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Abstract

We study a rent-seeking contest in which players have heterogeneous

and private valuations. In addition to their own type, agents only know
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they only know the mean. We obtain a closed-form solution for agents’
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1 Introduction

A rent-seeking game is a probabilistic contest in which players exert costly

effort in order to influence the probability that they will be awarded a prize.

Rent-seeking games were first investigated by Tullock (1980). In the follow-

ing decades, Tullock’s seminal model has been extended and generalized in

many important directions (see Congleton et al., 2008, for a recent and com-

prehensive literature review). In particular, an interesting and ongoing line

of research aims at relaxing the standard hypothesis according to which all

participants in the game share a common and publicly known valuation of the

prize.

Indeed, in many typical applications of rent-seeking games (lobbying for

political favor, R&D races to secure a patent, fighting among individuals,

organizations, or countries to conquer a contested resource), the alternative

assumption of asymmetric and private valuations seems more realistic. For in-

stance, in the case of R&D expenditures, different competitors may assess the

potential of the patent according to different information or in light of different

scenarios, where these may in turn be influenced by agents’personal attitudes

and biases. Furthermore, clearly no agent has incentives to truthfully disclose

his valuation to rivals.

Initial contributions that pursued this line of research allowed for hetero-

geneity in players’valuations but maintained the assumption of their common

knowledge (see, for instance, Hillman & Riley, 1989; Nti, 1999; Stein, 2002).

On top of asymmetry, other papers then investigated the consequences of the

privacy of players’valuations in various contexts:1 two-player games with one-

1This line of research, which is the one we pursue in this paper, assumes that agents
know their own type (i.e., their own valuation of the prize) but are uncertain about the other
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sided private information and continuous types (Hurley & Shogren, 1998a),

two-player games with two-sided private information and discrete types (Hur-

ley & Shogren, 1998b, Malueg & Yates, 2004) or continuous types (Ewerhart,

2010), n-player games with one-sided private information and discrete types

(Schoonbeek & Winkel, 2006).

This paper contributes to the literature by introducing and studying a rent-

seeking game in which n ≥ 2 players have asymmetric and private valuations.

In particular, we study a framework in which the only information available

to players (in addition to the knowledge of their own type) is that all valua-

tions are identically and independently distributed according to an unknown

probability distribution with mean v̄. Note that this is a weaker hypothesis

with respect to the standard private values assumption that requires players

to know the entire distribution of types and not just its mean.2

The information structure that we adopt is thus minimal and can mimic

a number of real-life situations. For instance, it can apply to all those cases

in which players do not know the identity of the other participants. As such,

agents cannot infer or assess their rivals’valuations based on their reputation

or observable characteristics and must therefore rely on some very general

summary statistic such as the mean or expected value. The common knowledge

about this statistic could in turn stem from different sources. For instance,

the principal might have superior information and publicly announce the mean

participants’valuations. A different strand of the literature (see, for instance, Wärneryd,
2003) investigates instead rent-seeking games where players are uncertain about their own
valuation since they cannot properly ex-ante assess the quality of the prize. More in general,
participants in a contest may be heterogeneous also across other dimensions such as the
effectiveness of their lobbying efforts on the probability of winning, their cost functions, or
their budget constraints (see for instance Yamazaki, 2008).

2The private value assumption is commonly used in many contexts (e.g., auction theory;
see Krishna, 2002) and its implications have also been explored in the case of rent-seeking
games (Hurley & Shogren, 1998a).
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valuation before the contest opens; or agents may use as a proxy the mean

value that emerged in previous rent-seeking games with similar prizes; or some

external player (say an authoritative expert, a think-tank, or a governmental

agency) may publicly provide a valuation of the prize that thus becomes a

natural focal point agents will use to attribute a valuation to their rivals.3

We explicitly solve the model for the case of constant returns to scale

success function and obtain closed-form solutions for the agent’s optimal level

of investment, as well as for his perceived and actual probability of winning and

expected profits in equilibrium. We subject these results to comparative statics

analysis and investigate the issue of rent dissipation and entry in the game. We

find that in equilibrium an agent dissipates in rent-seeking activities at most

25% of his valuation. This upper bound is constant: we show that it does not

depend on the agent’s type, on how this compares with the mean value, and on

the number of potential participants. Concerning entry, we find that an agent

invests a strictly positive amount if and only if his private valuation is above

a certain threshold that we analytically pin down. In particular, we show that

a “strong”player (i.e., a player whose valuation is above the average) always

participates while a “weak”player decides to participate or not depending on

the number of competitors. While existing literature already highlighted how

asymmetric valuations may act as a barrier to entry (Hillman & Riley, 1989;

Stein, 2002), our analysis shows how the combination of heterogeneity and

imperfect information can sometimes exacerbate and sometimes contrast this

effect.

