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Abstract

In the quest for scalable Bayesian computational algorithms we need to exploit
the full potential of existing methodologies. In this note we show that the posterior
distribution of the regression parameters conditionally on covariance hyperparame-
ters in a large family of multilevel regression models is a high-dimensional Gaussian
that can be sampled exactly (as well as marginalized) using belief propagation at a
cost that scales linearly in the number of parameters and data. We derive an algo-
rithm that works efficiently even for conditionally singular Gaussian distributions,
e.g., when there are linear constraints between the parameters at different levels.
We provide a synthesis of similar ideas that have been suggested in the literature
before.

1 Belief propagation

Graphical models are now mainstream for modelling high-dimensional vectors of depen-
dent random variables and for doing efficient computations with the joint density thereof,
such as marginalisations and maximisations. Among others, two algorithmic paradigms
have been established for scalable computations in graphs. More popular within statis-
tics is the junction tree algorithm, see for example Chapter 6 of Cowell et al. (1999), and
more popular within machine learning is belief propagation, see for example Section 8.4
in Bishop (2006). The connections between the two paradigms are understood, see for
example Chapter 2 of Wainwright and Jordan (2008). For the class of models we con-
sider in this article the two paradigms are essentially equivalent, so we will use the belief
propagation formulation, which we find more intuitive in our context and we describe
below. The starting point of belief propagation is a factorisation of the joint density of a
vector of random variables. (In Section 2 we work with a broader framework that starts
with a factorisation of the joint law of the variables.) The set of variables and factors
are then represented by a bipartite graph known as the factor graph. There are two
sets of nodes: variable nodes (one for each of the random variables) and factor nodes
(one for each of the factors in the density factorisation). The edges in the graph connect
each factor node to the variable nodes that correspond to those variables involved in the
corresponding factor in the factorisation. Details on this construction can be found for
example in Section 8.4 of Bishop (2006).
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An example is the two-level hierarchical model

β ∼ N (µ0, V0)

βi | β ∼ N (β,Σ)

yi | βi ∼ N (Xy
i βi, σ

2
i I)

(1)

where I is the identity matrix whose dimensions vary depending on the context; N (µ,Σ)
denotes the Gaussian distribution, later N (x;µ,Σ) will denote the corresponding Gaus-
sian density with argument x; Xy

i is a matrix of covariates, one for each i, where super-
scription by y is explained in Section 2 in the context of a generalisation of (1). The
last line of (1) defines a linear regression model, yij ∼ N

(
(Xy

ij)
Tβi, σ

2
i

)
, where (Xy

ij)
T

is the jth row of matrix Xy
i . The second line of the model pools the local regression

coefficients for each i towards a global parameter vector β. The directed acyclic graph
of this model for given covariance and design matrices is shown in Figure 1(left). Each
of the conditional densities in the model specification corresponds to a factor and the
associated factor graph is shown in Figure 1(right).
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Figure 1: Two-level hierarchical model as directed acyclic graph (left) and as a factor
graph (right). The notation used for the factor nodes is explained in Section 2.

Belief propagation involves exchange of messages between variable and factor nodes.
Let t denote a variable node in the graph, βt the corresponding variable, s a neighbouring
factor node, fs the corresponding factor in the density factorisation, and ne(·) be a
function that takes as input a node index and returns the set of neighbouring nodes
in the graph. By construction factor nodes neighbour variable nodes only and variable
nodes neighbour factor nodes only. Hence, fs is a function of βt and βne(s)\t. Messages
exchanged between variable and factor nodes are functions of the variable attached to
the variable node and are defined by the following equations:

mβt→fs(x) =
∏

k∈ne(t)\s

mfk→βt
(x)

mfs→βt
(zt) =

∫
fs(zne(s))

∏
j∈ne(s)\t

mβj→fs(zj)dzj .
(2)

In terms of notation used in this paper, for sets A and B, A\B denotes the set difference,
we identify the variable index t with the one-element set that contains it, for a set of
indices A, βA denotes the set of variables indexed by elements in A, x and z denote generic
function arguments. If the factor graph is a tree, as for example in Figure 1(right), and
the integrals in (2) can be computed, then the system of equations defined by (2) can
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be efficiently solved with a forward-backward algorithm. After choosing an arbitrary
variable node as the root of the tree, the direction from the leaves to the root is defined
as forward and the reverse as backward. For a given node t, its neighbour on its unique
path towards the root will be called its parent and denoted by pa(t). The algorithm is
initialised by setting the messages at the variables nodes at the leaves (if any) equal to 1.
The forward pass of belief propagation computes messages going from the leaves to the
root and the backward pass computes messages from the root to the leaves. After two
sweeps we obtain the set of messages solving (2). The resulting messages can then be used
to compute the marginal density at any variable node t as pβt

