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Abstract

A fundamental problem in Bayesian nonparametrics consists of selecting a prior distri-

bution by assuming that the corresponding predictive probabilities obey certain properties.

An early discussion of such a problem, although in a parametric framework, dates back

to the seminal work by English philosopher W. E. Johnson, who introduced a noteworthy

characterization for the predictive probabilities of the symmetric Dirichlet prior distribution.

This is typically referred to as Johnson’s “sufficientness” postulate. In this paper we review

some nonparametric generalizations of Johnson’s postulate for a class of nonparametric priors

known as species sampling models. In particular we revisit and discuss the “sufficientness”

postulate for the two parameter Poisson-Dirichlet prior within the more general framework

of Gibbs-type priors and their hierarchical generalizations.
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dictive probabilities

1 Introduction

At the heart of Bayesian nonparametric inference lies the fundamental concept of discrete

random probability measure, whose distribution acts as a nonparametric prior, the most no-

table example being the Dirichlet process by Ferguson [25]. Species sampling models, first

introduced by Pitman [52], form a very general class of discrete random probability measures

P =
∑

i≥1 piδX∗
i

defined by the sole requirements that (pi)i≥1 are nonnegative random weights
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such that
∑

i≥1 pi = 1 almost surely, and (X∗i )i≥1 are random locations independent of (pi)i≥1

and independent and identically distributed as a nonatomic base distribution ν0. The term

“species sampling” refers to the fact that the distribution P of P has a natural interpretation

as a (prior) distribution for the unknown species composition (pi)i≥1 of a population of indi-

viduals (Xi)i≥1 belonging to species X∗i ’s. As discussed in Pitman [52] and Lee et al. [40], the

definition of species sampling models provides some insights on the structural sampling proper-

ties of these discrete random probability measures. However, for being usable as nonparametric

priors, a distribution for the random probability (pi)i≥1 has to be specified. Among the various

approaches for specifying such a distribution, the most common are the stick-breaking approach

by Ishwaran and James [34] and the normalization approach by James [35], Pitman [53] and

Regazzini et al. [60]. These approaches lead to popular species sampling models such as the

Dirichlet process, the generalized Dirichlet process (Hjort [31] and Ishwaran and James [34]),

the two parameter Poisson-Dirichlet process (Perman et al. [50] and Pitman and Yor [55])

and the normalized generalized Gamma process (James [35], Prünster [56] and Pitman [53]) to

name a few. The reader is referred to Lijoi and Prünster [44] for a comprehensive and stimulat-

ing account of species sampling models, as well as generalizations thereof, with applications to

Bayesian nonparametrics.

A common building block in Bayesian nonparametrics, either at the level of observed data

or at the latent level of hierarchical models, consists of a sample from a species sampling

model P with distribution P. According to de Finetti’s representation theorem, such a sam-

ple is part of an exchangeable sequence (Xi)i≥1 with directing (de Finetti) measure P, i.e.

limn→+∞ n
−1∑

1≤i≤n δXi = P almost surely. In particular, due to the discreteness of species

sampling models, a sample of size n from P features Kn = k ≤ n distinct species, labelled by

X∗1 , . . . , X
∗
Kn

, with corresponding frequencies Nn = (N1,n, . . . , NKn,n) = n = (n1, . . . , nk) such

that
∑

1≤i≤Kn Ni,n = n. More formally, if (X1, . . . , Xn) is a random sample from P , namely

Xi |P
iid∼ P i = 1, . . . , n, (1)

P ∼ P,

then the sample induces a random partition Πn of {1, . . . , n} whose blocks corresponds to the

equivalence classes for the random equivalence relations i ∼ j ⇐⇒ Xi = Xj almost surely. The

random partition Πn is exchangeable, namely the distribution of Πn is a symmetric function

of the frequencies n. This function, denoted pn,k(n), is known as the exchangeable partition

probability function (EPPF), a concept introduced in Pitman [51] as a development of earlier

results in Kingman [38].

The notion of exchangeable random partition of {1, . . . , n} can be extended to the natural
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numbers N. In particular, the infinite exchangeable sequence (Xi)i≥1 induces an exchangeable

random partition Π of N, where exchangeable means that the distribution of Π is invariant under

finite permutations of its elements. This partition can be described by the sequence (Πn)n≥1

of its restrictions to the first n integer numbers, i.e., Πn is obtained from Π by discarding all

elements greater than n. Conversely, a sequence of random exchangeable partitions (Πn)n≥1

defines an exchangeable random partition of N provided that this sequence is consistent, i.e.,

