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Abstract

We study the convergence properties of the Gibbs Sampler in the
context of posterior distributions arising from Bayesian analysis of
Gaussian hierarchical models. We consider centred and non-centred
parameterizations as well as their hybrids including the full family of
partially non-centred parameterizations. We develop a novel methodol-
ogy based on multi-grid decompositions to derive analytic expressions
for the convergence rates of the algorithm for an arbitrary number of
layers in the hierarchy, while previous work was typically limited to
the two-level case. Our work gives a complete understanding for the
three-level symmetric case and this gives rise to approximations for
the non-symmetric case. We also give analogous, if less explicit, re-
sults for models of arbitrary level. This theory gives rise to simple
and easy-to-implement guidelines for the practical implementation of
Gibbs samplers on conditionally Gaussian hierarchical models.

1 Introduction

MCMC is established as the computational workhorse of most Bayesian sta-
tistical analyses for complex models. For conditionally conjugate models,
the Gibbs sampler remains the most natural algorithm of choice, particu-
larly for hierarchical models which have proved arguably the most popular
general class of models for Bayesian analysis. However convergence can be
a major issue and it has long been recognised that reparameterisation can
drastically a�ect the convergence rate and hence e�ciency of the sampler,
see for example Hills and Smith [1992].

The popularity of hierarchical models stems partly from their �exibility,
interpretability, and the fact that easily implementable MCMC algorithms
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such as the Gibbs sampler can be used to simulate their posterior distri-
butions [Gelfand and Smith, 1990, Smith and Roberts, 1993]. Moreover,
empirical experience with Gibbs samplers for hierarchical models (see for
example Gelfand et al. [1995]) suggests that the Gibbs sampler's conver-
gence properties are aided substantially by hierarchical structure, suggesting
a synbiosis between hierarchical models and the Gibbs sampler. While there
is some theoretical work to investigate this phenomenon (see for example
Roberts and Sahu [1997], Meng and Van Dyk [1997], Papaspiliopoulos et al.
[2003], Jones and Hobert [2004], Papaspiliopoulos et al. [2007], Yu and Meng
[2011], Bass and Sahu [2016b]) comparatively little is known about the link
between hierarchical models and MCMC convergence, and almost nothing
for models of hierarchical depth greater than two. The present paper o�ers
the �rst steps towards such an understanding.

We shall couch all our results in terms of L2 rates of convergence. Speci�-
cally, let (β(s))s=1,2,... be a Markov chain with stationary distribution π and
transition operator de�ned by P sf(β(0)) = E[f(β(s))|β(0)]. The rate of

convergence ρ(β(s)) associated to (β(s))s=1,2,... is de�ned as the smallest
number ρ such that for all r > ρ

lim
s→∞

‖P sf − Eπ[f ]‖L2(π)

rs
= 0 ∀f ∈ L2(π) , (1)

where L2(π) denotes the space of square π-integrable functions, ‖ · ‖L2(π)

is its associated L2-norm and Eπ[f ] =
∫
f dπ is the expectation of f with

respect to π. The rate of convergence ρ(β(s)) characterizes the speed at
which (β(s))s=1,2,... converges to its stationary distribution π, with a simple
argument giving that if

T = min{s; ‖P sf − Eπ[f ]‖L2(π) ≤ ε}

then T = O
(

1
− log(ρ)

)
.

The theoretical results given in this paper apply to the Gibbs sampler
for Gaussian hierarchical models where we are able to extend and improve
substantially on existing literature [Roberts and Sahu, 1997, Yu and Meng,
2011, Bass and Sahu, 2016b] both in terms of generality of hierarchical struc-
ture and the availability of explicit rates. We shall study the connections
between rates of convergence and parameterisation, for instance studying
di�erent options for centred and non-centred (also called su�cient and an-

cillary in Yu and Meng [2011]) parameterisations and their links to explicit
rates of convergence of their corresponding Gibbs samplers.

In general, the Gibbs sampler can be elegantly described in terms of
orthogonal projections [Amit, 1991, 1996, Diaconis et al., 2010], although it
is rarely possible to extract practical convergence information for complex
Gibbs samplers from this theory. However one important family in which
explicit and useful results concerning Gibbs sampler rates of converge are
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available is the family of multivariate Gaussian distributions. This paper
will take advantage of this explicit framework to study rates of convergence
of the Gibbs sampler as they vary with the hierarchical structure of the
model. Our study goes substantially beyond existing studies of this problem
Roberts and Sahu [1997], Yu and Meng [2011], Bass and Sahu [2016b], Gao
and Owen [2016] and leads to simple and practical recommendations for
parameterisation choice in Gibbs sampling for hierarchical models.

Our results can be readily used for models which are conditionally Gaus-
sian, for example for the very popular context (see for example Gelman
et al. [2013]) where there exist unknown variances at various levels of the
hierarchy. In that case our optimality results describe the optimal updating
strategies for the hierarchical mean structure conditional on the variances.
For such Gaussian hierarchical models of su�cient complexity, block updat-
ing of the entire Gaussian component together is typically infeasible (O(n3)
in the dimension (n) of the Gaussian to be updated).

Furthermore, the Gaussian linear models we study epitomise Bayesian
multilevel modeling more generally, in the sense that many more elaborate
models share the qualitative features of these more simple models. More-
over, many non-Gaussian hierarchical models can be well-approximated by
Gaussian ones (for example for su�ciently large data sets), so that it is rea-
sonable to conjecture that the qualitative conclusions (at least) of our study
might remain valid when extrapolated to non-Gaussian models, rather like
the analysis given in Sahu and Roberts [1999]. A detailed study of this
question is left for future work.

Section 2 carefully introduces the 3-level hierarchical models we shall con-
sider, and provides motivating simulations. Then in Section 3 we shall give
a complete analysis for 3-level symmetric models (i.e. homogenous variances
and symmetric data structure). At the heart of the analysis is a multigrid
decomposition of the Gibbs sampler into completely independent Markov
chains describing di�erent levels of hierarchical granularity, Theorem 1. Al-
though multigrid ideas have already been used in methodological contexts
to design improved MCMC schemes [Goodman and Sokal, 1989, Liu and
Sabatti, 2000], to our knowledge they had never been used in theoretical
contexts to study convergence rates. We demonstrate that the slowest of
these independent chains is that corresponding to the coarsest level and
thus derive explicit expressions for the rates of convergence in symmetric
contexts. For 3-level non-symmetric models, we give bounds on rates based
on comparisons with related symmetric models. Moereover we describe par-
tial non-centering strategies and describe bespoke strategies which optimise
the degree of non-centering at each branch.

Section 4 considers hierarchical models with arbitrary depth (≥ 4). Us-
ing an appropriate auxiliary random walk, whose evolution through the hi-
erarchical tree is governed by the parameters' squared partial correlations,
we are able to extend the multigrid analysis to general tree structures and
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some non-symmetric cases. We again demonstrate a fundamental multi-
grid decomposition in Theorem 15 where the coarsest level chain converges
the slowest, and we give explicit formulae for optimal partial non-centering
strategies.

2 Three level hierarchical linear models

We shall begin with a detailed study of the three-level case, giving a fairly
complete analysis for the case of symmetric models, which we shall follow up
with some new results for the non-symmetric case. Therefore we shall begin
by considering the following three-level Gaussian hierarchical model.

Model S3 (Symmetric 3-levels hierarchical model). Suppose

yijk = µ+ ai + bij + εijk, (2)

where i, j and k run from 1 to I, J and K respectively and εijk are iid normal
random variables with mean 0 and variance σ2

e . We employ the standard

bayesian model speci�cation assuming ai ∼ N(0, σ2
a), bij ∼ N(0, σ2

b ) and a

�at prior on µ.

Unless otherwise stated, we consider the variance terms σ2
a, σ

2
b and σ2

e

to be known. De�ning a = (ai)i, b = (bij)i,j and y = (yijk)i,j,k, the Gibbs
Sampler explores the posterior distribution (µ, a,b)|y by iteratively sampling
from the full conditional distributions of µ, a and b as follows (see below for
motivation of denoting such sampler as GS(1, 1)).

Sampler GS(1, 1). Initialize µ(0), a(0) and b(0)) and then iterate

1. Sample µ(s+ 1) from p(µ|a(s), b(s),y);
2. Sample ai(s+ 1) from p(ai|µ(s+ 1), b(s),y) for all i;
3. Sample bij(s+ 1) from p(bij |µ(s+ 1),a(s+ 1),y) for all i and j,

where p(µ|a, b,y), p(ai|µ, b,y) and p(bij |µ,a,y) are the full conditionals of

Model S3 (see Appendix A for explicit expressions).

The parametrization (µ, a,b) induced by (2) is often referred to as non-
centred parametrization (NCP) and it is contrasted with the centred para-

metrization (CP) obtained by replacing ai and bij with γi = µ + ai and
ηij = γi + bij respectively. Under the centred parametrization (µ,γ,η) the
model formulation becomes

yijk ∼ N(ηij , σ
2
e), ηij ∼ N(γi, σ

2
b ), γi ∼ N(µ, σ2

a), p(µ) ∝ 1 .
(3)

Figures 1b and 1a provides a graphical representation of the two parametriza-
tions. In the (µ, a,b) case (1, 1) refers to the fact that both levels 1 and 2
use a non-centred parametrization, while in the (µ,γ,η) case (0, 0) indicates
that both levels use a centred parametrization. The resulting Gibbs sampler
for the centred parametrization is as follows.
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yijk

ηij

γi

µ

k = 1, . . . ,K

j = 1, . . . , J

i = 1, . . . , I

(a) Fully centred parametrization

yijk

bijaiµ

k = 1, ...,K

j = 1, ..., J

i = 1, ..., I

(b) Fully non-centred parametrization

yijk

ηij

aiµ

k = 1, ...,K

j = 1, ..., J

i = 1, ..., I

(c) Mixed parametrization: (µ,a,η)

yijk

bijγi

µ

k = 1, ...,K

j = 1, ..., J

i = 1, ..., I

(d) Mixed parametrization: (µ,γ,b)

Figure 1: Graphical representations of 3-levels hierarchical linear models
under di�erent parametrizations.

Sampler GS(0, 0). Initialize µ(0), γ(0) and η(0)) and then iterate

1. Sample µ(s+ 1) from p(µ|γ(s),η(s),y);
2. Sample γi(s+ 1) from p(γi|µ(s+ 1),η(s),y) for all i;
3. Sample ηij(s+ 1) from p(ηij |µ(s+ 1),γ(s+ 1),y) for all i and j,

where p(µ|γ,η,y), p(γi|µ,η,y) and p(ηij |µ,γ,y) are the full conditionals

induced by (3) (see Appendix A for explicit expressions).

Together with the fully non-centred parametrization (µ, a,b) and the
fully centred parametrization (µ,γ,η), one can also consider the mixed
parametrizations given by (µ,γ,b) and (µ, a,η) and the corresponding Gibbs
Sampler schemes GS(0, 1) and GS(1, 0). See Figures 1c and 1d for graphical
representations.
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2.1 Illustrative example

As an illustrative example, we simulated data from Model S3 with I = J =
100, K = 5, µ = 0, σa = σe = 10 and σb = 10−0.5. This correspond to a
scenario of high level of noise in the measurements. We �t model S3 assum-
ing the standard deviations (σa, σb, σe) to be unknown and placing weakly
informative priors, namely 1

σ2
a
, 1
σ2
b
and 1

σ2
e
a priori distributed according to an

Inverse Gamma distribution with shape and rate parameters equal to 0.01.
We compare the e�ciency of the Gibbs sampling schemes corresponding to
the four di�erent parametrizations, denoting them by GS(1, 1), GS(0, 0),
GS(0, 1) and GS(1, 0). For this simple example we initialized the chains
at true values of the parameters (µ, a,b) and (σa, σb, σe), which we know
because we are in a simulated dataset example. The more realistic case of
starting the chains from randomly chosen states led to the same conclusions
of this illustrative examples. Note that all the four schemes have the same
starting states (modulo re-parametrization) to have a fair comparison.

