

xs

tu⌫u(tu)

⌫̂u(tu) µ̂u!s
(yus

)

µ
s!u

(yus
)

Fu

FIG. 1: Factor graph representation of Eqs. (7)-(10) involving the four types of messages. The use of edge variables {yus} highly simplifies
the representation and allows to get rid of small loops. The other two types of variable nodes are blue and empty nodes, corresponding
respectively to the stochastic parameters {tu} and the service provider’s variables {xs}. Square nodes {Hu} and {Hs} are standard factor
nodes containing the capacity constraints and the best-response conditions.

B. Average over NEs with Stochastic Parameters

In general one should first average over the pure NEs at fixed realization t = {tu} of the stochastic parameters and then
perform the average over the distribution P (t) =

Q
i P (ti) of the latter. The double average is extremely costly at a computa-

tional level. The message passing approach allows one to perform these two steps together although at the cost of introducing
an approximation in the computation.

For an observable O(y,x, t), the average over NEs is

O(x) =

X

y

X

t

P (y, t|x)O(y,x, t)

=

X

y

X

t

P (t)P (y|t,x)O(y,x, t)

=

X

y

X

t

P (t)

[y 2 NASH(x, t)]

Z(x, t)
O(y,x, t) (5)

in which Z(x, t) =

P
y

[y 2 NASH(x, t)]. The numerator can be easily expressed in terms of the local constraints for the
edge variables {yus}. If we call Is({yvs}v2Us |xs) the hard constraint defined on node s 2 S and Iu({yus}s2Su |tu) that defined
on u 2 U , we have [y 2 NASH(x, t)] =

Q
u Iu({yus}s2Su |tu)

Q
s Is({yvs}v2Us |xs). The main difficulty of performing the

quenched average is due to the presence of the normalization factor Z(x, t) at the denominator of (5). A mean-field approxima-
tion, based on the factorization ansatz Z (x, t) =

Q
u Zu (x, tu), can be used to transform our quenched average into an easily

computable annealed one. In this approximation we get

log P (y, t|x) =

X

u

log P (tu) �
X

u

log Zu (tu) +

X

u

log Iu ({yus}s2Su |tu) +

X

s

log Is ({yus}u2Us |xs) . (6)

The factor graph associated to the problem is shown in Figure 1. In addition to the usual terms Hu = log Iu ({yus}s2Su |tu)

and Hs = log Is ({yus}u2Us |xs), corresponding to hard constraints, it also contains energetic terms log Zu (x, tu) on the nodes
u 2 U . The energetic terms are unknown but can be computed implicitly introducing a new set of messages {⌫u (tu)}u2U and
{⌫̂u (tu)}u2U that must be adjusted in order to have the correct probability marginal P (tu) on each variable node tu. On such a
factor graph, it is possible to derive the following set of message passing equations

µ̂u!s (yus) /
X

tu

⌫u(tu)

X

{yus0},s02Su\s

Iu(yus, {yus0}|tu)

Y

s02Su\s

µs0!u(yus0
) (7)

µs!u (yus) /
X

{yvs},v2Us,u

Is(yus, {yvs}|xs)

Y

v2Us,u

µ̂v!s(yvs) (8)

⌫̂u (tu) /
X

{yus},s2Su

Iu ({yus, s 2 Su}|tu)

Y

s2Su

µs!u (yus) (9)

⌫u (tu) / P (tu) ⌫̂�1
u (tu) . (10)

5

TABLE I: Scenarios considered in the simulations
Scenario S1 S2 S3
Number of instances 1842 91 1

Number of users for each instance Nu 12 300 1000

Number of service units Ns 4, 8, 12 30, 60, 90 50

Connectivity of users ku 2, 3, 4 3, 5, 8 5

Capacity of service units cs 5, 8, 11 5, 10, 15 20

Maximum weight w
max

10 10 15

Penalty for a disconnected user ! 10 10 5

by means of which the observable O(x) can be approximately evaluated. The proportionality symbol means that the marginal
probabilities need to be correctly normalized. A complete description of the method will be presented elsewhere [13].