(x) =
∏
s∈ne(t)mfs→βt

(x).
When some variables in the definition of the graphical model have been observed, say yA,
the message passing steps that involve these variables keep them fixed at their observed
values and do not integrate them out. Then, after the forward and backward step the
product of the messages at a variable node t is proportional to the conditional density
pβt|yA(x). Although belief propagation is typically developed for computing marginal
distributions and normalising constants, it can also be used to simulate from conditional
distributions. This is exploited in the following section, where in the backward pass
simulation replaces message computation.

2 Bayesian nested multilevel models

2.1 Model formulation The methods we develop are appropriate for (k + 1)-level
models with the following nested structure

β ∼ N (µ0, V0) or β ∼ p(β) ∝ 1

βi | β ∼ N (Xiβ,Σ)

βi1...id | βi1...id−1
∼ N (Xi1...idβi1...id−1

,Σi1...id−1
), d = 2, . . . , k

yi1...ik | βi1...ik ∼ N (Xy
i1...ik

βi1...ik , σ
2
i1...ik

I).

(3)

The level closest to the data will be understood as the deepest one. The last line of
(3) is a linear regression model where we have concatenated observations at the deepest
level into the vector yi1...ik , like we did in (1). We allow for level-specific covariates that
explain the variation of regression coefficients at that level. Throughout the following
presentation there will be two sets of quantities associated to the deepest level and that
are subscripted in the same way. To distinguish between them, we add the superscript
y to those that link to the data; therefore, Xy

i1...ik
is the matrix of covariates used to

explain the dataset yi1...ik , whereas Xi1...ik is used to explain βi1...ik . We also allow for
flat prior on the hyperparameters, which yields a proper posterior under a condition on
the matrix P0 defined in (10) below. The set of all observations yi1...ik will be referred to
as data, that of all regression parameters, i.e. β and all βi1...id , as coefficients and that
of all covariance hyperparameters as covariances, e.g. we will use p(data | covariances) to
refer to marginal likelihood of observations with regression parameters integrated out.

By allowing rank deficient covariance matrices we can fit in this framework mixed-
effects models (also known as linear mixed models) as discussed for example in Section
13.3 of Gelman and Hill (2007). To clarify the concept, an example more complex than
(1) is helpful. Suppose we have data on individuals j that belong to different countries
i, that we model as a regression yij ∼ N (α + θizij + γiwij , σ

2
i ), where zij and wij are

individual-level covariates. We want to allow variation of the corresponding coefficients
that we partially explain using a country-level covariate si, θi ∼ N (a + bsi, τ) and
γi ∼ N (c+dsi, λ) with θi and γi independent. In order to obtain a factor graph that is a
tree, we need to clump coefficients at the deepest level into one vector βi = (αi, θi, γi)

T ,
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and the covariates and a vector of 1’s into the matrix Xy
i . The αi’s are artificial copies

of α. Even though we model the variation on θi independently of that on γi, having
them clumped together forces us to work with them as a single vector. Hence, we write
βi ∼ N (Xiβ,Σ) where β = (α, a, b, c, d)T , Σ = diag(0, τ, λ), and Xi is a 3×5 matrix with
rows (1, 0, 0, 0, 0), (0, 1, si, 0, 0), and (0, 0, 0, 1, si). Hence, we have obtained the nested
multilevel structure of (3) with k = 1. An example of a structure that does not fit the
framework of (3) is the crossed-effects model, yij ∼ N (αi + θj , σ

2), to which the belief
propagation algorithm we describe below does not apply.