The remainder of the paper is organized as follows: Section 2 introduces the

3Concerning this last point, many countries recently set up specific agencies (both at the
national and at the local level) whose task is to provide so-called standard costs (i.e., mean
valuation) for the supply to the public sector of goods and services that are assigned through
procurement auctions.
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model and derives agents’optimal level of investment. Section 3 performs some

comparative statics exercises on equilibrium results. Section 4 investigates the

issue of rent dissipation on the individual and the aggregate level. Section 5

compares the results of the model with those that would emerge in a context

of perfect information. Section 6 presents our conclusions.

2 The model

Consider a rent-seeking game in which n ≥ 2 risk neutral players compete

to win a prize. Players’valuations of the prize are heterogeneous and vi ∈

(0, vmax] indicates the valuation of player i ∈ N with N = {1, ..., n}. The

actual realization of vi is agent i’s private information. It is instead common

knowledge that all valuations are identically and independently distributed

according to an unspecified and unknown probability distribution with mean

v̄.

Players can exert effort (or devote resources) in order to influence their

chances of winning the prize. Call xi ∈ [0, vi] the effort chosen by player i

(we measure effort in units commensurate with the rent) and let the vector

x = (x1, ..., xn) collect the choices of all the players. The probability Pi(x) with

which a generic player i wins the prize follows the famous logit specification

originally proposed by Tullock (1980). In particular, and in order to obtain

closed-form solutions (see Stein, 2002), we adopt the formulation that features

constant returns to scale such that Pi(x) = xi
xi+

∑
j 6=i xj

.4 We also assume that

4As is well known, a more general formulation of the success function is given by Pi(x) =
xri

xri+
∑

j 6=i x
r
j
where the parameter r > 0 measures the returns to scale of a player’s investment

on effort. The rent-seeking technology shows decreasing returns to scale if r ∈ (0, 1), constant
returns to scale if r = 1, and increasing returns to scale if r > 1.
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Pi(x) = 1
n
if x = (0, ..., 0).

Each player must simultaneously choose how much effort to exert. The

optimal level, which we label x̂i, is the one that maximizes a player’s expected

payoff πi:

max
xi

πi(x) =

(
xi

xi +
∑

j 6=i xj

)
vi − xi (1)

In tackling this problem, player i does not know, nor he can infer, the

levels of effort that his opponents will choose. In fact, the optimal investment

of generic agent j 6= i depends on the valuation vj (i.e., x̂j = x̂j(vj)), which is

agent j’s private information.

The only information available to agent i is that all valuations are indepen-

dently drawn from a distribution with mean (or expected value) v̄. The agent

thus necessarily sets x̂j = x̂j(v̄) for any of his (n− 1) opponents. Therefore,

from i’s point of view, problem 1 becomes:

max
xi

πi(x) =

(
xi

xi + (n− 1)x̂j(v̄)

)
vi − xi (2)

Player i can actually explicitly compute x̂j(v̄). The player in fact not

only assigns a valuation v̄ to every agent j 6= i, he also expects every other

participant in the game to adopt a similar behavior. More precisely, he expects

any player j 6= i to attach a valuation v̄ to all his opponents k 6= j. However,

the set of these players includes agent i himself. In other words, agent i ascribes

to every agent j 6= i the same behavior that player j would adopt in a rent-

seeking game in which all the participants had a homogeneous valuation v̄.