Figure 2 shows the mixing behaviour of the global mean µ and displays
the potentially dramatic di�erence among mixing properties of the Gibbs
Sampler under di�erent parametrizations. Based on Figure 2 one would

Figure 2: Mixing behaviour at level 0 (i.e. µ) under four di�erent
parametrizations. The ranges of the y-axes are constant across parametriza-
tions.

certainly exclude using GS(1, 1) and GS(1, 0) to �t the model under consid-
eration and may be tempted to deduce that both GS(0, 0) and GS(0, 1) lead
to good mixing properties of the resulting chain. However, as an additional
check, a cautious practitioner may also explore the mixing of the parameters
at the �rst level, namely a and γ. Figure 3 displays the behaviour of the

global averages of such parameters, namely a· =
∑
i ai
I and γ· =

∑
i γi
I , in

the �rst 3000 iterations. Again, we see a dramatic di�erence induced by
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Figure 3: Mixing behaviour at level 1 (i.e. a· and γ·) under four di�erent
parametrizations. The ranges of the y-axes are constant across parametriza-
tions sharing the same parameters at level 1.

di�erent parametrizations and, somehow surprisingly, we see that, despite
having good mixing behaviour at level 0 (i.e. µ), GS(0, 0) displays very poor
mixing behaviour at level 1 (i.e. γ). It is then natural to explores also the
mixing behaviour at level 2 and Figure 4 does so again by plotting the global

averages b·· =
∑
ij βij
IJ and η·· =

∑
ij ηij
IJ . In this case GS(1, 1) and GS(0, 1)

Figure 4: Mixing behaviour at level 2 (i.e. b·· and η··) under four di�erent
parametrizations. The ranges of the y-axes are constant across parametriza-
tions sharing the same parameters at level 2.

are the only one achieving good mixing. Based on Figures 2, 3 and 4 it is
natural to choose to �t the model using the sampler GS(0, 1) corresponding
to the mixed parametrization (µ,γ,b), as it is the only one providing a good
mixing across all three levels.
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This simple example shows many typical issues arising when �tting Bayesian
multi-level models and raises many questions. For example, one would like
to know what are good parameters to use to diagnose convergence, in order
to avoid misleading conclusions like the one suggested by Figure 2. In fact,
while in two level model good mixing of the global hyperparameters such as
µ typically indicates good global mixing, this is not true in other multi-level
models. Indeed, it is legitimate to wonder whether diagnoses based only on
the global means, like in Figures 2, 3 and 4, are enough to deduce good
mixing of the whole markov chain, which in our example has more than
104 dimensions (1 + I + IJ mean components and 3 precision components).
Below we will show that for Model S3, mixing of the global means ensures
mixing of the whole (1 + I + IJ)-dimensional mean components of the chain
given the variances (see e.g. Corollary 3). Therefore it is enough to monitor
the three global means and the three variances to ensure a reliable check of
the chain mixing properties.

Even more crucially, it is desirable to have simple, robust and theoreti-
cally grounded guidance in choosing a computationally e�cient parametriza-
tion, given the huge impact it can have on computational performances. The
centred parametrization is often a good choice but it can fail dramatically in
case of highly noisy of weakly informative data and therefore it does not pro-
vide a "black-box" solution. In particular, models with more than two levels
clearly shows a more complex structure than the two level ones. For example
the simple illustrative example of this section shows that in three-level models
both the fully centred and fully non-centred parametrizations can fail to pro-
duce computationally e�cient samplers. The theoretical analysis developed
in the next section will provide the required guidance. For example Theorem
4 below implies that, if (I, J,K, σa, σb, σe) = (100, 100, 5, 10, 10−0.5, 10), the
L2 rates of convergence (NB: numbers close to 1 mean slow convergence, see
(1) and discussion thereof) of the various Gibbs Samplers under considera-
tion are

(ρ(1,1), ρ(0,0), ρ(0,1), ρ(1,0)) = (0.995, 0.998, 0.005, 0.999) .

These numbers provide a quantitative and theoretically grounded description
of the behaviour heuristically observed in this section and can be easily used
to optimize performances (see e.g. Section 3.2).

3 Multigrid decomposition

The basic ingredient of our analysis is the following multigrid decomposition.
Consider the four possible parametrization of Model S3: (µ, a,b), (µ,γ,η)
and the mixed parametrizations (µ,γ,b) and (µ, a,η). In order to provide
a uni�ed treatment, regardless of the chosen parametrization, we denote
the parameters used by (β(0),β(1),β(2)) and the resulting Gibbs Sampler
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by GS(β). For example, in the NCP case β(0) = µ, β(1) = a, β(2) = b

and GS(β) coincides with GS(1, 1). First consider the map δ sending β =
(β(0),β(1),β(2)) to

δ(β) =

 δ(0)β

δ(1)β

δ(2)β

 =

 δ(0)β(0) , δ(0)β(1) , δ(0)β(2)

δ(1)β(1) , δ(1)β(2)

δ(2)β(2)

 , (4)

where, loosely speaking, δ(i)β represent the increments of β at the i-th
coarseness level. More precisely

δ(0)β(0) = β(0) , δ(0)β(1) = β
(1)
· , δ(0)β(2) = β

(2)
·· ,

δ(1)β(1) =
(
β

(1)
1 − β(1)

· , . . . , β
(1)
I − β

(1)
·

)
, δ(1)β(2) =

(
β

(2)
1· − β

(2)
·· , . . . , β

(2)
I· − β

(2)
··

)
,

δ(2)β(2) =
(
β

(2)
11 − β

(2)
1· , β

(2)
12 − β

(2)
1· , . . . , β

(2)
IJ − β

(2)
I· , β

(2)
I(J−1) − β

(2)
I·

)
,

where

β
(1)
· =

∑
i β

(1)
i

I
, β

(2)
·· =

∑
i,j β

(2)
ij

IJ
, β

(2)
i· =

∑
j β

(2)
ij

J
.

It is easy to see that the map δ is a bijection between Rd and R3 × (RI)∗ ×
(RI)∗ ×Ii=1 (RJ)∗, where (Rp)∗ = {(v1, . . . , vp) ∈ Rp :

∑p
i=1 vi = 0}. The

dimensionality of δβ equals the one of β, which is 1+I+IJ , because δβ has
3+2I+IJ parameters and 2+I constraints. It is worth noting that the three
subspaces spanned by (δ(0)β(0) , δ(0)β(1) , δ(0)β(2)), (δ(1)β(1) , δ(1)β(2)) and
δ(2)β(2) respectively do not depend on the choice of parametrization β. Thus
the multi-grid decomposition is intrinsic to the model, and not dependent
on the particular parameterization being considered.

Theorem 1. (GS(β) factorizes under δ) Let (β(s))s be a Markov chain on

Rd evolving according to GS(β). Then (δ(0)β(s))s, (δ(1)β(s))s and (δ(2)β(s))s
are three independent Markov chains evolving according to blocked Gibbs

Samplers with blocks given by (δ(0)β(0) , δ(0)β(1) , δ(0)β(2)), (δ(1)β(1) , δ(1)β(2))
and δ(2)β(2) respectively.

Remark. The posterior independence of δ(0)β, δ(1)β and δ(2)β is a well-

known fact following from properties of Gaussian distributions. The remark-

able fact following from Theorem 1 is that also the Markov chains induced by

the Gibbs Sampler are independent (note that the independence of the random

vector under the target measure is a necessary but not su�cient condition

for the independence of a corresponding MCMC scheme).

Despite its simplicity, Theorem 1 provides a powerful tool to analyze the
Markov chain of interest (β(s))s. In fact the factorization into independent
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s

β(0)

β(1)

β(2)

s+ 1

β(0)

β(1)

β(2)

s

δ(0)β

δ(1)β

δ(2)β

s+ 1

δ(0)β

δ(1)β

δ(2)β

s

δ(0)β(0)

δ(0)β(1)

δ(0)β(2)

s+ 1

δ(0)β(0)

δ(0)β(1)

δ(0)β(2)

δ(1)β(1)

δ(1)β(2)

δ(1)β(1)

δ(1)β(2)

δ(2)β(2) δ(2)β(2)

Figure 5: Illustration of Theorem 1. Left: transition from β(s) to β(s + 1)
in Sampler GS(β). This is the common structure of a Gibbs Sampler with 3
blocks. Center: transition from δβ(s) to δβ(s+1) in Sampler GS(β). There
are three Markov chains, namely (δ(0)β(s))s, (δ(1)β(s))s and (δ(2)β(s))s,
evolving independently. Right: more detailed structure of the evolution
of (δ(0)β(s))s, (δ(1)β(s))s and (δ(2)β(s))s. These are Gibbs Samplers with
respectively 3, 2 and 1 blocks.

Markov chains implies that the rate of convergence of (β(s))t is simply given
by the worst rate of convergence among δ(0)β(s), δ(1)β(s) and δ(2)β(s). In-
terestingly, the slowest chain is always the chain at the highest level, namely
δ(0)β(s).

Theorem 2. (Hierarchical ordering of convergence rates) Let δ(0)β(s), δ(1)β(s)
and δ(2)β(s) be the Markov chains de�ned in Theorem 1. Then the associated

convergence rates satisfy

ρ(δ(0)β(s)) ≥ ρ(δ(1)β(s)) ≥ ρ(δ(2)β(s)) = 0 .

3.1 Explicit rates of convergence

Theorems 1 and 2 imply that the rate of convergence of the global chain β(s)
coincides with the one of the sub-chain δ(0)β(s) sampling the global means

(β(0), β
(1)
· , β

(2)
·· ).

Corollary 3. (Rate of convergence of GS(β)) Given the notation of Theo-

rem 1,

ρ(β(s)) = ρ(δ(0)β(s)) .

While the original Markov chain (β(s))s∈N has 1 + I + IJ components
and thus is typically high-dimensional, the skeleton chain (δ(0)β(s))s∈N is a
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low-dimensional chain (namely 3-dimensional) amenable to direct analysis,
for example using the tools developed in Roberts and Sahu [1997]. Therefore
using Corollary 3 we can analytically evaluate the rates of convergence for
the Gibbs Sampler under di�erent parametrizations.

Theorem 4. Given an instance of Model S3, the rate of convergence of the

four Gibbs Sampler schemes GS(0, 0), GS(1, 1), GS(0, 1) and GS(1, 0) are

given by

ρ(0,0) =1− σ̃2
a

σ̃2
a + σ̃2

b

σ̃2
b

σ̃2
b + σ̃2

e

,

ρ(1,1) = max

{
σ̃2
a

σ̃2
a + σ̃2

e

,
σ̃2
b

σ̃2
b + σ̃2

e

}
,

ρ(0,1) =1− σ̃2
a

σ̃2
a + σ̃2

e

σ̃2
e

σ̃2
b + σ̃2

e

,

ρ(1,0) = max

{
σ̃2
a

σ̃2
a + σ̃2

b

,
σ̃2
e

σ̃2
b + σ̃2

e

}
,

where σ̃2
a = σ2

a
I , σ̃

2
b =

σ2
b
IJ and σ̃2

e = σ2
e

IJK .

Theorem 4 provides explicit and informative formulas regarding the in-
teraction between choice of parametrization and resulting e�ciency of the
Gibbs Sampler for Model . Figure 6 summarizes graphically the dependence

Figure 6: Plot of rates of convergence for three-levels Gaussian hierarchical
models under di�erent parametrizations. Color levels correspond to values
of log(1−ρ), where ρ is the rate of convergence, as a function of log(σ̃2

a) and
log(σ̃2

b ) for �xed log(σ̃2
e) = 0.

of the converge rates of di�erent parametrizations from the values of the
variances of various levels.

3.2 Conditionally optimal parametrization

A natural and practically relevant question is what is the optimal parametriza-
tion (among the four possible choices (µ, a,b), (µ,γ,b),(µ, a,η) and (µ,γ,η))
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as a function of the normalized variance components (σ̃2
a, σ̃

2
b , σ̃

2
e). Using the

formulas of Theorem 4 we can obtain a simple and easily interpretable an-
swers.

Corollary 5 (Optimal parametrization for Model S3). The rate of conver-

gence of the Gibbs Sampler targeting Model S3 is minimized by the following

choice of parametrization:

• if σ̃2
b ≥ σ̃2

e use a centred parametrization η at the lowest level, while if

σ̃2
b < σ̃2

e use a non-centred parametrization b,

• if σ̃2
a ≥ σ̃2

b + σ̃2
e use a centred parametrization γ at the middle level,

while if σ̃2
a < σ̃2

b + σ̃2
e use a non-centred parametrization a.

The table in Figure 7 provides a graphical representation of the decision
process. This simple rule guarantees that the resulting Gibbs Sampler has a

σ̃2
a ≥ σ̃2

b + σ̃2
e σ̃2

a < σ̃2
b + σ̃2

e

σ̃2
b ≥ σ̃2

e (µ,γ,η) (µ, a,η)

σ̃2
b < σ̃2

e (µ,γ,b) (µ, a,b)

Figure 7: Optimal parametrization for 3-levels hierarchical models as a func-
tion of the normalized variance components.

rate of converges smaller than 2
3 (thus guaranteeing a high sampling e�ciency

for �xed variances). The optimized convergence rate equals 2
3 if and only if

σ̃2
a = σ̃2

b +σ̃2
e and σ̃

2
b = σ̃2

e (in which case all parametrizations are equivalent).
Figure 7 implies that the choice of parametrization of a given level (i.e.

whether it is computationally convenient to use a center or non-center para-
metrization) depends on the ratio between the normalized variance at the
level under consideration and the sum of the normalized variances of the
levels below. This results extend previous intuition for the two-level case
(e.g. Papaspiliopoulos et al. [2003]) to deeper hierarchical levels (in this case
three levels).