2.2 Message passing for posterior simulation We describe the messages for belief
propagation in nested multilevel models as defined in (3), and how they can be used
for computing p(data | covariances) and simulating from p(coefficients | data,covariances).
The factor graph associated with (3) is a tree; throughout our presentation we will take
β to be its root. The factor nodes will be denoted by fi1...id ; as already discussed the
factor node that links yi1...ik to βi1...ik will be denoted by fyi1...ik and that linking βi1...ik
to βi1...ik−1

will be denoted by fi1...ik ; see Figure 1. Messages are functions that can be
parameterised in terms of a triplet (c, C, u), where c is a positive scalar, C a positive
semidefinite matrix and u a vector, and for brevity we write

m = (c, C, u) to imply m(x) = c exp
(
− (1/2)xTCx+ uTx

)
. (4)

First we show how to update this set of parameters during the forward step, which works
from leaves to the root, i.e., from the deepest level in the hierarchy to the most shallow.
With every factor node, except for those at the deepest level linked to the observations,
there are associated two messages, one that arrives from the variable node deeper and
one that is sent to the variable node one level higher up. We distinguish between the two
corresponding triplets by using tildes for the latter. In this context, the message that
arrives at a variable node from below coincides with the density of the data on the leaves
that originate from the given branch of the tree, conditional on the variable at this node
but marginal with respect to all other variables in-between. The messages from factor
to variable nodes at the leaves are

mfy
i1...ik

→βi1...ik
= (c̃yi1...ik , C̃

y
i1...ik

, ũyi1...ik)

C̃yi1...ik = (1/σ2
i1...ik

)(Xy
i1...ik

)TXy
i1...ik

c̃yi1...ik = (2πσ2
i1...ik

)−di1...ik
/2 exp

(
− (1/2σ2

i1...ik
)yTi1...ikyi1...ik

)
ũyi1...ik = (1/σ2

i1...ik
)(Xy

i1...ik
)T yi1...ik

(5)

where di1...ik is the size of yi1...ik . At higher levels, the factor to variable messages are

mfi1...id
→βi1...id−1

= (c̃i1...id , C̃i1...id , ũi1...id)

c̃i1...id = ci1...id |G|1/2 exp
(
− (1/2)uTi1...idΓTGΓui1...id

)
C̃i1...id = XT

i1...id
BT (BΣi1...id−1

BT + I)−1BXi1...id

ũi1...id = XT
i1...id

(Σi1...id−1
Ci1...id + I)−1ui1...id

(6)

where B, Γ and G implicitly depend on (i1 . . . id) and are defined by

Ci1...id = BTB, Σi1...id−1
= ΓTΓ, G = (ΓCi1...idΓT + I)−1 . (7)

The triplet (ci1...id , Ci1...id , ui1...id) in (6) corresponds to the message mβi1...id
→fi1...id

.
The matrix decompositions in (7) are used with Schur’s complement to obtain formulae
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above that are valid without any assumptions on invertibility of either Ci1...id or Σi1...id−1
.

Σi1...id−1
Ci1...id + I is invertible by contruction because Σi1...id−1

is positive semidefinite.
The messages from variable to factor nodes are as follows: at the deepest level

mβi1...ik
→fi1...ik

= (ci1...ik , Ci1...ik , ui1...ik) =
(
c̃yi1...ik , C̃

y
i1...ik

, ũyi1...ik

)
(8)

while for any d ∈ {1, . . . , k − 1}

mβi1...id
→fi1...id

= (ci1...id , Ci1...id , ui1...id) =

∏
j

c̃i1...idj ,
∑
j

C̃i1...idj ,
∑
j

ũi1...idj


(9)

where j runs over the appropriate index set, which depends on the numbers of offsprings
βi1...id has on the Bayesian network.

At the root we collect messages from fi for i ≥ 1, which come from the level below,
and from f0, which comes from the prior. The normalised message is the posterior density
at the root:

β | data, covariances ∼ N (P−1m,P−1)

P = P0 + V −10 or P = P0, P0 =
∑
i

C̃i

m =
∑
i

ũi + V −10 µ0 or m =
∑
i

ũi

(10)

where the alternative expressions depend on whether a Gaussian or flat prior is used for
β. Flat prior leads to proper posterior provided P0 defined above is positive definite.
Additionally,

p(data | covariances) =
N (x;µ0, V0)

∏
i c̃i exp

{
−(1/2)xT C̃ix+ ũTi x

}
N (x;P−1m,P−1)

, (11)

where the first term in nominator is omitted for flat prior, and any value x can be used.
Then, for any intermediate level regression coefficients, we have

βi1...id |βi1...id−1
, data, covariances ∼

N
{
G(Xi1...idβi1...id−1

+ Σi1...id−1
ui1...id),ΓT (ΓCi1...idΓT + I)−1Γ

}
G = (Σi1...id−1

Ci1...id + I)−1, Σi1...id−1
= ΓTΓ.

(12)

Simulating backwards according to the distributions described in (10) and (12) we obtain
a draw from p(coefficients|data, covariances).