More formally, agent i sets x̂j(v̄) = x′j(v̄) for any j 6= i where x′j(v̄) =
(
n−1
n2

)
v̄

is the equilibrium solution of a standard rent-seeking game among n players
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with valuations vi = v̄ for any i ∈ N .5 Player i’s problem thus becomes:

max
xi

πi(x) =

(
xi

xi + (n− 1)
(
n−1
n2

)
v̄

)
vi − xi (3)

Necessary and suffi cient conditions for an interior solution are:

∂πi(x)

∂xi
=

 (
n−1
n

)2
v̄(

xi +
(
n−1
n

)2
v̄
)2

 vi − 1 = 0 (4)

∂2πi(x)

∂x2
i

= −
2
(
n−1
n

)2
v̄(

xi +
(
n−1
n

)2
v̄
)3vi < 0 (5)

One can immediately see that condition 5 is always verified. Therefore, solving

condition 4 with respect to xi yields x̂i, the optimal level of investment of agent

i:6

x̂i =
n− 1

n

√
v̄vi −

(
n− 1

n

)2

v̄ (6)

Note that x̂i > 0 if and only if vi > λ where λ =
(
n−1
n

)2
v̄. In other

words, an agent actively participates in the rent-seeking game (i.e., he invests

a strictly positive amount) if and only if his personal valuation is above a

certain threshold λ. This threshold is an increasing function of n and v̄. Still,

the condition λ < v̄ always holds. This implies that a “strong”player (i.e., a

5The standard result x′j(v̄) =
(
n−1
n2

)
v̄ emerges as the solution to the following problem:

maxxj πj(x) =
(

xj
xj+

∑
k 6=j xk

)
v̄ − xj subject to vk = v̄ for any k 6= j.

6More precisely, problem 3 has at least a real solution whenever
(
n−1
n2

)
v̄vi 6= 0. In

our context, such a condition is always verified as all the terms in the product are strictly
positive. The problem then actually has two real solutions: x1

i = n−1
n

√
v̄vi −

(
n−1
n

)2
v̄ and

x2
i = −n−1

n

√
v̄vi −

(
n−1
n

)2
v̄. Note that only the first solution is meaningful given that x2

i is
always negative. Therefore, x̂i = x1

i .
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player with a valuation vi ≥ v̄) always actively participates in the game. On

the other hand, a “weak”player may decide to participate (λ < vi < v̄) or

not (vi ≤ λ < v̄). In particular, and everything else being equal, a player of

type vi < v̄ may invest in rent-seeking activities if the game features only a

few competitors but could instead abstain if competition looks tougher.7

Combining the optimal solution to the profit maximization problem with

the constraint that defines active participation in the game, one obtains a

player’s optimal strategy, defined by the following proposition:

Proposition 1 Consider a rent-seeking game among n ≥ 2 players with het-

erogeneous and private valuations vi and common knowledge about the mean

valuation v̄. An agent’s optimal investment strategy x∗i takes the following

form:

x∗i =

 n−1
n

√
v̄vi −

(
n−1
n

)2
v̄ if vi >

(
n−1
n

)2
v̄

0 otherwise

3 Comparative statics and equilibrium results

In this section, we perform comparative statics exercises and investigate how

an agent’s optimal level of investment is influenced by the various parameters

of the game. We then study some more general properties that characterize

the equilibrium solution.

7Note, however, that a player that perceives himself as being very weak (that is, a player
whose private valuation is much lower than the mean value) may refuse to participate even
when he faces a single opponent (i.e., n = 2). This happens when the condition vi ≤ 1

4 v̄
holds. The fact that a player may be inactive even when n = 2 is consistent with the analysis
of Schoonbeek &Winkel (2006) while can never happen in models of perfect information such
as Nti (1999), where the two players always participate, or Stein (2002), where non-entry of
some player can occur only when n ≥ 3.
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Consider an agent of type vi > λ where, as defined above, λ =
(
n−1
n

)2
v̄. In

line with Proposition 1, agent i thus invests an amount x∗i = n−1
n

√
v̄vi−

(
n−1
n

)2
v̄

in rent-seeking activities, with x∗i > 0. As a first observation, note that,

whenever vi = v̄, the equilibrium solution cleanly reduces to x∗i =
(
n−1
n2

)
v̄,

which is the standard solution of a rent-seeking game among n symmetric

players of type v̄. The intuition is straightforward: in the model, an agent

attributes a valuation v̄ to all of his opponents and he also expects them to do

the same; it follows that an agent of type vi = v̄ behaves as if he was involved

in a rent-seeking game where all of the n players have a homogeneous valuation

v̄. In other words, the standard model à la Tullock (1980) is nested into our

more general framework.