Corollary 5 allows for simple and e�ective strategies to ensure high sam-
pling e�ciency in practical implementations of Gibbs Sampling for Model
S3 in the case of unknown variances. Common implementations choose a
parametrization of the gaussian component, say β = (β(0),β(1),β(2)), and
alternate sampling β|(σa, σb, σe) with GS(β(0),β(1),β(2)) and (σa, σb, σe)|β
(for which direct sampling is possible and computationally cheap). Indeed it
is su�cient to include an �if� statement in the Gibbs Sampling implementa-
tion, after sampling (σa, σb, σe)|β, to choose the optimal parametrization β
given (σa, σb, σe) according to Figure 7. This will ensure that the sampling
step β|(σa, σb, σe) will have a high e�ciency. This kind of strategies will
be particularly robust and e�ective when there is little prior information on
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the values of (σa, σb, σe), or during the transient phase of the MCMC when
(σa, σb, σe) may assume unexpected values, or when the variance compo-
nents are not well identi�ed in the posterior. In all these situations it will
be di�cult to choose a priori a good parametrization and therefore optimiz-
ing it on-the-�y will be a much more robust and e�ective strategy. Note
that the process of choosing the optimal parametrization (Figure 7) has a
computational cost which is negligible compared to a Gibbs Sampling sweep.

3.3 Bounds for centred parametrization in the non-symmetric

case

The approach of Section 3 provides an elegant decomposition into inde-
pendent Markov chains that allows to evaluate analytically the convergence
rates of the Gibbs Sampler for Model S3. However, Model S3 has two over-
restrictive assumptions. First it assumes the variances terms σ2

b and σ
2
e to be

constant across the hierarchy (i.e. not to depend on i and j) and secondly,
more crucially, it assumes the study under consideration to be perfectly bal-
anced (i.e. J and K not depending on i and j). In this section we consider
the following more general case.

Model NS3 (Non-symmetric 3-levels hierarchical model). Consider a more

general 3-levels model with centred parametrization

p(µ) ∝ 1

γi ∼ N(µ, σ2
a) i = 1, . . . , I,

ηij ∼ N(γi, σ
2
b,i) j = 1, . . . , Ji,

yijk ∼ N(ηij , σ
2
e,ij) k = 1, . . . ,Ki,j ,

where variance components are assumed to be known.

Although the multigrid factorization of Theorem 1 does not apply directly
to Model NS3, it can still be used to obtain upper and lower bounds on the
rates of convergence.

Theorem 6. Given an instance of Model NS3 we de�ne

r
(i)
a,b =

σ2
a

σ2
a + J−1

i σ2
b

, and r
(i)
e,b =

1

Ji

Ji∑
j=1

K−1
ij σ

2
e,ij

σ2
b,i +K−1

ij σ
2
e,ij

.

Then if

min
i=1,...,I

r
(i)
a,b ≥ max

i=1,...,I
r

(i)
a,br

(i)
e,b (5)

the rate of convergence of the Gibbs Sampler with centred parametrization

(µ,γ,η) satis�es

ρ ≤ 1− 1

I

I∑
i=1

r
(i)
a,b + max

i=1,...,I
r

(i)
a,br

(i)
e,b
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The results of Theorem 6 suggest that as the number of datapoints in-
crease the e�ciency of the Gibbs sampler with centred parametrization in-
creases. In fact, as Kij increases assumption (5) is eventually satis�ed and
the bound on the convergence rate goes to 0 as Ji and Kij increase. Theo-
rem 5 provides rigorous theoretical support and characterization of the well
known fact that the centred parametrization is to be preferred in contexts of
large and informative datasets [Gelfand et al., 1995, Papaspiliopoulos et al.,
2003].

3.4 Handling heterogeneity with bespoke parametrizations

In non-symmetric cases such as Model NS3 all parametrizations previously
considered, namely (µ, a,b), (µ,γ,η), (µ,γ,b) and (µ, a,η), may be com-
putationally ine�cient. In this more general scenario, the computationally
optimal strategy will involve centering some branches of the hierarchy and
non-centering others. We will refer to these strategies as bespoke parametriza-
tions. In order to design a bespoke parametrization, a question of particular
interest is whether the optimal choice on each branch of the hierarchy can
be taken independently of other branches or not. In the former case, the
optimization process would have a local nature and the resulting algorithm
could be implemented easily and e�ciently, while in the latter case (optimal
decision on each branch in�uenced by other branches) the global nature of
the optimization problem would impose implementation challenges.

While the rate of convergence of the general three level case (Model NS3)
is intractable, the two-level case o�ers enough tractability and yet richness
to provide insight in the choice of optimal heterogeneous parametrizations.
We therefore consider the following non-symmetric 2-levels model (which we
describe in terms of precisions rather than variances for notational conve-
nience).

Model NS2 (Non-symmetric 2-levels hierarchical model). Consider the fol-
lowing 2-levels model with centred parametrization

p(µ) ∝ 1

γi ∼ N(µ, 1/τa) i = 1, . . . , I,

yij ∼ N(γi, 1/τe,i) j = 1, . . . , Ji,

where the precision components (τa, (τe,i)i) are assumed to be known.

Papaspiliopoulos et al. [2003] studied the symmetric version of Model
NS2, where Ji = J and τe,i = τe for all i and some �xed J and τe. They
showed that the rates of convergence induced by the centred and non-centred
parametrizations are given respectively by

ρCP =
τa

τa + τ̃e
and ρNCP =

τ̃e
τa + τ̃e

, (6)

14



where τ̃e = Jτe. The following Theorem provides an extension to the general
non-symmetric case. We consider Model NS2 with a bespoke parametrization
(µ, β1, . . . , βI) de�ned by I indicators (λ1, . . . , λI) ∈ {0, 1}I as βi = γi−λiµ,
meaning that λi equals 0 if component i is centred and 1 if it is non-centred.

Theorem 7. The rate of convergence of the Gibbs Sampler targeting Model

NS2 with bespoke parametrization given by (λ1, . . . , λI) ∈ {0, 1}I is

ρλ1...λI =

∑
i :λi=1 τ̃i

τ̃i
τ̃i+τa

+
∑

i :λi=0 τa
τa

τ̃i+τa∑
i :λi=1 τ̃i +

∑
i :λi=0 τa

, (7)

where τ̃i = Jiτe,i.

Equation (7) shows that in the non-symmetric case, the GS rate of con-
vergence is given by a weighted average of the precision ratios τa

τ̃i+τa
and

τ̃i
τ̃i+τa

depending on whether each component is centred or not. This has
clear analogies with the symmetric case in (6). The weights in the average
of (7) are themselves a function of (λ1, . . . , λI), thus introducing dependence
across components in terms of centering and the overall convergence rate.
However, starting from (7) we can see that for any i ∈ {1, . . . , I}

ρλ1...λi−10λi+1...λI − ρλ1...λi−11λi+1...λI =

τaτ̃i
τa+τ̃i

(τa − τ̃i)
(ρ−i + τa)(ρ−i + τ̃i)

, (8)

where ρ−i =
∑
6̀=i :λ`=0 τ̃`

τ̃`
τ̃`+τa

+
∑

` 6=i :λ`=1 τ̃a
τ̃a

τ̃`+τa
≥ 0. Equation 8 implies

that ρλ1...λi−10λi+1...λI > ρλ1...λi−11λi+1...λI if and only if τa > τ̃i, which in turn
implies the following corollary.

Corollary 8. Let λ̄i = 1(τa > τ̃i) for all i from 1 to I. Then

ρλ̄1...λ̄I ≤ ρλ1...λI for any (λ1 . . . λI) ∈ {0, 1}I .

Corollary 8 implies that in Model NS2, the choice of optimal parametriza-
tion in each branch of the three can be carried out independently following
the simple rule: for each i in {1, . . . , I} use centred parametrization γi if and
only if τa ≤ Jiτe,i, otherwise use a non-centred parametrization ai = γi − µ.

As mentioned before, the non-symmetric three level case (Model NS3) is
not easily tractable and therefore we do not have neat results such as Corol-
lary 8 regarding the design of bespoke parametrizations. However, motivated
by Corollary 5, Corollary 8 and Theorem 10 below we can design an heuris-
tically motivated criteria to design e�cient bespoke parametrizations. For
each i = 1, . . . , I, let λi be the non-centering indicator of the i-th parameter
(i.e. βi = γi − λiµ) and for each j = 1, . . . , Ji let λij be the non-centering
indicator of the ij-th parameter (i.e. βij = ηij − λijγi). The heuristic choice
for (λi)i and (λij)ij is the following:

λij = 1

(
σ2
b,i <

σ2
e,ij

Kij

)
and λi = 1

 1

σ2
a

>

Ji∑
j=1

1

σ2
b,i +K−1

ij σ
2
e,ij

 . (9)
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It is easy to see that in the symmetric case equation (9) coincides with
the criteria derived in Section 3.2 from the explicit rates of convergence
analysis. In the non-symmetric case, these heuristic criteria can be motivated
by observing that the non-centering indicators λi and λij de�ned by (9) equal
1 or 0 depending on whether the corresponding optimal partial non-centering

coe�cients λ
(1,0)
i and λ

(2,1)
ij (see Theorem 9 below) are above or below a half.

Note also that the de�nition of λij in (9) is consistent with the non-symmetric
two level case of Corollary 8.

3.5 Optimal partial non-centering

The centred and non-centred parametrizations can be seen as extrema of a
continuum of parametrizations, namely partially non-centred parametriza-
tions (PNCP) . PNCP can be obtained from the centred (or non-centred)
parametrization by linear transformations which preserve the hierarchical
structure. For example, in the symmetric context of Model S3, the fam-
ily of PNCP can be obtained from the centred parametrization (µ,γ,η) as

β(0) = µ, β
(1)
i = γi − λ(1,0)µ, and β

(2)
ij = ηij − λ(2,1)γi − λ(2,0)µ, for some

real valued non-centering parameters (λ(1,0), λ(2,0), λ(2,1)). In the more gen-
eral non-symmetric context of Model NS3 one may allow the non-centering
parameters to depend on the location in the hierarchical tree, thus obtaining

β(0) = µ,

β
(1)
i = γi − λ(1,0)

i µ,

β
(2)
ij = ηij − λ(2,1)

ij γi − λ(2,0)
ij µ,

(10)

for some real valued (λ
(1,0)
i )i and (λ

(2,0)
ij , λ

(2,1)
ij )ij .

Theorem 9. Let (µ,γ,η) be given by Model NS3 conditioned on some value

of y. If (λ
(1,0)
i )i and (λ

(2,0)
ij , λ

(2,1)
ij )ij are de�ned as

λ
(1,0)
i =

1
σ2
a

1
σ2
a

+
∑Ji

j=1
1

σ2
b,i+K

−1
ij σ

2
e,ij

λ
(2,0)
ij = 0 and λ

(2,1)
ij =

K−1
ij σ

2
e,ij

σ2
b,i +K−1

ij σ
2
e,ij

,

then the resulting (β(0), β
(1)
i , β

(2)
ij ) is a collection of independent random vari-

ables.

Theorem 9 implies that appropriate partial non-centering leads to i.i.d.
samples even in 3 level models. While any Gaussian random vector can be
factorized into independent random variables via some linear transformation
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(e.g. a Cholesky decomposition), the interesting aspect of Theorem 9 is that
for hierarchical models such factorization can be obtained within the class
of hierarchical reparametrizations.

4 Hierarchical linear models with arbitrary number
of levels

In this section we consider Gaussian hierarchical models with an arbitrary
number of levels, namely k levels. We refer to the highest level of the hierar-
chy (i.e. the one furthest away from the data) as level 0, down to level k− 1
being the lowest level (i.e. closest to the data). The 3 level model of Section
3 is a special case of the theory developed here where k = 3.

4.1 Model formulation

In order to allow for more generality and keep the notation concise, in this
section we will use a graphical models notation. In particular T will denote
a �nite tree with k levels and root t0 ∈ T . For each node t ∈ T we will
denote by pa(t) the unique parent of t and by ch(t) the collection of children
of t. Moreover we write s � t and s � t if s is respectively an ancestor or
a descendent of t (with s and t possibly being equal) while s ≺ t and s � t
denote the same notions with the additional condition of s 6= t. For each
node t ∈ T we denote by `(t) the level of node t (i.e. its distance from t0). For
each d ∈ {0, . . . , k − 1} we denote by Td = {t ∈ T : `(t) = d} the collection
of nodes at level d. For example we have T0 = {t0} and T = ∪k−1

d=0Td. Noisy
observations will occur only at leaf nodes. The collection of leaf nodes is
denoted as TL = {t ∈ T : ch(t) = ∅}. For simplicity we assume that all leaf
nodes are at level k − 1, i.e. TL = Tk−1, although this assumption could be
easily relaxed allowing some branches to be longer than others.

Model NSk (k-levels hierarchical model). Suppose that we have a hierarchy
described by a tree T with observations occuring at leaf nodes TL. We assume

the following hierarchical model

y
(i)
t ∼ N(γt, 1/τ

(e)
t ) t ∈ TL , (11)

γt ∼ N(γpa(t), 1/τt) t ∈ T\t0, (12)

where i ∈ {1, . . . , nt} with nt being the number of observed data at leaf node t,
(τt)t∈T\t0 and (τ

(e)
t )t∈TL are known precision components and all normal ran-

dom variables are sampled independently. Following the standard Bayesian

model speci�cation we assume a �at prior on γt0.