We have not given the details of the calculations that produce the formulae for the
messages and the conditional distributions. We have worked under a framework math-
ematically richer than that of (2), where the definition of a factor graph is extended to
correspond to a factorisation of the joint probability measure in terms of regular condi-
tional densities, along the lines of the disintegration theorem as in Theorem 5.4 of Kallen-
berg (1997). This type of construction is suitable for the factor graph representation of
Bayesian networks with conditional Gaussian distributions with semi-definite covariance
matrices. In the context of a multilevel model, the messages are Radon-Nikodym deriva-
tives between Gaussian measures. It can be checked (but we have omitted the details
here) that indeed the posterior Gaussian laws (12) are absolutely continuous with re-
spect to the prior Gaussian laws in the definition of the multilevel model in (3) with
Radon-Nikodym derivative proportional to the message mfi1...id+1

→βi1...id
.
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2.3 Complexity considerations Both computation of p(data | covariances) and sim-
ulation from p(coefficients | data,covariances) via belief propagation as described above
involve a computational cost that scales linearly with the total number of regression
coefficient vectors. The forward and backward steps at each level involve computations
that without further structural assumptions scale cubically with the dimension of the
level-specific coefficients. On the other hand, if we wish to draw several samples for the
coefficients for given values of the covariances, the cost per step can be made quadratic
in the dimension of the coefficient vector, since matrix decompositions do not have to
be redone. In other words, whereas the computational cost of the algorithm has the
same dependence on the characteristics of the model as that of a Gibbs sampling al-
gorithm that simulates each regression coefficient conditionally on the rest, it achieves
exact draws from the high-dimensional distribution p(coefficients | data,covariances). On
the other hand, to obtain a factor tree graph we might have to clump together vari-
ables, hence increasing the dimension of the variable node dimensions, as we did for the
mixed-effects model example in Section 2.1. In such cases the computational cost per
iteration of the Gibbs sampler will be smaller. However, such differences will typically
be small relative to the overall cost of the algorithms. Additionally, one can use belief
propagation to update a subset of the variables conditionally on the rest, as we discuss in
the next section, hence obtaining again the same cost per iteration as the Gibbs sampler.
Sampling using belief propagation lends itself to parallelisation, but we do not develop
this idea further here, although it should be considered for software development.

3 Blocked Gibbs sampling and marginal algorithms

The algorithm of Section 2 can be used in the popular context where the covariance com-
ponents are given a prior distribution and Bayesian inferences are performed on the joint
distribution p(coefficients, covariances |data). Posterior computations are typically per-
formed using a Gibbs sampling scheme that alternates sampling from p(covariances | data,
coefficients) and p(coefficients|covariances, data). If conditionally conjugate priors (e.g.
Wishart) are used, sampling from p(covariances|data, coefficients) can be efficiently ac-
complished exploiting the conditional independence across covariance components given
the coefficients and the data. Belief propagation can then be used to sample from
p(coefficients | data,covariances) efficiently.

An alternative approach is to perform inferences on the marginal space p(covariances |
data). Even in this case, the belief propagation algorithm of Section 2 is crucial to allow
efficient point-wise evaluation of the marginal likelihood p(data | covariances), and thus
of p(covariances | data) up to proportionality. The relative merits of working with the ex-
tended posterior p(coefficients, covariances | data) or with the marginal one p(covariances |
data) are case-specific. In general one would expect the marginal approach to be prefer-
able when the distribution p(covariances|data) is small or moderate dimensional, so that
numerical or Monte Carlo integration can be efficiently employed in the marginal space.
When instead the distribution p(covariances | data) is high-dimensional it may be chal-
lenging to perform inferences in the marginal space because, having integrated out the
regression coefficients, the covariance components are not anymore conditionally indepen-
dent and one ends up with a potentially complex high-dimensional correlated distribution.
In this case the blocked Gibbs Sampling approach may be more efficient.

The methodology we presented so far is well-suited to contexts where the number of
regression coefficients is large (i.e. tree with many nodes) and the size of each coefficient
is small, since the cost of operations grows as the cube of that size but only linearly with
the number of nodes in the tree. When the size of variable nodes is large, we can still use
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the message passing algorithm of Section 2 to update a subset of regression coefficients
(i.e. some components of each βi1...id) jointly across all nodes of the tree conditionally on
the remaining coefficients. The resulting blocked Gibbs sampling scheme can still exhibit
large improvements over the single-site updating. A more detailed study of this case is
left to future work.