Second, an agent’s optimal level of investment is an increasing function

of his private valuation. The marginal effect of vi on x∗i is given by
∂x∗i
∂vi

=

1
2n

v̄√
v̄vi

(n− 1), which is always positive. Still, this marginal effect is decreasing

since x∗i is a concave function of vi.
8 It follows that x∗i is more sensitive to

changes in vi when the agent’s valuation is low rather than high.

Perhaps less intuitive is the fact that the marginal effect of v̄ on x∗i is non

monotonic.9 Whenever the mean valuation is below the threshold defined by

ṽ = 1
4

(
n
n−1

)2
vi, an increase in v̄ boosts the agent i’s equilibrium effort x∗i

(although at a decreasing rate): as v̄ approaches ṽ from below, agent i ex-

pects more aggressive rent-seeking from his opponents but he also continues

to perceive himself as the strongest player (v̄ < ṽ < vi). Therefore, he in-

crements his investment so as to maintain his good chances of winning the

8The second derivative is given by ∂2x∗i
∂v2i

= − 1
4n

v2

(vvi)
3
2

(n− 1) such that ∂2x∗i
∂v2i

< 0 for any
vi.

9The marginal effect is given by ∂x∗i
∂v̄ = (n−1)

2n
vi√
v̄vi
−
(
n−1
n

)2
such that ∂x∗i

∂v̄ > 0 for v̄ < ṽ

while ∂x∗i
∂v̄ < 0 for v̄ > ṽ where ṽ = 1

4

(
n
n−1

)2

vi.
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contest. On the contrary, whenever v̄ > ṽ, an hypothetical further increase

of v̄ has a negative (and progressively stronger) effect on x∗i as agent i now

expects a much tougher competition and thus adopts a softer strategy. Indeed,

as v̄ increases, the agent progressively lowers his equilibrium effort up to the

point of nullifying it as soon as v̄ >
(

n
n−1

)2
vi.

Finally, the marginal effect of n on x∗i is also potentially non monotonic.

The effect is given by ∂x∗i
∂n

= 1
n3

(2v̄ + n
√
v̄vi − 2nv̄), which is a concave function

that reaches its maximum at ñ = −2v̄√
v̄vi−2v̄

. Therefore, if ñ ≤ 2, the condition

ñ ≤ n certainly holds and an agent’s optimal level of investment x∗i monotoni-

cally decreases with the number of participants in the game. Whenever ñ > 2,

equilibrium effort instead initially increases with n but then monotonically

decreases as soon as n > ñ.

The following figures illustrate the effects that vi (Figure 1.a), v̄ (Figure

1.b), and n (Figure 1.c) have on agent i’s optimal level of investment x∗i in

some specific examples.10

0 100 200 300
0

20

40

60

0 50 100
0

5

10

0 2 4 6 8
0

5

10

1.a) x∗i (vi), n = 4, v̄ = 100 1.b) x∗i (v̄), n = 4, vi= 50 1.c) x∗i (n), vi= 50, v̄ = 80

It is also interesting to compute the probability with which agent i ex-

pects to win the contest given his optimal investment strategy x∗i > 0 and his

10For illustrative purposes in figure 1.c (as well as in the derivation of the marginal effect)
the number of players n is treated as a continuous variable.
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conjecture that x′j(v̄) =
(
n−1
n2

)
v̄ for any j 6= i. This probability is given by:

Pi

(
x∗i ,
{
x′j
}
j 6=i

)
= 1−

(
n− 1

n

)√
v̄

vi
(7)

with Pi
(
x∗i ,
{
x′j
}
j 6=i

)
∈ (0, 1). In particular, agent i’s perceived probability is

ensured to be strictly positive given that the condition Pi
(
x∗i ,
{
x′j
}
j 6=i

)
> 0

holds whenever vi >
(
n−1
n

)2
v̄, which is the same constraint that defines active

participation in the game (see Proposition 1).11 Obviously, in equilibrium

a player exerts positive effort only if his expected profits (which we formally

define below) are strictly positive and this necessarily requires Pi
(
x∗i ,
{
x′j
}
j 6=i