We are interested in sampling from the posterior distribution of γT =
(γt)t∈T given some observations y = (yt)t∈TL . The centred parametrization
γT of Model NSk leads to the following Gibbs Sampler.
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Sampler GS(γT ). Initialize γT (0) and then iterate the following kernel:

For d = 0, . . . , k − 1
• Sample γt(s+ 1) from p(γt|γTd−1

(s+ 1),γTd+1
(s),y) for all t ∈ Td,

where p(γt|γTd−1
,γTd+1

,y) = p(γt|γT\t,y) is the full conditional distribution
of γt given by Model NSk. When d equals 0 or k − 1 the levels γTd−1

and

γTd+1
have to be replaced by empty sets in the conditioning.

4.2 Non centering and hierararchical reparametrizations

Model NSk expresses Gaussian hierarchical models using a centred parame-
trization. The corresponding non-centred version is given by the following
example.

Example 1 (Fully non-centred parametrization). Under the same setting as
Model NSk, de�ne

y
(i)
t ∼ N

(∑
t�`

αt, 1/τ
(e)
t

)
t ∈ TL,

αt ∼ N(0, 1/τt) t ∈ T\t0,

and assume a �at prior on αt0.

The non-centred parametrization αT can be obtained as a linear tran-
formation of the centred version γT of Model NSk. More generally, we will
consider the class of parametrizations that can be obtained by reparametriz-
ing γT as follows.

De�nition (Hierarchical reparametrizations). Let γT = (γt)t∈T be a random

vector with elements indexed by a tree T . We say that βT = (βt)t∈T is a

hierarchical (linear) reparametrization of γT if

βt =
∑
r�t

λtrγr t ∈ T, (13)

for some real-valued coe�cients Λ = (λtr)r�t,t∈T satisfying λtt 6= 0 for all

t ∈ T . We denote (13) by βT = ΛγT .

Analogously to Section 3.5, we refer to the family of hierarchical reparametriza-
tions of γT = (γt)t∈T as partially non-centred parametrizations (PNCP) of
Model NSk. Note that (13) does not span the space of all linear transforma-
tions of γT . In fact Λ = (λtr)r�t,t∈T can be thought as a |T | × |T | matrix
Λ = (λtr)r,t∈T inducing a linear transformation of γT with the additional
sparsity constraint of being zero on all elements λtr such that r � t. The
following Lemma shows that the de�nition of the class of PNCP does not de-
pend on the starting parametrization used to formulate Model NSk. For ex-
ample, one could equivalently de�ne the class of PNCP of Model NSk as the
collection of hierarchical reparametrization of the non-centred parametriza-
tion αT of Example 1.
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Lemma 10. If βT is a hierarchical reparametrization of γT , then also γT
is a hierarchical reparametrization of βT .

As for the 3-levels case we are interested in assessing the computational
e�ciency of the di�erent Gibbs Sampling schemes arising from di�erent
PNCP's. For each PNCP βT the corresponding Gibbs Sampler scheme
GS(βT ) is de�ned analogously to GS(γT ).

Sampler GS(βT ). Initialize βT (0) and then iterate the following kernel:

For d = 0, . . . , k − 1
• Sample βt(s+ 1) from p(βt|(βTp(s+ 1))0≤p<d, (βTp(s))d<p≤k−1,y) for

all t ∈ Td,
where p(βt|(βTp)0≤p<d, (βTp)d<p≤k−1,y) = p(βt|βT\t,y) is the full condi-

tional distribution of βt given by Model NSk.

Sampler GS(βT ) is easy to implement because the family of PNCP pre-
serves the hierarchical structure of Model NSk. In fact, any PNCP of Model
NSk exhibits the following conditional independence structure:

βr⊥βt|βT\{r,t} unless r � t or t � r . (H)

Note that this is a weaker condition than the one holding for the centred
parametrization γT . In the latter case, the conditional independence graph
corresponds exactly to the tree T , meaning that if r 6= t

γr⊥γt|γT\{r,t} unless r = pa(t) or t = pa(r) . (T)

Despite being weaker than (T), condition (H) still guarantees that all pa-
rameters at the same level are conditionally independent (thus simplifying
the update of βTd |βT\Td) and that the full conditional distribution of each
βt depends only on the descendants or ancestors of t. The following Lemma
and Corollary provide a simple way to check that any PNCP of Model NSk
satis�es (H).

Lemma 11. Property (H) is closed under hierarchical re-parametrizations,

meaning that if βT satis�es (H) then any hierarchical re-parametrization of

βT satis�es (H) too.

Corollary 12. Any PNCP βT of Model NSk satis�es (H).

4.3 Symmetry assumption

To provide a full analysis of the convergence properties of Sampler GS(βT )
we need a symmetry assumption that we now de�ne. Let ρtr denote the

partial correlation Corr
(
βt, βr

∣∣∣βT\{t,r}), namely

ρtr = − Qtr√
QttQrr

t 6= r ,
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and ρtt = 1 for all t. Here Q is the precision matrix of βT . Let X = (X`)
k−1
`=0

be a random walk going through T from root to leaves as follows: X0 = t0
almost surely and then, for ` ∈ {0, . . . , k − 2}

P (X`+1 = t |X` = r) =
ρ2
tr∑

t′∈ch(r) ρ
2
t′r

1(t ∈ ch(r)) . (14)

Equation (14) implies that at each step the Markov chain X jumps from the
current state r to one of its children t ∈ ch(r) choosing t proportionally to
the squared partial correlation between βr and βt. Since `(Xd) = d almost
surely for all d ∈ {0, . . . , k− 1} we can use the following simpli�ed notation:
for any t and r in T we use P (t), P (t|r) and P (t ∩ r) to denote respectively
P (X`(t) = t), P (X`(t) = t |X`(r) = r) and P (X`(t) = t ∩ X`(r) = r).

Given the above de�nitions, we de�ne the following symmetry condition:
there exist a k × k symmetric matrix C = (cdp)

k−1
d,p=0 such that

ρtr =c`(r)`(t)
√
P (t|r) r � t , (S)

and ρtr = 0 if r � t and t � r. Note that ρtr is invariant to coordinate-wise
rescaling of βT and therefore both property (S) and the transition kernel
of X are invariant to rescalings. Therefore we can consider, without loss of
generality, the following rescaled version of βT de�ned by

β̃t = βt

√
Qtt
P (t)

t ∈ T . (15)

Given (15), condition (S) can be written, in terms of the precision matrix of
β̃T = (β̃t)t∈T as

Q̃tt = P (t) and − Q̃tr =c`(t)`(r)P (t ∩ r) for t 6= r . (S̃)

The rescaled version β̃T will be helpful later to design an appropriate multi-
grid decomposition of βT . Also, it can be seen that property (S̃) is closed
under symmetric hierarchical reparameterizations.

De�nition (Symmetric hierarchical reparametrizations). We say that βT =
ΛαT is a symmetric hierarchical reparametrization of αT if the coe�cients

of Λ = (λtr)r�t,t∈T depend only on the levels of r and t in the hierarchy T .

Lemma 13. Property (S̃) is closed under symmetric hierarchical reparame-

trizations, meaning that if β̃T satis�es (S̃) then any symmetric hierarchical

reparametrization of β̃T satis�es (S̃) too.

Various special cases of Model NSk satisfy assumption (S). For example,
we now consider three cases: a fully symmetric case (both the tree T and the
variances (τt)t∈T are symmetric), a weakly symmetric case (non-symmetric
tree and symmetric variances) and a non-symmetric case (both tree and
variances non-symmetric).
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Model Sk (Symmetric k-levels hierarchical model). Consider the k-level
Gaussian Hierarchical model where the observed data are generated from

yi1,...,ik−1,j ∼ N(γ
(k−1)
i1,...,ik−1

, 1/τe) (i1, . . . , ik−1, j) ∈ [I1]× · · · × [Ik−1]× [J ] ,

where [N ] = {1, . . . , N} for any positive integer N . The parameters have the

following hierarchical structure: for each level d from 1 to k − 1

γ
(d)
i1,...,id

∼ N(γ
(d−1)
i1,...,id−1

, 1/τd) (i1, . . . , id) ∈ [I1]× · · · × [Id] ,

Here (τ1, . . . , τk−1, τe) are known precisions and the root parameter γ(0) is

given a �at prior p(γ(0)) ∝ 1. For each d ∈ {1, . . . , k−1} the positive integer
Id represents the number of branches from level d− 1 to level d.

It is easy to see that the posterior distribution of Model Sk, conditioned
on the observed data y = (yi1,...,ik−1,j)i1,...,ik−1,j , satis�es (S). In this case
the random walk X de�ned by (14) coincides with the natural random walk
going through T .

Example 2 (Weakly symmetric case). Another special case of Model NSk

satisfying (S) is given by the case of a general tree T and precision terms

de�ned as τt =
τ`(t)∏

s≺t |ch(s)| for all t ∈ T and τ
(e)
t = τe

nt
∏
s≺t |ch(s)| , where

(τ1, . . . , τk, τe) ∈ Rk+1
+ are level-speci�c precision terms. This is an extension

of Model Sk where the lack of symmetry of T is compensated by appropri-

ate variance terms. Condition (S) can be checked by evaluating the partial

correlations (ρtr)t,r∈T of the resulting vector γT .

Example 3 (Non-symmetric cases). In both cases previously considered

(Model Sk and Example 2) the auxiliary Markov chain X de�ned in (14) fol-
lows a natural random walk, in the sense that at each time the chain chooses

the next state uniformly at random among children nodes. However, condi-

tion (S) is also satis�ed by non-symmetric cases where X is not a natural

random walk. In particular any instance of Model NSk such that∑
r∈ch(t)

ρ2
tr = c`(t) for all t ∈ T\TL , (S*)

for some (k− 1)-dimensional vector (c0, . . . , ck−2) induces a posterior distri-

bution satisfying (S). In fact, in the context of Model NSk conditions (S*)
and (S) are equivalent (this can be derived from (T) and (14)).

The cases previously considered are expressed in terms of centred pa-
rametrization, meaning that as all the instances of Model NSk they sat-
isfy (T). Nevertheless Lemma 13 shows that any symmetric hierarchical
reparametrization of a vector satisfying (S̃) still satis�es (S̃). This implies,
for example, that the fully non-centred version of Model Sk and any mixed
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strategy where some level is centred and some is not centred, still satis�es
(S̃) (after rescaling).

Moreover, note that the exact analysis we will now provide for the Gibbs
sampler on models satisfying (S̃) can be used to provide bound on general
cases that do not satisfy (S̃) (see for example Theorem 6).

4.4 Multigrid decomposition

We now show how to use the multigrid decomposition to analyze the Gibbs
Sampler for random vectors βT satisfying (H) and (S). Our aim is to provide
a transformation of βT that factorizes the Gibbs Sampler Markov Chain into
independent and more tractable sub-chains. Similarly to Section 3 in the
following we will often denote βTd = (βt)t∈Td by β(d). We proceed in two

steps, �rst introducing the averaging operators φ(p) and then the residual
operators δ(p). For any p ≤ d the averaging operator φ(p) : RTd → RTp is
de�ned as

φ(p)
r β(d) =E[βXd |βT , Xp = r] r ∈ Tp

=
∑
t∈Td

βtP (t|r) (16)

where X = (X`)
k−1
`=0 is the Markov chain de�ned by (14). Loosely speaking

φ(p)β(d) = E[βXd |βT , Xp] can be interpreted as the averages of β(d) at the
coarseness corresponding to the p-th level of the hierarchy. In particular

φ(d)β(d) = β(d) and φ
(0)
t0

β(d) = E[βXd |βT ].

Example 4 (Averaging operators in the symmetric case). Let βT = γT be

given by Model Sk. Then

φ(p)
r β(d) =

1∏d
`=p+1 I`

 ∑
t∈Td : t�r

βt

 r ∈ Tp .

Given φ, we de�ne the residual operators δ(p) : RTd → RTp as δ(p) =

(δ
(p)
r )r∈Tp with δ

(p)
r : RTd → R de�ned as

δ(p)
r β(d) =φ(p)

r β(d) − φ(p−1)
pa(r) β

(d) r ∈ Tp (17)

for 1 ≤ p ≤ d ≤ k − 1 and δ(0)β(d) = φ(0)β(d) for 0 = p ≤ d ≤ k − 1.
Analogously to the 3-level case of Section 3, under suitable assumptions the
residual operators δ(p) decompose the Markov chain generated by the Gibbs
Sampler into independent sub-chains. To prove the result we �rst need the
following lemma.
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Lemma 14 (p-residuals interact only with p-residuals). Let βT be a Gaus-

sian random vector satisfying (H) and (S̃). Then for any p and d with

0 ≤ p ≤ d ≤ k − 1, for all t ∈ Tp we have the identity

E[δ(p)
r β(d)|β\β(d)]− E[δ(p)

r β(d)] =
∑

`∈{p,...,k−1}\d

cd`

(
δ(p)
r β(`) − E[δ(p)

r β(`)]
)
.

Given Lemma 14 we can prove the following multigrid decomposition for
hierarchical linear models.

Theorem 15 (Multigrid decomposition for k levels). Let (β(s))s∈N be a

Markov chain evolving according to GS(βT ) with βT satisfying (H) and

(S̃). Then (δ(0)β(s))s, . . . , (δ(k−1)β(s))s are k independent Markov chains.