V. NUMERICAL RESULTS ON RANDOM GRAPHS

In this section, we present some numerical results obtained by our algorithm on random graphs generated with the following
procedure. Both the users and the service units are placed at random in the unit square of the two-dimensional euclidean
space. For each user u, only the k nearest service units are assumed to be accessible, and, for each of these, the workload is
wsu =

⌃
� d(u, s)2

⌥
, i.e., an integer proportional to the square of the distance between s and u (the proportionality constant � is

such that the maximum weight is equal to a specified value wmax). Recall that the payoff for a disconnected user is �! (see (1)),
whereas for connected users is wus = wmax � wsu. Finally, the presence probabilities pu = [tu = 1] are extracted uniformly
in (0, 1]. We have considered four scenarios, whose parameters are reported in Table I; the ranges for all these parameters are
such that the instances are non trivial.

A. Comparison with exhaustive enumeration

As a first test of our message passing approach, in scenario S1 we compared it to an exhaustive enumeration of the NEs for
fixed t, averaging the results over a sample of values of t. More specifically, we considered (for a given configuration of the
service units x) the following two observables, in terms of which one can compute the objective function we propose to use for
the greedy procedure:

W(x) =

t

2

4
*

X

(u,s)2E
[yus=1]wsu

+3

5 (10)

which is the average (over the realization of t and over the NEs) of the sum of the workloads wsu for the users that are present
and connected to some service unit, and

N (x) =

t

"*
X

u2U

Y

s2@u

[yus=�1]

+#
(11)

which is the average (again, over the realization of t and over the NEs) of the number of disconnected users. We compare the
value obtained by our algorithm for W(x) with

¯W(x) =

1

|T |
X

t2T
W (x, t) (12)

where T is a random sample of realizations of t extracted from P (t) (and |T | is the size of the sample) and where W (x, t) is the
average over the NEs (for fixed x and t) of the sum of the workloads for connected users, which is computed with an exhaustive
enumeration of the possible allocations y. A similar comparison is done for N (x). Of course, in this scenario the number of
users is limited since the exhaustive enumeration is possible only if the size of the instance is very small.

Scatter plots A and B in Fig. 2 compare our algorithm with the exhaustive enumeration under scenario S1. As the sample size
S = |T | increases, the data points tend to collapse onto the diagonal, i.e., as the accuracy of the sampling procedure improves,

6

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

Ex
ha

us
tiv

e
NE

 s
ea

rc
h

w
ith

sa
m

pl
in

g
of

 u
se

r p
re

se
nc

e

Proposed algorithm

A) Average total weight of connections

S = 10
S = 30
S = 100
S = 300
S = 1000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5 3 3.5

Ex
ha

us
tiv

e
NE

 s
ea

rc
h

w
ith

sa
m

pl
in

g
of

 u
se

r p
re

se
nc

e

Proposed algorithm

B) Average number of users unable to connect

S = 10
S = 30
S = 100
S = 300
S = 1000

 100

 150

 200

 250

 300

 350

 400

 450

 100 150 200 250 300 350 400 450

BP
 s

ta
tis

tic
s

of
 N

E
w

ith
sa

m
pl

in
g

of
 u

se
r p

re
se

nc
e

Proposed algorithm

C) Average total weight of connections

S = 10
S = 30
S = 100
S = 300
S = 1000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

BP
 s

ta
tis

tic
s

of
 N

E
w

ith
sa

m
pl

in
g

of
 u

se
r p

re
se

nc
e

Proposed algorithm

D) Average number of users unable to connect

S = 10
S = 30
S = 100
S = 300
S = 1000

FIG. 2: Comparison between the values of W(x) (plots A and C for scenario S1 and S2, respectively) and N (x) (plots B and D for scenarios
S1 and S2, respectively), as computed by our message passing algorithm (“Mirror”) and by either exhaustive enumeration of the NEs (plots A
and B) or BP sampling of the NEs (for fixed t) with explicit sampling over t (plots C and D). Each data point corresponds to one instance and
one sample size S (corresponding to the different symbols/colors).

the results obtained by sampling tend to those obtained with the message passing algorithm, except for a small number of
“outliers” (less than one percent of the instances). This confirms that, even on very small instances, the two hypotheses on which
our method is based, namely the decorrelation assumption of the cavity method and the factorization hypothesis for the partition
function Z(t), are a good approximation.

B. Comparison with explicit sampling

In the next scenario S2, we compare the results obtained by our algorithm with those obtained by computing the average over
the NEs (for fixed t) with BP, and then averaging over t with an explicit sampling. This allows us to test, on larger instances, the
factorization assumption for the partition function Z(t). Note that our algorithm requires only one convergence of the message
passing procedure to perform both averages. The explicit sampling, instead, requires S convergences of a message passing,
which is (almost) as complex as ours; thus, it is roughly slower by a factor S. This limits the number of instances that we have
been able to analyze to less than 100.