)
to be positive.12

While one can immediately see that Pi
(
x∗i ,
{
x′j
}
j 6=i

)
is increasing with vi

and decreasing with n and v̄, it is interesting to note how expression 7 relates

an agent’s expected probability of winning to the concept of relative resolve,

as introduced in Hurley & Shogren (1998a, 1998b). The relative resolve of

agent i with respect to a generic agent j is defined as ρi =
√

vi
vj
and thus

provides a measure of the relative strength of the player. In particular, agent

i is stronger (weaker) than j when ρi > 1 (ρi < 1). Expression 7 shows

that Pi
(
x∗i ,
{
x′j
}
j 6=i

)
decreases with

√
v̄
vi
. It follows that agent i’s expected

probability of winning increases with ρi =
√

vi
v̄
, which can be interpreted as

the relative resolve of player i with respect to his “representative rival”of type

11Here as well, our results subsume those that arise in a standard rent-seeking game
with homogeneous valuations and perfect information. Expression (7) shows in fact that

Pi

(
x∗i ,
{
x′j
}
j 6=i

)
= 1

n whenever vi = v̄.
12A positive expected probability of winning is a necessary but not suffi cient condition

to ensure active participation of an agent. The probability of winning is in fact certainly
positive for any strictly positive level of effort xi > 0. Still, this probability and/or the
agent’s valuation vi may be too small such that their product (i.e., the agent’s expected
revenues) may fall short of the cost of exerting effort and the agent thus prefers not to
participate.
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v̄.

Given the expected probability of winning defined in expression 7, one can

also compute an agent’s expected profits. These are given by πi
(
x∗i ,
{
x′j
}
j 6=i

)
=

Pi

(
x∗i ,
{
x′j
}
j 6=i

)
vi − x∗i and can thus be explicitly expressed as:

πi

(
x∗i ,
{
x′j
}
j 6=i

)
=

1

n2

(
n
√
vi − n

√
v̄ +
√
v̄
)2

(8)

Expected profits are thus strictly increasing with vi and, for the range of

admissible parameters, strictly decreasing with v̄.13

With respect to the expected probability of winning as reported in expres-

sion 7, the actual probability of winning (i.e., the probability that emerges in

equilibrium when every agent i ∈ N plays his optimal investment strategy x∗i )

may differ. The latter is given by:

Pi(x
∗) =

√
vi −

(
n−1
n

)√
v̄

√
vi − (n− 1)

√
v̄ +

∑
j 6=i
√
vj

(9)

which increases with vi, decreases with vj, and it is such that Pi(x∗) = 1
n
when

vi = vj 6=i = v̄. The expected probability of winning (expression 7) and the

actual probability of winning (expression 9) agree only when (n − 1)
√
v̄ =∑

j 6=i
√
vj, i.e., when the sum of (the square root of) agent i’s expectations

about his opponents’valuations equals the sum of the (square root of the)

actual valuations of agent i’s rivals. If this is not the case, then agent i over-

estimates his probability of winning whenever he underestimates the aggre-

gate strength of his rivals
(

(n− 1)
√
v̄ <

∑
j 6=i
√
vj

)
and he underestimates his

13More precisely, function 8 is convex in v̄ and reaches its minimum πi (·) = 0 at v̄ =(
n
n−1

)2

vi. Therefore, whenever the participation constraint vi >
(
n−1
n

)2
v̄ holds (i.e., v̄ <(

n
n−1

)2

vi), expected profits are positive but strictly decreasing with v̄.
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probability of winning when the opposite holds true.

The following example illustrates all the results obtained so far in the con-

text of a specific rent-seeking game.

Example 1 Consider a rent-seeking game with four players with private val-

uations v1 = 36, v2 = 25, v3 = 16, and v4 = 9. All players know that the

mean valuation in the population is v̄ = 16. Each player i ∈ N thus expects

each one of his opponents to play x′j 6=1 = 3. In line with Proposition 1, it

follows that equilibrium levels of investment are x∗1 = 9, x∗2 = 6, x∗3 = 3, and

x∗4 = 0 (the participation constraint requires vi > 9). Now, for illustrative

purposes, focus on player 2. The player expects to win the game with proba-

bility P2 (3, 6, 3, 3) = 2
5
(see expression 7), which implies an expected payoff of

π2 (3, 6, 3, 3) = 4 (see expression 8). Given that
∑

j 6=2

√
vj > (n − 1)

√
v̄ (i.e.,

13 > 12), agent 2’s actual probability of winning P1(9, 6, 3, 0) = 1
3
(see ex-

pression 9) is lower than his expected probability of winning as agent 2 slightly

underestimates the total strength of his rivals.