Moreover, each chain δ(p)β(s) = (δ(p)β(d)(s))k−1
d=p evolves according to the

following blocked Gibbs sampler scheme with (k−p) blocks: for d going from

p to k − 1 sample

δ(p)β(d)(s+ 1) ∼ L
(
δ(p)β(d)|(δ(p)β(`)(s+ 1))p≤`<d, (δ

(p)β(`)(s))d<`≤k−1

)
,

(18)

where L(X|Y ) denotes the conditional distribution of X given Y .

s

β(0)

...

β(1)

...

β(k−1)

s+ 1

β(0)

...

β(1)

...

β(k−1)

s

δ(0)β

...

δ(p)β

...

δ(k−1)β

s+ 1

δ(0)β

...

δ(p)β

...

δ(k−1)β

s

δ(p)β(p)

...

δ(p)β(d)

...

δ(p)β(k−1)

s+ 1

δ(p)β(p)

...

δ(p)β(d)

...

δ(p)β(k−1)

Figure 8: Illustration of Theorem 15. Left: transition from β(s) to β(s+ 1)
in Sampler GS(βT ). This is the common structure of a Gibbs Sampler with
k blocks. Center: transition from δβ(s) to δβ(s + 1) in Sampler GS(βT ).
There are k Markov chains, namely (δ(p)β(s))s∈N for p ∈ {0, . . . , k − 1},
evolving independently. Right: for each p ∈ {0, . . . , k − 1} the transition
from δ(p)β(s) = (δ(p)β(d)(s))k−1

d=p to δ
(p)β(s+1) = (δ(p)β(d)(s+1))k−1

d=p follows
a Gibbs Sampler scheme with (k − p) blocks.

Theorem 15 implies that running a Gibbs sampler (β(s))s targeting dis-
tributions satisfying (H) is equivalent to running k independent blocked
Gibbs Samplers, one for each level of coarseness from (δ(0)β(s))s to (δ(k−1)β(s))s.
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Corollary 16. Let βT satis�es (H) and (S̃). Then the rate of convergence

of GS(βT ) is given by max{ρ0, . . . , ρk−1} where for each p ∈ {0, . . . , k − 1},
ρp is the rate of convergence of (δ(p)β(s))s.

4.5 Hierarchical ordering of rates

The convergence properties of these k Markov chains are closely related, as
the following theorem suggests.

Theorem 17. The rate of convergence of (δ(p)β(s))s is given by the largest

modulus eigenvalue of (Ik−p − L)−1U . Here Ik−p is the (k − p) dimensional

identity matrix, while L and U are, respectively, the strictly lower and strictly

upper triangular part of (cd`)
k−1
d,`=p, with cd` given by (S̃).

Theorem 17 implies that, from the rates of convergence point of view,
the k Markov chains updating δ(p)β for p = 0, . . . , k − 1 behave as Gibbs
samplers targeting a decreasing number of dimensions (from k down to 1) of
a single k-dimensional Gaussian distribution with precision matrix given by
−C, where C = (cd`)

k−1
d,`=p is given by (S̃). This suggests that the convergence

properties of the sub-chains will typically improve from that of (δ(0)β(s))s
to that (δ(k−1)β(s))s and that the rate of convergence of (δ(0)β(s))s will
typically determine the rate of the whole sampler GS(βT ). In particular, in
the centred parametrization case we can show that the rate of convergence
is monotonically non-increasing from (δ(0)β(s))s to (δ(k−1)β(s))s.

Theorem 18. (Ordering of rates for centred parametrization) Let γ be a

Gaussian vector satisfying (T) and (S̃) and let (γ(s))s∈N be the corresponding

Markov chain evolving according to GS(γT ). Then the convergence rates of

the k independent Markov chains (δ(0)γ(s))s, . . . , (δ(k−1)γ(s))s satisfy

ρ(δ(0)γ(s)) ≥ ρ(δ(1)γ(s)) ≥ · · · ≥ ρ(δ(k−1)γ(s)) = 0 . (19)

In Theorem 18 we needed the additional assumption (T) to prove (19).
The reason is that, while in most cases the convergence rates of DSGS tar-
geting a n-th dimensional Gaussian distribution improves if one of the co-
ordinates is conditioned to a �xed value and the DSGS has to sample only
from the remaining (n− 1) coordinates, this is not true in general. Example
2 of Roberts and Sahu [1997] provides a counter-example (see also Whit-
taker, 1990, page 319). In Roberts and Sahu [1997], this example was used
a counter-example regarding blocking strategies, it also works in the present
context. Theorem 18 implies the following corollary.

Corollary 19. The rate of convergence of a DSGS targeting a Gaussian

distribution satisfying (T) and (S̃) is given by the largest squared eigenvalue

of the k-dimensional matrix C − Ik, where C = (cd`)
k−1
d,`=0 is de�ned by (S̃)

and Ik is the k-dimensional matrix.
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In particular, considering the special case of Model Sk it is easy to deduce
the following Corollary.

Corollary 20. The rate of convergence of GS(γT ) targeting Model Sk is

given by the largest squared eigenvalue of the k-dimensional matrix
0 r1

(1− r2) 0 r2

. . . . . . . . .
(1− rk−2) 0 rk−2

(1− rk−1) 0


where r` = I`τ`

τ`−1+I`τ`
with (τ1, . . . , τk−1) and (I1, . . . , Ik−1) given by Model

Sk, τ0 = 0, τk = τe and Ik = J .

4.6 Example: rates of convergence for 4-level models

The results developed in Sections 4.4 and 4.5 allow to analyze hierarchical
models with an arbitrary number of levels. For example we could consider
4-level extensions of Model S3.

Model S4. (Symmetric 4-levels hierarchical model) Suppose

yijk` = µ+ ai + bij + cijk + εijk`, (20)

where i, j, k and ` run from 1 to I, J , K and L respectively and εijk` are iid
normal random variables with mean 0 and variance σ2

e . We employ a stan-

dard bayesian model speci�cation assuming ai ∼ N(0, σ2
a), bij ∼ N(0, σ2

b ),
cijk ∼ N(0, σ2

c ) and a �at prior on µ.

In order to �t Model S4 with a Gibbs Sampler like GS(βT ), one could
consider centering or non-centering each of the three levels (ai)i, (bij)ij and
(cijk)ijk. Let (λ1, λ2, λ3) ∈ {0, 1}3 be the non-centering indicators associated
to the resulting in 8 = 23 combinations. Here λd = 1 indicates that the
d-th level is non-centred while λd = 0 indicates that it is centred. The
corresponding rates of convergence ρ(λ1,λ2,λ3) can then be expressed in terms
of the following normalized variance ratios

ri,j =
σ̃2
i

σ̃2
i + σ̃2

j

i, j ∈ {1, 2, 3, 4} ,

where σ̃2
1 = σ2

a
I , σ̃

2
2 =

σ2
b
IJ , σ̃

2
3 = σ2

c
IJK and σ̃2

4 = σ2
e

IJKL . If λ1 = 1 (i.e. using
the non-centred parametrization (ai)i at level 1) the rates are

ρ111 = max{r1,4, r2,4, r3,4}
ρ110 = max{r1,3, r2,3, r4,3}
ρ100 = max{r1,2, 1− r2,3r3,4}
ρ101 = max{r1,2, 1− r2,4r4,3}
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If instead λ1 = 0 (i.e. using (γi)i with γi = µ + ai at level 1) we have four
di�erent parametrization with rates of convergence given by

ρ000 =
1

2

(
1 + r2,3(r4,3 − r1,2) +

√
(1 + r2,3(r4,3 − r1,2))2 − 4r2,1r2,3r4,3

)
,

ρ001 =
1

2

(
1 + r2,4(r3,4 − r1,2) +

√
(1 + r2,4(r3,4 − r1,2))2 − 4r2,1r2,4r3,4

)
,

ρ011 =
1

2

(
1− r1,4r4,2r4,3 + r2,4r3,4 +

√
(1− r1,4r4,2r4,3 + r2,4r3,4)2 − 4r2,4r3,4

)
,

ρ010 =
1

2

(
1− r1,3r3,2r3,4 + r2,3r4,3 +

√
(1− r1,3r3,2r3,4 + r2,3r4,3)2 − 4r2,3r4,3

)
.

These rates can be easily derived from Corollary 16 and Theorem 17. Even if
some of the rates obtained have more complicated expressions than in the two
and three-levels case, especially when the highest level is centred, the theory
developed in this section can be easily applied to models with an arbitrary
number of levels. It is worth noting that in this 4-level case the skeleton
chain δ(0)β is always the slowest chain for all mixed parametrizations (can
be checked by inspection), even if we provided a general proof of this fact only
for the centred parametrization. The expressions given here can be easily
used to derive conditionally optimal parametrizations for Model S4 given
the rescaled variance components (σ̃2

i )
4
i=1. For example, choosing whether

to center or not each level by comparing the level-speci�c rescaled variances
with the sum of the rescaled variances of the lower levels like in Section 3.2
leads to rates of convergence upper bounded by 3

4 . Note that, while this
strategy is optimal for 3-level models (see Section 3.2 and Corollary 5), the
same strategy is not the optimal one for 4 levels. In fact the supremum
over (σ̃2

i )
4
i=1 of min(λ1,λ2,λ3)∈{0,1}3 ρ(λ1,λ2,λ3) is strictly smaller than 3

4 , but
the improvement is small and does not seem su�cient to motivate a more
complicated strategy.

4.7 Optimal partial non-centering

In Section 4.2, we de�ned the class of Partially Non-Centered Parametriza-
tions (PNCP) βT of Model NSk. As for the 3-level case (see Section 3.5),
even in this context one can �nd a optimal PNCP that factorizes the un-
known parameters βT into independent random variables.

Theorem 21. Let γT be given by Model NSk (conditioned on some value of

y). Denote by Q = (Qtr)t,r∈T its precision matrix and de�ne Λ = (λtr)r�t,t∈T

26



as

λtt = 1 t ∈ T,

λt pa(t) =
Qt pa(t)

Dtt
t ∈ T\{t0},

λtr = 0 t ∈ T, r /∈ {t, pa(t)},

where

Dtt = Qtt −
∑

t′∈ch(t)

λ2
t′tDt′t′ t ∈ T\{t0} . (21)

Then the resulting hierarchical reparametrization βT = ΛγT is a collection

of independent random variables.

Note that the re-parametrization coe�cients Λ = (λtr)r�t,t∈T de�ned in
can be easily calculated iteratively starting from the leaves going up to the
root of T . In fact the optimal PNCP is related to the multiscale or change-
of-resolution Kalman �lter (see e.g. Chou et al., 1994) and more generally to
belief propagation algorithms for trees.

5 Conclusions and future work

In this work we studied the convergence properties of Gibbs Sampler algo-
rithms in the context of Gaussian hierarchical models. To do so we developed
a novel analytic approach based on multigrid decompositions that allows to
factorize the Markov chain of interest into independent and easier to analyze
sub-chains. This decomposition enables us to evaluate explicitly the L2-rate
of convergence in symmetric (e.g. Model Sk) and weakly-symmetric cases
(e.g. Examples 2 and 3). These results can then be used to provide upper
bounds in the more general non-symmetric case (e.g. Theorem 6).

We believe that the results presented in this work can provide a novel
and signi�cant contribution to understanding the behavior of MCMC al-
gorithms (and in particular the Gibbs Sampler) in the extremely popular
context of hierarchical linear models. In fact, together with explicit formu-
las for L2-rates of convergences, the multigrid decomposition we presented
here provides a simple and intuitive theoretical characterizations of practical
behaviors commonly observed in practice when �tting hierarchical models
with MCMC, such as slower mixing for hyper-parameters at higher levels
(see Theorems 2 and 18), algorithmic scalability with width of the hierarchy
but not with height (e.g. Theorem 4 and Corollary 20) and good perfor-
mances of centred parametrization in data-rich contexts (Theorem 6). Also,
it is worth noting that these results are not limited to hierarchical models
with two levels but rather can be applied to models with an arbitrary number
of layers.
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The results presented here have also various practically useful implica-
tions in terms of algorithmic implementations of MCMC for hierarchical
linear models. For example, our analysis provides easy and theoretically
grounded indications to choose the computationally optimal parametrization
on-the-�y (see Sections 3.1, 3.2), how to handle heterogeneity (see Section
3.4) and indicates which parameters to monitor in the convergence diagnos-
tic process (see Theorem 2 and discussion at the end of Section 2.1). Also,
the bounds in Theorem 6 can be used to have a theoretical guarantee of good
convergence properties with large datasets.

The present work could be extended in many directions. First one could
extend the results for non-symmetric cases by improving and generalizing
the bounds of Theorem 6, by providing upper bounds on the rates of conver-
gence for the optimal bespoke parametrization (Section 3.4) and ideally by
weakening the symmetry assumption in (S). Also it would be worth explor-
ing more deeply the use of partially-non centred parametrization and their
computational feasibility. Finally an ambitious aim, involving non-trivial
generalizations of the approach of Amit [1996], would be to extend to other
tractable distributions within the exponential family beyond the Gaussian.