Πm is the restriction of Πn to the first m elements, for all m < n. Consistency implies that

pn,k(n) = pn+1,k+1(n, 1) +

k∑
i=1

pn+1,k(n1,n + ei) (2)

for all n ≥ 1, where ei denotes a k-dimensional vector with all entries equal to zero but the

i-th entry equal to 1. As a direct consequence of Kingman’s theory of exchangeable random

partitions of N, the predictive probabilities of (Xi)i≥1 are

Pr[Xn+1 ∈ · |X1, . . . , Xn] = g(n, k,n)ν0(·) +

k∑
i=1

fi(n, k,n)δX∗
i
(·), (3)

for any n ≥ 1, where ν0 is a nonatomic distribution on the sample space and where g(n, k,n) :=

pn+1,k+1(n, 1)/pn,k(n) and fi(n, k,n) := pn+1,k(n1,n + ei)/pn,k(n) are nonnegative functions

of (n, k,n), respectively describing the probability that the Xn+1 will be a new value and the

probability that it will be equal to X∗i . From (2), it follows that g and fi must satisfy the

following constraint: g(n, k,n) +
∑

1≤i≤k fi(n, k,n) = 1. The functions g and fi completely

determine the distribution of (Xi)i≥1 and, in turn, the distribution of Π. See Pitman [52] for a

detailed account of exchangeable random partitions and species sampling models.

Within the Bayesian nonparametric framework (1), how to select the prior distribution P

is an important issue. Of course one approach is to select P by appealing to prior information

about P , and then attempt to incorporate this information into P. This is often a difficult

task for nonparametric priors, since P is an infinite dimensional object. Alternatively, one may

select P by assuming that the predictive probabilities (30) obey or exhibit some characteristic

or property. Indeed in practical applications it may be that the form of the functions g and fi

may be an adequate description of our current state of knowledge. An early discussion of this

alternative approach, although in a parametric framework, dates back to the seminal work by

English philosopher W. E. Johnson. Specifically, assuming T < +∞ possible species that are

known and equiprobable prior to observations, Johnson [37] characterized the T -dimensional

symmetric Dirichlet distribution as the unique prior for which g depends only on n, k and T ,

and fi depends only on n, ni and T . As a direct consequence of the parametric assumption

that T < +∞, of course, g = 0 for all k ≥ T . Using the terminology in Good [28], this

3



characterization of the Dirichlet prior is referred to as Johnson’s “sufficientness” postulate. We

refer to the work of Zabell [71] and Zabell [73] for a review of Johnson’s postulate. See also

the monograph by Zabell [?] for a more comprehensive account of sufficientness, exchangeability

and predictive probabilities.

In this paper we discuss and derive some generalizations of Johnson’s postulate that arise

by removing the parametric assumption of a prespecified number T < +∞ of possible species

in the population. We focus on species sampling models that allow either for an infinite number

of species or for a finite random number T of species, with T having unbounded support over

N. Regazzini [58], and later on Lo [48], provided a nonparametric counterpart of Johnson’s

postulate. Specifically, under the assumption of an infinite number of species in the population,

they showed that the Dirichlet process is the unique species sampling model for which the

function g depends only on n, and the function fi depends only on n and ni. A noteworthy

extension of this nonparametric sufficientness postulate was presented in Zabell [74], and it

characterizes the two parameter Poisson-Dirichlet process of Pitman [51] as the unique species

sampling model for which g depends only on n and k, and fi depends only on n and ni. Here

we revisit the seminal work of Zabell [74] within the more general framework of the Gibbs-type

species sampling models introduced by Gnedin and Pitman [27], and nowadays widely used

in Bayesian nonparametrics. Gibbs-type species sampling models, which include the Dirichlet

process and two parameter Poisson-Dirichlet process as special cases, suggest for the formulation

of a novel nonparametric sufficientness postulate in which the function g depends only on n and

k, and the function fi depends only on n, k and ni. We present such a postulate and, in light of

that, we show how the sufficientness postulates of Regazzini [58] and Zabell [74] may be rephrased

in terms of an intuitive Pólya-like urn scheme for Gibbs-type species sampling models. Table 1

provides with a schematic summary of sufficientness postulates for species sampling models. Our

study is completed with a discussion on the problem of formulating analogous nonparametric

sufficientness postulates in the context of the hierarchical species sampling models introduced

by Teh et al. [67].

The paper is structured as follows. Section 2 contains a brief review on the sampling proper-

ties of the class of Gibbs-type species sampling models. In Section 3 we review the sufficientness

postulate of Zabell [74], we present its generalization within the more general framework of

Gibbs-type species sampling models, and we introduce a Pólya-like urn scheme for describing

the predictive probabilities of Gibbs-type species sampling models. In Section 4 we discuss

how Johnson’s sufficientness postulate can be extended to the framework of hierarchical species

sampling models. Section 5 contains a discussion of the proposed characterizations and open

questions. Proofs of our results are provided as online supplementary material.
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Table 1: Sufficientness postulates for species sampling models (SSM): T -dimensional symmetric

Dirichlet distribution (T -SD), Dirichlet process (DP), two parameter Poisson-Dirichlet process

(2PD) and Gibbs-type SSM.