4 Rent dissipation in equilibrium

We now investigate the issue of rent dissipation at the individual level (RDi)

and at the aggregate level (RD). We define rent dissipation at the individual

level as the fraction of an agent’s valuation that is invested in rent-seeking

activities. In equilibrium, a player with valuation vi thus dissipates an amount:

RD∗i =
x∗i
vi

=

(
n− 1

n

)(√
v̄
√
vi
−
(
n− 1

n

)
v̄

vi

)
(10)

Once again, this expression subsumes the results of the standard model
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with homogeneous valuations. In fact, when vi = v̄, expression 10 simplifies to

RD∗i = (n−1)
n2
. As is well known, this is a constant ratio that does not depend on

vi. However, a part from this specific case, expression 10 shows that in general

RD∗i does depend on vi. In particular, rent dissipation at the individual level is

increasing in the agent’s valuation for vi < ṽi and decreasing for vi > ṽi where

ṽi =
(
n−1
n

)2
4v̄.14 Similarly, and holding vi fixed, rent dissipation is a concave

function of v̄ that reaches its maximum at ṽ = 1
4

(
n
n−1

)2
vi.15 The shape of

the RD∗i function is driven by the behavior of x
∗
i that, as has been shown, is

strictly concave in vi and v̄.

One can also relate rent dissipation at the individual level with the relative

resolve of agent i with respect to the representative rival of type v̄. Defining

the relative resolve of i as ρi =
√
vi√
v̄
and rearranging expression 10 one obtains:

RD∗i =

(
n− 1

n

)[
1

ρi
−
(
n− 1

n

)
1

ρ2
i

]
(11)

In equilibrium, RD∗i is thus first increasing and then decreasing with ρi.

Rent dissipation reaches its maximum for ρ̃i = 1
n

(2n− 2), in which case

RD∗i (ρ̃i) = 1
4
. Note that this maximum is a constant that does not depend on

the number of participants n. Therefore, the amount that an agent is willing

to dissipate in rent-seeking activities never exceeds 25% of his valuation, no

matter the value of his relative resolve (and thus the values of vi and v̄) or the

number of participants in the game.

To illustrate this peculiar result, the following graph depicts RD∗i as a

14The marginal effect is given by ∂RD∗i
∂vi

= − (n−1)
2n2v2i

(2v̄ + n
√
v̄vi − 2nv̄) such that ∂RD

∗
i

∂vi
> 0

for vi <
(
n−1
n

)2
4v̄ and ∂RD∗i

∂vi
< 0 for vi >

(
n−1
n

)2
4v̄.

15In this case, the marginal effect is given by ∂RD∗i
∂v̄ = (n−1)

n2vi

(
1
2n

vi√
v̄vi
− n+ 1

)
such that

∂RD∗i
∂v̄ > 0 for v̄ < 1

4

(
n
n−1

)2

vi and
∂RD∗i
∂v̄ < 0 for v̄ > 1

4

(
n
n−1

)2

vi.
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function of ρi in three different rent-seeking games that are characterized by

n = 2, n = 4, and n = 100 (left to right). In all cases, the participation

constraint implies a positive investment x∗i > 0 for ρi >
(
n−1
n

)
.

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

Figure 2: Examples of rent dissipation at the individual level.

In line with the literature (see, among others, Hurley & Shogren, 1998a,

1998b; Stein, 2002), we define rent dissipation at the aggregate level as the total

expenditures by all the players.16 Therefore, in equilibrium, RD∗ =
∑

i x
∗
i .

To obtain an explicit formulation for RD∗, one must consider that in equi-

librium not all the players necessarily invest a positive amount (see Proposition

1). We define the set of active players as M =
{
i ∈ N | vi >

(
n−1
n

)2
v̄
}
, i.e.,

those agents that play x∗i > 0. Therefore, M ⊆ N , or, equivalently, m ≤ n.