In terms of classes of models considered, a natural and important exten-
sion would be to consider the multivariate case (where each parameter γt
is a multivariate random vector) and the regression case. This would make
the results presented here applicable to a large class of widely used models.
We expect many results developed in this work to extend to the multivariate
and regression case, even if in that context the role played by non-symmetric
cases will be more crucial. Another important class of models that would
be worth considering and approaching with methodologies analogous to the
ones developed here are models based on Gaussian processes commonly used,
for example, in spatial statistics (see e.g. Bass and Sahu, 2016a). Also, it
would be interesting to compare nested structures like the one considered
here to crossed-e�ect structures (see e.g. Gao and Owen, 2016).

In terms of algorithms considered it would be relatively easy to extend
the machinery developed in this work to other Gibbs Sampling schemes,
such as the random scan Gibbs Sampling case, where the component to
be updated is chosen uniformly at random at each step. In this case the
resulting sub-chains would not evolve completely independently because they
would be coupled by the random choice of which component to update.
Nevertheless each sub-chain would still be a Markov chain marginally and the
overall rate of the vector of coupled Markov chains would still be amenable
to direct analysis. Also, in the random scan case the reversibility of the
induced Markov chains would allow to prove orderings results under weaker
assumptions than Theorem 18.

While this work is focused on L2-rates of convergence, the same ap-
proach could be used to derive bounds on the distance (e.g. total variation
or Wasserstein) between the distribution of the Markov chain at a given it-
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eration and the target distribution. Such a formulation would be interesting
to extend the recent growth in literature on providing rigorous characteriza-
tions of the computational complexity of Bayesian hierarchical linear mod-
els, see for example Rajaratnam and Sparks [2015], Roberts and Rosenthal
[2016], Johndrow et al. [2015]. In order to provide full characterizations,
however, the case of unknown variances should be considered (see e.g. Jones
and Hobert [2004] for the two level case).
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A Full conditional distributions of GS(1, 1) and GS(0, 0)

Sampler GS(1, 1). Initialize µ(0), a(0) and b(0) and then iterate

µ(s+ 1) ∼ N
(
y··· − a·(s)− b··(s),

σ2
e

n

)
ai(s+ 1) ∼ N

(
σ2
a(yi·· − µ(s+ 1)− bi·(s))

σ2
a + σ2

e
JK

,
σ2
a
σ2
e

JK

σ2
a + σ2

e
JK

)
∀ i

bij(s+ 1) ∼ N

(
σ2
b (yij· − µ(s+ 1)− ai(s+ 1))

σ2
b + σ2

e
K

,
σ2
b
σ2
e
K

σ2
b + σ2

e
K

)
∀ i, j

where we use the dot subscript to indicate averaging over one dimension,

meaning that a· =
∑

i
ai
I , b·· =

∑
i,j

bij
IJ , y··· =

∑
i,j,k

yijk
IJK , bi· =

∑
j
bij
J ,

yi·· =
∑

j,k
yijk
JK and yij· =

∑
k
yijk
K .

Sampler GS(0, 0). Initialize µ(0), γ(0) and η(0)) and then iterate

µ(s+ 1) ∼ N
(
γ·(s),

σ2
a

I

)
γi(s+ 1) ∼ N

(
σ2
b
J µ(s+ 1) + σ2

aηi·(s)
σ2
b
J + σ2

a

,
σ2
a
σ2
b
J

σ2
a +

σ2
b
J

)
∀ i

ηij(s+ 1) ∼ N

(
σ2
e
K γi(s+ 1) + σ2

byij·

σ2
b + σ2

e
K

,
σ2
b
σ2
e
K

σ2
b + σ2

e
K

)
∀ i, j

where as before the dot subscript indicates averaging over indices.

31



B Theorem proofs

In this section we list proofs following the order of appearance in the paper.
This is di�erent from the mathematical chronology. To follow the latter, the
reader should start from the results (lemmas, theorems and corollaries) for
k-level models, namely the results from Lemma 10 to Theorem 21 and then
move to the ones for 3-level models, namely the results from Theorem 1 to
Theorem 9.

Proof of Theorems 1, 2 and 4

Theorems 1, 2 and 4 are substantially special cases of the Theorems of Section
4. In particular Theorem 1 is a special case of Theorem 15 for k = 2 and
Theorems 2 and 4 can be directly veri�ed as follows. Using Corollary 16
we can evaluate the rates of convergence of the three subchains ρ(δ(0)β(s)),
ρ(δ(1)β(s)) and ρ(δ(2)β(s)) for the four parametrzations under consideration
in Section 3 and check by inspection that

ρ(δ(0)β(s))ρ(δ(1)β(s)) ≥ ρ(δ(2)β(s)) = 0

and that the rates of convergence ρ(δ(0)β(s)) are the ones given by Theorem
4. In particular the rates of convergence of δ(0)β(s)), δ(1)β(s) and δ(2)β(s)
under GS(β) are given by the following Table.

ρ(δ(0)β(s)) ρ(δ(1)β(s)) ρ(δ(2)β(s))

(µ, a,b) σ̃2
a

σ̃2
a+σ̃2

e
∨ σ̃2

b

σ̃2
b+σ̃2

e

σ̃2
a

σ̃2
a+σ̃2

e

σ̃2
b

σ̃2
b+σ̃2

e
0

(µ,γ,η) 1− σ̃2
a

σ̃2
a+σ̃2

b

σ̃2
b

σ̃2
b+σ̃2

e

σ̃2
a

σ̃2
a+σ̃2

b

(
1− σ̃2

b

σ̃2
b+σ̃2

e

)
0

(µ,γ,b) 1− σ̃2
a

σ̃2
a+σ̃2

e

σ̃2
e

σ̃2
b+σ̃2

e

σ̃2
a

σ̃2
a+σ̃2

e

(
1− σ̃2

e

σ̃2
b+σ̃2

e

)
0

(µ, a,η) σ̃2
a

σ̃2
a+σ̃2

b
∨ σ̃2

e

σ̃2
b+σ̃2

e

σ̃2
a

σ̃2
a+σ̃2

b

σ̃2
e

σ̃2
b+σ̃2

e
0

Figure 9: Rates of convergence of δ(0)β(s)), δ(1)β(s) and δ(2)β(s) for GS(β)
under various parametrizations.

Proof of Corollary 3

By Theorem 1 the rate of convergence of the whole chain (β(s))s∈N co-
incides with the maximum of the rates of the subchains, meaning that
ρ(β(s)) = max{ρ(δ(0)β(s)), ρ(δ(1)β(s)), ρ(δ(2)β(s))}. By Theorem 2 the lat-
ter maximum equals ρ(δ(0)β(s)).

Proof of Corollary 5

Follows from Theorem 4 by checking that for both α = γ and α = a, the
inequality ρ(µ,α,η) ≤ ρ(µ,α,b) holds if and only if σ̃

2
b ≥ σ̃2

e ; and for both α = γ
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and α = a the inequality ρ(µ,γ,α) ≤ ρ(µ,a,α) holds if and only if σ̃2
a ≥ σ̃2

b + σ̃2
e .

Proof of Theorem 6

Given an instance of Model NS3 with variance terms (σ2
a, (σ

2
b,i)i, (σ

2
e,ij)ij)

satisfying (5), the proof will proceed by comparing the original Gibbs Sam-
pler with an auxiliary Gibbs Sampler targeting a di�erent instance of Model
NS3 with variance terms (σ2

a, (σ
2
b,i)i, (σ̄

2
e,ij)ij) satisfying (S*) and thus al-

lowing direct analysis using Corollary 19. In the context of Model NS3,
(S*) reduces to requiring

∑Ji
j=1 ρ

2
γiηij to be constant over i, where ργiηij is

the partial correlation Corr(γi, ηij |µ, (γ`)`6=i, (η`s)(`s) 6=(ij)) as in Section 4.3.
By computing the partial correlations of Model NS3 it can be checked that∑Ji

j=1 ρ
2
γiηij = r

(i)
a,br

(i)
e,b, where r

(i)
a,b and r

(i)
e,b are de�ned in Theorem 6. For

each i = 1, . . . , I we de�ne auxiliary variance terms (σ̄2
e,ij)

Ji
j=1 such that

σ̄2
e,ij ≥ σ2

e,ij for all j = 1, . . . , Ji and

r
(i)
a,b

1

Ji

Ji∑
j=1

K−1
ij σ̄

2
e,ij

σ2
b,i +K−1

ij σ̄
2
e,ij

= max
`=1,...,I

r
(`)
a,br

(`)
e,b . (22)

Such (σ̄2
e,ij)

Ji
j=1 exist because r

(i)
a,b ≥ max`=1,...,I r

(`)
a,br

(`)
e,b by (5) and the left

hand side of (22) can take any value in (0, r
(i)
a,b] for (σ̄2

e,ij)
Ji
j=1 belonging to

[0,∞). (22) implies that the instance of Model NS3 with variance terms

(σ2
a, (σ

2
b,i)i, (σ̄

2
e,ij)ij) satis�es (S*) with c0 =

∑I
i=1 ρ

2
µγi = 1 − 1

I

∑I
i=1 r

(i)
a,b

and c1 =
∑Ji

j=1 ρ
2
γiηij = max`=1,...,I r

(`)
a,br

(`)
e,b . As discussed in Example 3, for

models with centred parametrization like Model NS3, (S*) implies (S) and,
after rescaling, (S̃). In this case the matrix C = (cdp)

2
d,p=0 is given by

C =

 1
√
c0 0√

c0 1
√
c1

0
√
c1 1

 .

Therefore, by Corollary 19, the rate of convergence of the Gibbs Sam-
pler targeting the posterior distribution of Model NS3 with variance terms
(σ2
a, (σ

2
b,i)i, (σ̄

2
e,ij)ij) is given by c0+c1, which is the largest squared eigenvalue

of C − I3, where I3 is the 3-dimensional identity matrix.
Finally we show that the Gibbs Sampler rate of convergence induced

by the auxiliary variance terms (σ2
a, σ

2
b,i, σ̄

2
e,ij) is greater or equal than the

original one given by (σ2
a, σ

2
b,i, σ

2
e,ij). Denote by Q the precision matrix of the

original posterior distribution and by Q̄ the auxiliary one. By deriving Q
and Q̄ from the de�nition of Model NS3, it is easy to see that the only terms
of Q and Q̄ a�ected by replacing σ2

e,ij with σ̄
2
e,ij are (Qηijηij )ij and (Q̄ηijηij )ij .

Moreover σ̄2
e,ij ≥ σ2

e,ij implies Qηijηij = 1
σ2
b,i

+
Kij
σ2
e,ij
≥ 1

σ2
b,i

+
Kij
σ̄2
e,ij

= Q̄ηijηij .
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The result then follows from Theorem 7 of Roberts and Sahu [1997], which
states that the convergence rate of a deterministic scan Gibbs Sampler with
single-site update is a non-increasing function of the diagonal elements of
the target precision matrix (when the o�-diagonal terms are kept constant).

Proof of Theorem 7

The Markov chain under consideration is a Gibbs Sampler sweeping through
(µ, β1, . . . , βI)|y for some observed data y = ((yij)

Ji
j=1)Ii=1 assuming Model

NS2 and βi = γi − λiµ with λi ∈ {0, 1}. To compute the Gibbs Sampler
rate of convergence we �rst need to compute the (I + 1)× (I + 1) matrix A
indexed by (α1, α2) ∈ {µ, β1, . . . , βI}×{µ, β1, . . . , βI} and de�ned as Aα1α2 =

−Qα1α2
Qα1α1

for α1 6= α2 and 0 for α1 = α2, where Q is the precision matrix of

(µ, β1, . . . , βI)|y. See [Roberts and Sahu, 1997, Sec.2.2] for more details on
the derivation of such A-matrices. By computing the precision matrix of
(µ, β1, . . . , βI)|y it is easy to see that A is given by

0 Aµβ1 · · · AµβI
Aβ1µ 0 · · · 0
...

...
. . .

...
AβIµ 0 · · · 0


where for all i

Aµβi =
−λiτ̃i + (1− λi)τa∑I
`=1 λ`τ̃` + (1− λ`)τa

, Aβiµ =
−λiτ̃i + (1− λi)τa

τ̃i + τa
.

From Roberts and Sahu [1997, Thm.1] the rate of convergence of the Gibbs
sampler of interest equals the largest modulus eigenvalue of B = (II+1 −
L)−1U , where II+1 is the (I + 1)-dimensional identity matrix, L is the lower
triangular part of A and U = A − L. Simple calculations show that in this
case

B =
(
0 Aµβ1 · · · AµβI

)
�


1

Aβ1µ
...

AβIµ

 =


0 Aµβ1 · · · AµβI
0 Aµβ1Aβ1µ 0 AµβIAβ1µ
...

...
. . .

...
0 Aµβ1AβIµ0 · · · AµβIAβIµ .