Again, scatter plots C and D of Fig. 2 show that, as the sample size S increases, the data points tend to collapse onto the
diagonal, with the exception of a few cases for the estimation of W(x).

7

 7000

 7050

 7100

 7150

 7200

 7250

 7300

 7350

 7400

 0 2 4 6 8 10 12
Ob

je
ct

iv
e

Service units incrementally switched off

FIG. 3: The results of the greedy decimation. The labels on the abscissa show the number of service units being switched off at each step of
the decimation. The last five steps of the decimation are discarded from the solution.

C. Optimization results

Finally, in scenario S3 we provide an example of optimization. We used our greedy decimation heuristic based on the
message passing algorithm for a single instance. The heuristic we use to find the optimal allocation x is the following. We start
by computing the value of the objective function

O(x) =

t

2

4
*

X

(u,s)2E
[yus=1]wus

+3

5 (13)

when all the service units are on (i.e. xs = 1 for each s). Then, we compute the same objective function for all the configurations
obtained by switching off one service unit. We actually switch off the service unit that corresponds to the smallest drop in the
objective function. The same procedure is then iterated, computing the variations in the objective function associated to switching
off each of the service units that are still on, and actually switching off the one that minimizes the drop, until all the service units
are off (or we decide to stop).

The results of this “greedy decimation” are shown in Fig. 3. We observe that during the first 8 steps of the decimation (i.e. as
we switch off the first 8 service units) the value of the objective function decreases very modestly (dropping by 0.18% overall),
while for larger number of steps the drops are much greater. We therefore decide to stop the decimation after 8 steps. This allows
to switch-off 16% of the service units (i.e. to save 16% of the electric power) without affecting at all the service level.

VI. CONCLUSION

In this paper, we presented a novel computationally efficient optimization approach for distributed resource allocation prob-
lems under user behavior uncertainty. We propose a belief propagation scheme to compute the costs of different service config-
urations. This is obtained by averaging over all the possible Nash equilibrium points associated to a given system configuration.

VII. ACKNOWLEDGEMENTS

The authors acknowledge the european grants FET Open 265496, ERC 267915 and Italian FIRB Project RBFR10QUW4.

[1] B. Vocking. Selfish load balancing. In Algorithmic game theory. Cambridge Univ. Press, N. Nisan et al. Eds. (2007).
[2] R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Int. Journal of Game Theory, 2, 65-67 (1973)
[3] I. Milchtaich. Congestion games with player-specific payoff function. Games and Economic Behavior, 13, 111-124 (1996).
[4] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. Symp. on Theoretical Aspects of Computer Science (1999).
[5] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to Nash equilibria. In Proc. 30th International Colloq. on Automata,

Languages and Programming, pp. 502-513 (2003).
[6] D. Fotakis, et al. The structure and complexity of Nash equilibria for a selfish routing game. 29th ICALP, 123-134 (2002).

8

[7] A. Goel and P. Indyk. Stochastic Load Balancing and Related Problems. Symp. on Foundations of Computer Science (1999).
[8] J. Kleinberg, Y. Rabani, and E. Tardos. Allocating bandwidth for bursty connections. Proc. 29th ACM Symposium on Theory of Computing

(1997).
[9] E. Nikolova and N. E. Stier-Moses. Stochastic selfish routing. In SAGT (2011).

[10] S. Dye, L. Stougie, and A. Tomasgard. The stochastic single resource service-provision problem. Naval Research Logistics 50(8), 869-887
(2003).

[11] F. Altarelli, A. Braunstein, A. Ramezanpour, and R. Zecchina, Stochastic Matching Problem, Phys. Rev. Lett. 106 (2011)
[12] M. Mézard and A. Montanari Information, Physics and Computation. Oxford graduate texts (2009).
[13] F. Altarelli, A. Braunstein, L. Dall’Asta and R. Zecchina, in preparation (2013).

	1309.3984.pdf
	I Introduction
	II System Model
	III Problem Definition
	IV Problem Solution
	A CSP Representation Using Edge Variables
	B Average over NEs with Stochastic Parameters

	V Numerical results on random graphs
	A Comparison with exhaustive enumeration
	B Comparison with explicit sampling
	C Optimization results

	VI Conclusion
	VII Acknowledgements
	 References