Rent dissipation at the aggregate level is then given by:

RD∗ =
∑

i∈M

[(
n− 1

n

)√
v̄vi

]
−m

(
n− 1

n

)2

v̄ (12)

RD∗ is thus weakly increasing and weakly concave in any individual valua-

tion vi with i ∈ N . The “weakness”of these relations stems from the fact that
16Note in fact that whenever agents’valuations are heterogeneous, the sum of individual

rent dissipations (i.e.,
∑

iRD
∗
i ) makes no sense. Each RD

∗
i is in fact computed with respect

to the agent’s specific valuation vi.
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a small increase in the valuation of an agent that does not participate (i.e.,

i /∈ M) may still not be enough to convince him to actually invest a positive

amount. If this is the case, then RD∗ obviously would not change. On the

contrary, the possible positive effect on total rent dissipation of an increase in

an individual valuation can flow through two channels: a higher vi pushes up

the optimal amount x∗i > 0 of an agent that would have invested anyway or a

higher vi may convince a player to enter the game and thus change his optimal

strategy from x∗i = 0 to x∗i > 0.

The effect of an increase of v̄ on RD∗ can instead go in both directions. A

higher v̄ increases the threshold that defines entry. As such, it can negatively

affect participation and thus depress total rent dissipation. However, we also

showed (see Section 3 and Figure 1.b) that the optimal level of investment of a

participating player is not monotonic in the mean valuation. In particular, x∗i

first increases and then decreases with v̄. Therefore, the net effect of a change

of v̄ on RD∗ can be positive or negative.

We collect the results about rent dissipation in the following proposition.

Proposition 2 Consider a rent-seeking game among n ≥ 2 players with het-

erogeneous and private valuations vi and common knowledge about the mean

valuation v̄. Then, in equilibrium, rent dissipation at the individual level

(RD∗i =
x∗i
vi
) and the aggregate level (RD∗ =

∑
i x
∗
i ) is such that:

- RD∗i is a concave function of vi, v̄, and ρi that reaches its global maximum

respectively at ṽi =
(
n−1
n

)2
4v̄, ṽ = 1

4

(
n
n−1

)2
vi, and ρ̃i = 1

n
(2n− 2).

- RD∗i ∈
[
0, 1

4

]
for any vi, v̄, ρi, and n.

- RD∗ is weakly increasing and weakly concave in any vi.
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5 A comparison with the perfect information

case

To highlight how the specific form of imperfect information that we have mod-

eled influences players’behaviors, we compare our results with those that would

emerge in a context of perfect information. We use the results that appear in

Stein (2002) as a benchmark.

Stein (2002) studies a rent-seeking game among n ≥ 2 players with het-

erogeneous and publicly known valuations and derives explicit solutions for

the case of constant returns to scale success function. Therefore, the only dif-

ference between Stein’s model and our model lies in the different information

structure agents can rely on. Stein (2002) finds that the optimal strategy of

generic agent i ∈ N takes the following form:

x∗Stein02
i =


(p−1)Φp

p

[
1− (p−1)Φp

pvi

]
if i ≤ p

0 otherwise
(13)

where p ∈ {1, ..., n} is the largest number for which the condition vp > (p−1)
p

Φp

holds (players are ordered in terms of their valuations such that v1 ≥ v2 ≥

...vn > 0) and Φp =
[

1
p

∑
i≤p

1
vi

]−1

is the harmonic mean of the first p values

of {vi}i∈N . In equilibrium, rent dissipation at the aggregate level is given by

RD∗Stein02 = [(p− 1)Φp] /p and the relation vp+1 ≤ RD∗Stein02 < vp always

holds.

Note that in the special case of homogeneous valuations, Stein’s solution

reduces to the standard solution (Tullock, 1980). In fact, when vi = v for all

i ∈ N , then p = n and Φp = v. Therefore, x∗Stein02
i =

(
n−1
n2

)
v. We have already

shown in Section 3 that also our solution (see Proposition 1) simplifies to the

17



standard one as x∗i =
(
n−1
n2

)
v̄ when vi = v̄. Therefore, both Stein’s model and

our model subsume the standard framework of a symmetric rent-seeking game

with common knowledge and they thus lead to the same solution under those

specific assumptions.