Finally note that B has I eigenvalues equal to 0 and one equal to

I∑
i=1

AµβiAβiµ =

∑
i :λi=1 τ̃i

τ̃i
τ̃i+τa

+
∑

i :λi=0 τa
τa

τ̃i+τa∑
i :λi=1 τ̃i +

∑
i :λi=0 τa

.
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Proofs of Lemmas 10 and 11

In order to prove Lemmas 10 and 11 we need some preliminary results on
matrices M = (Mtr)t,r∈T indexed by elements of a tree T .

Lemma 22 (Triangular matrices on trees). Suppose that a matrix L =
(Ltr)t,r∈T satis�es the following lower-triangularity condition

Ltr =0 unless t � r and Ltt 6= 0 ∀t ∈ T . (Lm)

Then L is invertible and its inverse satis�es (Lm). Similarly, if U = (Utr)t,r∈T
satis�es the following upper-triangularity condition

Utr =0 unless t � r and Utt 6= 0 ∀t ∈ T , (Um)

then U is invertible and its inverse still satis�es (Um).

Proof. Suppose that L satis�es (Lm). Also without loss of generality suppose
Ltt = 1 for all t ∈ T by rescaling. Then write L = (IT + N) where IT
is the |T | × |T | identity matrix and N satis�es the following strict lower-
triangularity condition

Ntr =0 unless t � r . (L∗m)

Consider N2
tr =

∑
s∈T NtsNsr =

∑
s∈T : r≺s≺tNtsNsr. From the last expres-

sion it follows that N2
tr 6= 0 implies r ≺ t and |`(r) − `(t)| ≥ 2, where `(t)

denote the level of t in the tree T . Iterating the same argument we have
that Np

tr 6= 0 implies r ≺ t and |`(r)− `(t)| ≥ p. It follows that Np satis�es
(L∗m) for all p ≥ 1 and that Np = 0T for all p ≥ k where 0T is the |T | × |T |
zero matrix. Here k indicates the number of levels of T , as in Section 4.
From Np = 0T for p ≥ k it follows that

(IT +N)(IT +

k−1∑
p=1

(−1)pNp) = IT + (−1)k−1Nk = IT

and therefore L−1 = (IT + N)−1 = IT +
∑k−1

p=1(−1)pNp. Since Np satis�es

(L∗m) for all p ≥ 1 it follows that L−1 = IT +
∑k−1

p=1(−1)pNp satis�es (Lm).
The analogous statement for (Um) can be deduced by observing that U

satis�es (Um) if and only if its transpose satis�es (Lm).

Lemma 22 can be used to deduce Lemma 10 in a straightforward way.

Proof of Lemma 10. Suppose that βT = ΛγT is a hierarchical reparametriza-
tion of γT . This is equivalent to say that Λ = (Λtr)t,r,∈T is a matrix satisfying
(Lm) and that for all t ∈ T , βt =

∑
s∈T Λtsγs. Lemma 22 implies that Λ

is invertible and that Z = Λ−1 satis�es (Lm). Therefore γT = ZβT is a
hierarchical reparametrization of βT .
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To prove Lemma 11 we need an additional preliminary result.

Lemma 23 (Closure of Hm). Suppose that M = (Mtr)t,r∈T satis�es the

following condition

Mtr =0 unless t � r or r � t . (Hm)

Then if we multiply M from the right with a martix L satisfying (Lm), the
product ML still satisfy (Hm). Similarly if we multiply M from the left with

a martix U satisfying (Um), the product UM still satisfy (Hm).

Proof. Consider (UM)tr =
∑

s∈T UtsMsr. From (Hm) and (Um), the ele-
ments UtsMsr in the latter sum are non-zero only when s belongs to the
intersection of {s ∈ T : s � t} and {s ∈ T : s � r or s � r}. It is easy to
see that the intersection of these two sets is non-empty only if t � r or t � r.
Therefore UM satis�es (Hm). The argument to show thatML satis�es (Hm)
is analogous.

We now combine Lemmas 22 and 23 to prove Lemma 11.

Proof of Lemma 11. Suppose that βT satis�es (H). This is equivalent to

saying that its precision matrix Q(β) = (Q
(β)
tr )t,r∈T satis�es (Hm). Consider

a hierarchical reparametrization of βT denoted by ΛβT . Then its precision
matrix is given byQ(Λβ) = (ΛT )−1Q(β)Λ−1 where ΛT denote the transpose of
Λ. By de�nition of hierarchical reparametrizations, Λ satis�es (Lm). There-
fore Lemma 22 implies that Λ−1 satis�es (Lm) and, consequently, Lemma 23
implies that Q(β)Λ−1 satis�es (Hm). Since Λ satis�es (Lm), then ΛT satis�es
(Um) and thus Lemma 22 implies that (ΛT )−1 satis�es (Um). We can then
apply Lemma 23 to (ΛT )−1 and Q(β)Λ−1 to deduce that (ΛT )−1Q(β)Λ−1

satis�es (Hm) and thus ΛβT satis�es (H).

Corollary 12 follows easily from equation (T) and Lemma 11.

Proof of Lemma 13

The strategy to prove Lemma 13 is similar to the one used to prove Lemmas
10 and 11 above, with the di�erence that we have to check that the symmetry
condition is preserved under the operations considered. To do so we �rst
prove two auxiliary lemmas.

Lemma 24 (Symmetric triangular matrices on trees). Suppose that a matrix
L = (Ltr)t,r∈T satis�es the following symmetric lower-triangularity condition

Ltr =l`(t)`(r)1(t � r) and ldd 6= 0 for all d ∈ {0, . . . , k − 1} , (SLm)
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where (lpd)
k−1
p,d=0 is a k × k real valued matrix. Then L is invertible and its

inverse satis�es (SLm). Similarly, if U = (Utr)t,r∈T satis�es the following

symmetric upper-triangularity condition

Utr =u`(t)`(r)1(t � r) and udd 6= 0 for all d ∈ {0, . . . , k − 1} , (SUm)

with (upd)
k−1
p,d=0 being a k × k real valued matrix, then U is invertible and its

inverse still satis�es (SUm).

Proof. Suppose that L satis�es (SLm). Also without loss of generality sup-
pose Ltt = 1 for all t ∈ T by rescaling. Since L also satis�es (Lm), arguing
as in the proof of Lemma 22 we can write L−1 = IT +

∑k−1
p=1(−1)pNp where

N = L−IT and N satis�es the following symmetric strict lower-triangularity
condition

Ntr =l`(t)`(r)1(t � r) and ldd 6= 0 for all d ∈ {0, . . . , k − 1} . (SL∗m)

FromN2
tr =

∑
s∈T NtsNsr =

∑
s∈T : r≺s≺tNtsNsr =

∑
`′ : `(r)≺`′≺`(t) l`(t)`′ l`′`(r)

we deduce that N2 still satis�es (SL∗m) for some di�erent (lpd)
k−1
p,d=0. Iterat-

ing the same argument we have that Np satis�es (SL∗m) for all p ≥ 1. Since
L−1 = IT +

∑k−1
p=1(−1)pNp it follows that L−1 satis�es (SLm).

The analogous statement for (SUm) can be deduced by observing that U
satis�es (SUm) if and only if its transpose satis�es (SLm).

Lemma 25. Let M = (Mtr)t,r∈T and L = (Ltr)t,r∈T satisfy respectively (S̃)
and (SLm). Then the product ML satis�es (S̃) for some di�erent matrix

(cpd)
k−1
p,d=1. Similarly, if U = (Utr)t,r∈T satis�es (SUm) then the product UM

satisfy (S̃).

Proof. First consider the product ML. Lemma 23 implies that ML satis�es
(Hm) and therefore (ML)tr = 0 unless t � r or t � r. Given t � r or t � r
and using (S̃) and (SLm) we have

(ML)tr =
∑
s∈T

MtsLsr =
∑

s∈T : s�r
MtsLsr

=
∑

s∈T : s�(t∨r)

MtsLsr +
∑

s∈T : r�s≺t
MtsLsr

=
∑

s∈T : s�(t∨r)

m`(t)`(s)l`(s)`(r)P (s) +
∑

s∈T : r�s≺t
m`(t)`(s)l`(s)`(r)P (t)

= P (t ∨ r)
k−1∑

`′=`(t∨r)

m`(t)`′ l`′`(r) + P (t)

`(t)−1∑
`′=`(r)

m`(t)`′ l`′`(r)

= P (t ∨ r)
k−1∑

`′=`(r)

m`(t)`′ l`′`(r) ,
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where the sum from `(r) to `(t) equals 0 if `(r) ≥ `(t). The latter equation
implies that ML satis�es (S̃).

To prove that the product UM satis�es (S̃) note thatM and U satisfying
(S̃) and (SUm) respectively is equivalent to MT and UT satisfying (S̃) and
(SLm) respectively. Therefore, by the �rst part of this Lemma, (UM)T =
MTUT satis�es (SLm) and thus ((UM)T )T = UM satis�es (S̃).

We now combine Lemmas 24 and 25 to prove Lemma 13.

Proof of Lemma 13. Suppose that the precision matrix Q(β̃) = (Q
(β̃)
tr )t,r∈T

of β̃T satis�es (S̃). Consider a symmetric hierarchical reparametrization

of β̃T denoted by Λβ̃T . Then its precision matrix is given by Q(Λβ̃) =

(ΛT )−1Q(β̃)Λ−1 where ΛT denote the transpose of Λ. By de�nition of sym-
metric hierarchical reparametrizations, Λ satis�es (SLm). Therefore Lemma
24 implies that Λ−1 satis�es (SLm) and, consequently, Lemma 25 implies

that Q(β̃)Λ−1 satis�es (S̃). Since Λ satis�es (SLm), then ΛT satis�es (SUm)
and thus Lemma 22 implies that (ΛT )−1 satis�es (SUm). We can then apply

Lemma 25 to (ΛT )−1 and Q(β̃)Λ−1 to deduce that Q(Λβ̃) = (ΛT )−1Q(β̃)Λ−1

satis�es (S̃).

Proof of Lemma 14

Suppose βT has zero mean (otherwise replace βT by βT − E[β]). As in
Section 4.4, given any r and t in T we denote P (X`(t) = t|X`(r) = r) by
P (t|r). Using (H), for any d ∈ {0, . . . , k − 1} and t ∈ Td, we can write the
full conditional expectation of βt as

E[βt|βT\t] =
∑
r≺t

Atrβr +
∑
r�t

Atrβr ,

where Atr = −Qtr
Qtt

for any r 6= t. Note that (S̃) implies

Atr =
c`(t)`(r)P (r ∩ t)

P (t)
= c`(t)`(r)P (r|t) . (23)

It follows

E[βt|βT\t] =
∑
r≺t

cd`(r)P (r|t)βr +
∑
r�t

cd`(r)P (r|t)βr

=
∑
` 6=d

cd`E[βX` |βT , Xd = t] .
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Since the last equation does not depend on β(d) we have E[βt|βT\t] =

E[βt|β\β(d)]. For any r ∈ Tp, by de�nition of φ
(p)
r β(d), we have

E[φ(p)
r β(d)|β\β(d)] =

∑
t∈Td

Pr(t|r)E[βt|β\β(d)]

=
∑
t∈Td

Pr(t|r)
∑
` 6=d

cd`E[βX` |βT , Xd = t]

=
∑
` 6=d

cd`
∑
t∈Td

Pr(t|r)E[βX` |βT , Xd = t]

=
∑
` 6=d

cd`E[βX` |βT , Xp = r] .

From the latter equation and the de�nition of δ
(p)
r β(d) it follows

E[δ(p)
r β(d)|β\β(d)] = E[φ(p)

r β(d)|β\β(d)]− E[φ
(p−1)
pa(r) β

(d)|β\β(d)]

=
∑
6̀=d
cd` (E[βX` |βT , Xp = r]− E[βX` |βT , Xp−1 = pa(r)])

=
∑

`∈{p,...,k−1}\d

cd`δ
(p)
r β(`) .

Proof or Theorem 15

To prove Theorem 15 we �rst need the following lemma.

Lemma 26. Given d ∈ {0, . . . , k − 1} and p, p′ ∈ {0, . . . , d} with p 6= p′,

δ(p)β(d)⊥δ(p′)β(d) |β\β(d) .