4 Synthesis of the related literature

The forward-backward iteration we describe for sampling efficiently the high-dimensional
Gaussian distribution, p(coefficients|data, covariances), is a generalisation of the so-called
forward filtering backward sampling algorithm, which is used in the time series commu-
nity for Bayesian inference for state space models, see for example Algorithm 13.4 in
Frühwirth-Schnatter (2006). State space models have factor graphs with single-branch
tree structure. The extension of Kalman filtering recursion to tree structures has been
long-known, especially in the context of multiscale systems (e.g. Chou et al., 1994). Sim-
ilar ideas have been exploited in spatial statistics contexts, see for example Huang and
Cressie (2001) where algorithms for spatial Gaussian models with tree-structured de-
pendence are developed. Zhang and Agarwal (2008) exploit Kalman filter recursions to
perform posterior maximization for some multilevel models that are subset of the frame-
work we consider here. These previous works typically focus on computing marginal
distributions and do not develop sampling algorithms, and they do not make a clear
connection with belief propagation. The connection between belief propagation and
Kalman recursions is recognised in the early technical report Dempster (1990) and using
a message-passing formulation in Normand and Tritchler (1992), who provide references
to works even older than Dempster (1990).

The role of belief propagation within Bayesian computation for multilevel models is
fully recognised in Wilkinson and Yeung (2002) who work along the same lines we have
followed in this note, in particular their Section 2.4 on message passing for sampling pos-
teriors that arise in Gaussian tree models (the approach we use in Section 2.2 corresponds
to what they call the canonical parameterisation of the multivariate Gaussian). Relative
to that work the main novelty in this note is that we have worked out messages with no
assumptions on invertibility of prior covariance matrices. This extension has allowed us
to also cast mixed effect models as nested multilevel models and use belief propagation
for those too. For the two-level mixed effect models Chib and Carlin (1999) derive an
efficient algorithm for sampling the posterior distribution of the regression coefficients,
which is an instance of the generic algorithm of Section 2, where the structure of 0’s in
prior covariances that results from clumping is explicitly exploited to simplify some of
the matrix computations.

Seen as latent Gaussian models, the nested multilevel models we consider give rise
to large sparse precision matrices. Wilkinson and Yeung (2002) and Wilkinson and Ye-
ung (2004) show how to compute the canonical parameters of the Gaussian prior and
posterior using sparse linear algebra computations and exploiting the graphical model
structure to identify the zeros in the precision matrices. The potential of sparse linear
algebra computations for inference and simulation in latent Gaussian models has been
recognised at least since Rue (2001); this work, and inter alia the follow-ups Knorr-Held
and Rue (2002) and Rue and Held (2005) have illustrated how the precision matrices
that arise in spatiotemporal latent Gaussian models can be treated using sparse linear
algebra algorithms, such as algorithms for banded matrices and algorithms that attempt
to produce Choleksy factors nearly as sparse as the posterior precision. This work as has
also recognised the connections between their fast linear algebra approach and Kalman
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filters/smoothers; see for example the overview in Section 1.2.1 of Rue and Held (2005).
The way numerical analysis techniques for sparse matrices can be used for computations
with Gaussian graphical models is exposed in Section 2.4 of Rue and Held (2005), and
Section 2.5 of the same book carries out a simulation study that tries two black-box algo-
rithms for sparse matrices in the context of precision matrices that arise in spatiotemporal
graphical models. Wilkinson and Yeung (2004) suggests the use of such sparse linear al-
gebra methods for inference in Gaussian hierarchical models; first compile the sparse
precision using computations that exploit the known positions of the zeros and then feed
the precision into a sparse linear algebra algorithm that returns its Cholesky factor. The
article does not study whether the structure of zeros in the precision from common fami-
lies of hierarchical models, such as for example the nested hierarchical models considered
in this note, is such that the extraction of the Cholesky factor is actually fast or whether
the resultant factor is sparse, or the complexity of the associated operations. These type
of questions have been studied in more depth in the case of spatial models in Chapter 2
of Rue and Held (2005).

In the opposite direction, the linear algebra community has explored the use of belief
propagation as an efficient iterative method for solving linear systems. An example of
this line of work is Shental et al. (2008), who use belief propagation for solving linear
systems with positive definite matrices by linking the system solution to the marginal
means (or the mode) of a Gaussian distribution with precision matrix given by the system
matrix. They discuss connections of this approach to direct and iterative methods for
solving systems and find it competitive.
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