However, apart from this peculiar case, the two models usually differ both in

terms of individual optimal investment and rent dissipation. To highlight these

aspects, consider a slight generalization of the situation presented in Example

1. In particular, let n = 4 with v1 = 36, v2 = 25, v3 = 16, v4 ∈ (0, 100], and

v̄ = 16. Figure 3.a below shows how the optimal level of investment of player

4 changes as a function of his own valuation in the two models. Figure 3.b

illustrates instead the evolution of rent dissipation at the aggregate level.

0 20 40 60 80 100
0

10

20

0 20 40 60 80 100
0

10

20

30

40

3.a) x∗4 (thin) and x
∗Stein02
4 (thick) 3.b) RD∗ (thin) and RD∗Stein02 (thick)

Focusing on Figure 3.a, the pattern of the two functions appears to be qual-

itatively similar. The only noticeable difference concerns the threshold that

triggers the agent’s entry: in Stein’s model, agent 4 invests in rent-seeking ac-

tivities when his valuation is such that v4 > 15.352; in our model, entry occurs

for v4 > 9. The reason for this different threshold is that in our framework

agent 4 assigns a valuation of v̄ = 16 to any of his opponents. Therefore, the

agent underestimates the actual strength of his opponents, expects to face less

fierce competition, and thus more easily enters the game.

Still, there is a more subtle difference between the two models. The two

18



information structures can in fact lead to a different number of active players

and this can in turn have important implications for the aggregate level of rent

dissipation. The following table reports the number m ≤ n and the identity of

the agents that invest a positive amount in rent-seeking activities in the two

models, as v4 varies in the interval (0, 100].

Our model Stein02 model

m active pl. m active pl.

v4 ∈ (0, 9] 3 {1, 2, 3} 3 {1, 2, 3}

v4 ∈ (9, 15.132] 4 {1, 2, 3, 4} 3 {1, 2, 3}

v4 ∈ (15.352, 16] 4 {1, 2, 3, 4} 4 {1, 2, 3, 4}

v4 ∈ (16, 81.818] 4 {1, 2, 3, 4} 3 {1, 2, 4}

v4 ∈ (81.818, 100] 4 {1, 2, 3, 4} 2 {1, 4}
Table 1: number and identity of active players in the rent-seeking game.

With respect to the perfect information benchmark, the specific form of

imperfect information that we have modeled influences therefore not only the

individual optimal investment strategies but also the number of participating

players. It follows that the differences between the two models in terms of

total rent dissipation (Figure 3.b) are more pronounced with respect to those

that emerge at the level of the individual equilibrium strategy (Figure 3.a).17

17Obviously, the results illustrated in Figures 3.a and 3.b are specific to the example being
examined and cannot be generalized. The situation would be reversed (i.e., agent 4 would
more easily enter the game and aggregate rent dissipation would be higher in a context of
perfect information) if players overestimate the actual strength of their opponents (this for
instance would happen if v̄ = 30).
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6 Conclusions

We have studied some properties of rent-seeking games characterized by the

lack of common knowledge about players’heterogeneous types. More precisely,

we investigated a framework plagued by a severe form of imperfect information:

in addition to the knowledge of their own type, agents only know that all

valuations are drawn from an unknown distribution with mean v̄. The key

passage of the model is that a player necessarily uses this summary statistic

not only to attach a valuation to his rivals but also to attribute a beliefs system

to them. This allows participants to conjecture/approximate the level of effort

that the other players will exert and thus to implement the investment strategy

that best responds to such a conjecture.

Focusing on contests with constant returns to scale, we obtained closed-

form solutions for agents’optimal level of effort as well as for the amount of rent

dissipation that emerges in equilibrium. Comparative statics analysis then led

to some interesting results. We showed, for instance, that an agent’s optimal

level of investment is not monotonic in the mean valuation v̄ and that the

amount that an agent dissipates in rent-seeking activities is bounded above by

a threshold that is independent of the agent’s valuation, his degree of relative

resolve, and the number of opponents.

In general, we have highlighted how agents’behaviors and equilibrium re-

sults may be shaped by small pieces of shared information that become focal

among all participants. This consideration opens interesting paths for future

research. For instance, it suggests the possibility that the principal may strate-

gically release some specific information (say some selected summary statistics)

with the goal of influencing some of the outcomes of the game such as the num-

ber of active players or the aggregate level of rent dissipation.
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