Proof. Let d ∈ {0, . . . , k − 1}, p, p′ ∈ {0, . . . , d} with p < p′ and β\β(d) be
�xed. To make the notation more compact we denote E[·|β\β(d)] by Ẽ[·],
φ

(p)
r β(d) by φ̃

(p)
r and P (Xp′ = r′|Xp = r) by P (r′|r) for all r ∈ Tp and

r′ ∈ Tp′ . By replacing βt with βt − Ẽ[βt] we can suppose without loss of

generality that Ẽ[βt] = 0 for all t ∈ Td and therefore Ẽ[φ̃
(p)
r ] = Ẽ[φ̃

(p′)
r′ ] = 0

and Ẽ[δ
(p)
r β(d)] = Ẽ[δ

(p′)
r′ β(d)] = 0 for all r ∈ Tp and r′ ∈ Tp′ . By de�nition

φ̃
(p)
r =

∑
s∈Tp′

P (s|r)φ̃(p′)
s and therefore

Ẽ[φ̃(p)
r φ̃

(p′)
r′ ] =

∑
s∈Tp′

P (s|r)Ẽ[φ̃(p′)
s φ̃

(p′)
r′ ] = P (r′|r)Ẽ[(φ̃

(p′)
r′ )2] , (24)

where we used Ẽ[φ̃
(p′)
s φ̃

(p′)
r′ ] = 0 for r′ 6= s and r′, s ∈ Tp′ , which follows from

the conditional independence of (βt)t∈Td , t�r′ and (βt)t∈Td , t�s given β\β(d).
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Note that P (r′|r) in (24) could be 0. From Ẽ[βt] = 0 for any t ∈ Td and (S̃)
we have Ẽ[β2

t ] = P (t)−1 and therefore

Ẽ[(φ̃
(p′)
r′ )2] =Ẽ[(

∑
t∈Td

P (t|r′)βt)2] =
∑
t∈Td

P (t|r′)2Ẽ[β2
t ]

=
∑
t∈Td

P (t|r′)2

P (t)
=

1

P (r′)

∑
t∈Td

P (t|r′) =
1

P (r′)
. (25)

Combining (24) and (25) we have Ẽ[φ̃
(p)
r φ̃

(p′)
r′ ] = 0 if r′ � r and

Ẽ[φ̃(p)
r φ̃

(p′)
r′ ] =

P (r′|r)
P (r′)

=
1

P (r)
if r′ � r . (26)

From the last equality and the de�nition of δ
(p)
r β(d) in (17) we have

Ẽ[δ(p)
r β(d)δ

(p′)
r′ β(d)] =

Ẽ[(φ̃(p)
r − φ̃

(p−1)
pa(r) )(φ̃

(p′)
r′ − φ̃

(p′−1)
pa(r′) )] =

Ẽ[φ̃(p)
r φ̃

(p′)
r′ − φ̃

(p−1)
pa(r) φ̃

(p′)
r′ − φ̃

(p)
r φ̃

(p′−1)
pa(r′) + φ̃

(p−1)
pa(r) φ̃

(p′−1)
pa(r′) ] =

P (r′|r)
P (r′)

− P (r′|pa(r))

P (r′)
− P (pa(r′)|r)

P (pa(r′))
+
P (pa(r′)|pa(r))

P (pa(r′))
= 0,

where the last equality is trivial if pa(r) ⊀ r′ and can be deduced from (26)

otherwise. The desired conditional independence follows from Ẽ[δ
(p)
r β(d)δ

(p′)
r′ β(d)] =

0 = Ẽ[δ
(p)
r β(d)]Ẽ[δ

(p′)
r′ β(d)] for all r ∈ Tp and r′ ∈ Tp′ .

Proof or Theorem 15. Theorem 15 follows easily from Lemmas 14 and 26 as
follows. For each d ∈ {0, . . . , k − 1} the sampling step

β(d)(s+ 1) ∼ L
(
β(d)|

(
β(`)(s+ 1)

)
0≤`<d ,

(
β(`)(s)

)
d<`≤k−1

)
(27)

in Sampler GS(βT ) is equal in distribution to sampling jointly the (d+1)
residuals

(δ(p)β(d)(s+ 1))dp=0 ∼ L
(

(δ(p)β(d))dp=0|
(
β(`)(s+ 1)

)
0≤`<d ,

(
β(`)(s)

)
d<`≤k−1

)
.

From the conditional independence statement in Lemma 26 the latter is
equivalent to sampling independently each residual δ(p)β(d)(s+ 1) from

L
(
δ(p)β(d)|

(
β(`)(s+ 1)

)
0≤`<d ,

(
β(`)(s)

)
d<`≤k−1

)
.

Moreover, from Lemma 14

L
(
δ(p)β(d)|β\β(d)

)
= L

(
δ(p)β(d)|(δ(p)β(`))`∈{p,...,k−1}\d

)
.
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Therefore the original sampling step in (27) is equivalent to sampling inde-
pendently

δ(p)β(d)(s+ 1) ∼ L
(
δ(p)β(d)|

(
δ(p)β(`)(s+ 1)

)
p≤`<d ,

(
δ(p)β(`)(s)

)
d<`≤k−1

)
,

(28)

for p = 0, . . . , d. The thesis follows from the equivalence between (27) and
(28).

Proof of Corollary 16

Proof of Corollary 16. The map from βT to (δ(0)β, . . . , δ(k−1)β) is an in-
jective linear transformation. The injectivity holds because for any d ∈
{0, . . . , k − 1} and t ∈ Td we can reconstruct βt from (δ(0)β(d), . . . , δ(d)β(d))∑
r�t

δ(`(r))
r β(d) = φ

(0)
t0

β(d)+
∑

t0≺r�t

(
φ(`(r))
r β(d) − φ(`(r)−1)

pa(r) β(d)
)

= φ
(d)
t β(d) = βt .

It follows that (δβ(s))s∈N = (δ(0)β(s), . . . , δ(k−1)β(s))s∈N is a Markov chain
with the same rate of convergence of the original chain (β(s))s∈N. Then the
thesis follows from Theorem 15 and the fact that the rate of convergence of
a collection of independent Markov chains equals the supremum of the rates
of convergence of the single chains.

Proof of Theorem 17

Proof of Theorem 17. We are interested in the rate of convergence of the
blocked sampler targeting δ(p)β = (δ(p)β(p), . . . , δ(p)β(k−1)) and evolving ac-
cording to (18). Consider �rst the case p ∈ {1, . . . , k − 1}. Note that δ(p)β
has a singular variance-covariance matrix because for each t ∈ Tp−1 and
d ∈ {p, . . . , k − 1} it follows from (16) and (17) that∑

r∈ch(t)

P (r|t)δ(p)
r β(d) = 0 (29)

and therefore some elements of (δ(p)β) are linear combinations of the others.
In order to use standard tools it is more convenient to work with non-singular
Gaussian random vectors. To do so it is su�cient to consider a sub-vector
of δ(p)β obtained by removing from Tp one children node for each parent
node in Tp−1. More formally, let f be an arbitrary map from Tp−1 to Tp
such that f(t) ∈ ch(t) for all t ∈ Tp−1 and then de�ne the subset T ′p ⊆ Tp
as T ′p = Tp\f(Tp−1). It is then easy to see that the resulting sub-vector

δ
(p)
T ′p

β = (δ
(p)
T ′p

β(p), . . . , δ
(p)
T ′p

β(k−1)) with δ
(p)
T ′p

β(d) = (δ
(p)
r β(d))r∈T ′p for all d ∈

{p, . . . , k − 1} has an invertible variance-covariance matrix. Moreover, since

each δ(p)β(d) is a function of the corresponding δ
(p)
T ′p

β(d) via (29) it follows
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that the blocked sampler targeting δ(p)β and evolving according to (18) is

equivalent in distribution to a blocked Gibbs Sampler targeting δ
(p)
T ′p

β and

evolving according to

δ
(p)
T ′p

β(d)(s+ 1) ∼ L
(
δ

(p)
T ′p

β(d)|(δ(p)
T ′p

β(`)(s+ 1))p≤`<d, (δ
(p)
T ′p

β(`)(s))d<`≤k−1

)
,

(30)

for d ∈ {p, . . . , k− 1}. Let A
δ
(p)

T ′p
β

= (A
δ
(p)
r β(d) δ

(p)

r′ β
(d′))r,r′∈T ′p , d,d′∈{p,...,k−1} be

the A-matrix associated to the Gibbs sampler in (30), de�ned by

E[δ(p)
r β(d)|δ(p)

T ′p
β\δ(p)

r β(d)]− E[δ(p)
r β(d)] =∑

δ
(p)

r′ β
(d′)∈δ(p)

T ′p
β\δ(p)r β(d)

A
δ
(p)
r β(d) δ

(p)

r′ β
(d′)

(
δ

(p)
r′ β

(d′) − E[δ
(p′)
r′ β(d′)]

)
. (31)

See [Roberts and Sahu, 1997, Sec.2.2] for more details on the properties of
such A-matrices. Then Lemma 14 implies that A

δ
(p)
r β(d) δ

(p)

r′ β
(d′) = cdd′ if

r = r′ and d′ ∈ {p, . . . , k− 1}\d and 0 otherwise. The latter is equivalent to
the equation

A
δ
(p)

T ′p
β

=
(
C(p) − Ik−p

)
� I|T ′p| (32)

where C(p) is the (k − p) × (k − p) square matrix C(p) = (cdd′)
k−1
d,d′=p, In

denotes the n dimensional identity matrix, � denotes the Kronecker product
of matrices and |T ′p| = |Tp| − |Tp−1| is the cardinality of T ′p. Then note that
from Roberts and Sahu [1997, Thm.1] the rate of convergence of the Gibbs
sampler in (30) equals the largest modulus eigenvalue of B = (I(k−p)|T ′p| −
L)−1U , where L is the lower triangular part of A

δ
(p)

T ′p
β
and U = A

δ
(p)

T ′p
β
− L.

Using basic properties of the Kroenecker product we can see that

B =(I(k−p) � I|T ′p| − L̃� I|T ′p|)
−1
(
Ũ � I|T ′p|

)
=
(

(I(k−p) − L̃) � I|T ′p|
)−1 (

Ũ � I|T ′p|
)

=
(

(I(k−p) − L̃)−1 � I|T ′p|
)(

Ũ � I|T ′p|
)

=
(

(I(k−p) − L̃)−1Ũ
)

� I|T ′p|

where L̃ is the lower triangular part of (C(p)−Ik−p) and Ũ = (C(p)−Ik−p)−L̃.
From B = B̃ � I|T ′p|, where B̃ = (I(k−p) − L̃)−1Ũ , it follows that the unique

eigenvalues of B are the same as the unique eigenvalues of B̃ and thus the
largest modulus eigenvalue of B equals the one of B̃. The case p = 0 is
analogous (with no need to consider a sub-vector of δ(0)β and T ′0 being
equal to T0 itself) and trivial to check.
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Proof of Theorem 18

Theorem 15 shows that (δ(p)γ(s))s for p ∈ {0, . . . , k − 1} are k independent
Markov chains. Arguing as in the proof of Theorem 17 above for each p

we consider (δ
(p)
T ′p

γ(s))s rather than (δ(p)γ(s))s to avoid working with sin-

gular Gaussian random vectors. For any p from 0 to k − 1, (T) implies

that the Q-matrix of δ
(p)
T ′p

γ is tridiagonal (with k − p blocks corresponding

to δ
(p)
T ′p

γ(p) up to δ
(p)
T ′p

γ(k−1)). Therefore Theorem 5 of [Roberts and Sahu,

1997] implies that the rate of convergence of the Gibbs Sampler in (30) is

given by ρ(δ
(p)
T ′p

γ(s)) = λ(A
δ
(p)

T ′p
γ(s)

)2 where A
δ
(p)

T ′p
γ(s)

is the A-matrix de�ned

as in (31) and λ(A
δ
(p)

T ′p
γ(s)

) is its largest eigenvalue. Then, using (32) from the

proof of Theorem 17, it follows λ(A
δ
(p)

T ′p
γ(s)

)2 = λ(C(p) − Ik−p)2 and thus the

rate of convergence of (δ(p)γ(s))s is given by ρ(δ(p)γ(s)) = λ(C(p) − Ik−p)2.
Noting that C(p+1) − Ik−(p+1) is obtained from C(p) − Ik−p by removing the

�rst row and column, the desired inequality ρ(δ(p)γ(s)) = λ(C(p)− Ik−p)2 ≥
λ(C(p+1) − Ik−(p+1))

2 = ρ(δ(p+1)γ(s)) follows by applying the Cauchy inter-
lacing theorem (see e.g. Bhatia, 2013), which states that the eigenvalues of a
principal submatrix of a symmetric matrix interlace the original eigenvalues.

Proof of Theorems 9 and 21

Since Theorem 9 is a special case of Theorem 21 we only need to prove the lat-
ter. Let Λ be de�ned as in the statement of Theorem 21. The precision ma-
trix of the hierarchical reparametrization ΛβT is given by D = (ΛT )−1QΛ−1

where Q is the precision matrix of βT . To show that ΛβT is made of indepen-
dent random variables it su�ces to show that D is diagonal. In particular we
show that ΛTDΛ = Q with D being a diagonal matrix with elements de�ned
by (21). Since ΛTDΛ is symmetric, we can consider (ΛTDΛ)rt assuming
t � r without loss of generality. Since D is diagonal and Λ = (λss′)s,s′∈T is
non-zero only for s′ ∈ {s, pa(s)} we have

(ΛTDΛ)rt =
∑
r′∈T

∑
s∈T

λsrDsr′λr′t

=
∑
r′∈T

λr′rDr′r′λr′t = Drrλrt +
∑

r′∈ch(r)

λr′rDr′r′λr′t .

Therefore (ΛTDΛ)rt = 0 unless r = t or t = pa(r). In the latter case

(ΛTDΛ)r pa(r) = Drrλrpa(r) = Drr
Qr pa(r)
Drr

= Qr pa(r). In the former case (i.e.

r = t), (ΛTDΛ)rr = Drr +
∑

r′∈ch(r) λ
2
r′rDr′r′ = Qrr, where we used (21) for

Drr. It follows ΛTDΛ = Q as desired.
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