SSM NUMBER T OF SPECIES g(n, k,n) fi(n, k,n)

T -SD Known T < +∞ g(n, k, T ) f(n, ni)

DP T = +∞ g(n) f(n, ni)

2PD T = +∞ g(n, k) f(n, ni)

Gibbs-type SSM T = +∞ g(n, k) f(n, k, ni)

2 A brief review of Gibbs-type priors

As recently discussed in De Blasi et al. [17], Gibbs-type species sampling models, or Gibbs-type

priors, may be considered as the most “natural” generalization of the Dirichlet process. Indeed,

apart of the well-known conjugacy of the Dirichlet process, Gibbs-type species sampling models

share numerous properties that are appealing from both a theoretical and an applied point of

view: i) they admit a simple and intuitive definition in terms of predictive probabilities, which

is a generalization of the Blackwell and MacQueen [9] urn scheme; ii) they stand out in terms of

mathematical tractability, which allows to study their distributional properties for finite sample

sizes and asymptotically; iii) they admit a stick-breaking representation and a representation

as normalized random measures, thus taking the advantages of both representations; iv) they

are characterized by a flexible parameterization, thus including numerous interesting special

cases, most of them still unexplored. All these properties have made the class of Gibbs-type

priors a common choice in several contexts, such as in hierarchical mixture modeling, species

sampling problems, feature and graph modeling, hidden Markov modeling, etc. In this section

we briefly review Gibbs-type species sampling models, with emphasis towards their predictive

probabilities and sampling properties. The reader is referred to the monographs by Pitman [54]

and Bertoin [8] for a comprehensive account of Gibbs-type species sampling models, and to Lijoi

and Prünster [44] and De Blasi et al. [17] for reviews on their use in Bayesian nonparametrics.

Among various possible definitions of Gibbs-type species sampling models, the most intuitive

is given in terms of their predictive probabilities. See, e.g., Pitman [53] and Gnedin and Pitman

[27]. These predictive probabilities are of the general form (30), for a suitable specification of

the nonnegative functions g and fi. In particular let (X1, . . . , Xn) be a sample from an arbitrary

species sampling model P , and assume that (X1, . . . , Xn) features Kn = k ≤ n species, labelled
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by X∗1 , . . . , X
∗
Kn

, with corresponding frequencies Nn = n. For α < 1 and for ν0 a nonatomic

probability measure, P is a Gibbs-type species sampling model if

Pr[X1 ∈ ·] = ν0(·) (4)

and

Pr[Xn+1 ∈ · |X1, . . . , Xn] =
Vn+1,k+1

Vn,k
ν0(·) +

Vn+1,k

Vn,k

k∑
i=1

(ni − α)δX∗
i
(·) (5)

for any n ≥ 1, where (Vn,k)1≤k≤n,n≥1 are nonnegative weights satisfying the triangular recursion

Vn,k = Vn+1,k(n − αk) + Vn+1,k+1 with the proviso V1,1 := 1. By combining the predictive

probabilities (5) with the nonparametric sufficientness postulate in Regazzini [58] and Lo [48], it

follows that Gibbs-type species sampling models generalize the Dirichlet process by introducing

the dependency on k in both the functions g and fi. See also Zabell [71] and references therein

for details.

Gnedin and Pitman [27] characterized the de Finetti measure of an exchangeable sequence

(Xi)i≥1 distributed as (4) and (5). Such a characterization relies on the notion of Poisson-

Kingman model introduced by Pitman [53]. Specifically, for any α ∈ (0, 1) let (Ji)i≥1 be de-

creasing ordered jumps of an α-stable subordinator, namely a subordinator with Lévy measure

ρ(dx) = Cαx
−α−1dx for some constant Cα. See Sato [63] and references therein for details. Fur-

thermore, let Pi = Ji/Tα where Tα =
∑

i≥1 Ji < +∞ almost surely, and let PK(α; t) denote the

conditional distribution of (Pi)i≥1 given Tα = t. In particular Tα is a positive α-stable random

variable, and we denote by fα its density function. If we denote by Tα,h a random variable with

density function fTα,h(t) = h(t)fα(t), for any nonnegative function h, then an α-stable Poisson-

Kingman model is defined as the discrete random probability measure Pα,h =
∑

i≥1 Pi,hδX∗
i
,

where (Pi,h)i≥1 is distributed as
∫
(0,+∞) PK(α; t)fTα,h(t)dt and (X∗i )i≥1 are random variables,

independent of (Pi,h)i≥1, and independent and identically distributed as ν0. According to Gnedin

and Pitman [27], if (Xi)i≥1 is an exchangeable sequence distributed as (4) and (5) then the de

Finetti measure of (Xi)i≥1 is the law of: i) an α-stable Poisson-Kingman model, for α ∈ (0, 1);

ii) the Dirichlet process, for α = 0; iii) an M -dimensional symmetric Dirichlet distribution,

with M being a nonnegative discrete random variable on N, for α < 0. In other terms (Xi)i≥1

distributed as (4) and (5) admits a finite number M of species for α < 0, and an infinite number

of species for α ∈ [0, 1).

The characterization of Gnedin and Pitman [27] leads to identify explicit expressions for the

Vn,k’s in (5). In particular, for the class of α-stable Poisson-Kingman models an expression for

Vn,k was provided in Pitman [53], and further investigated by Ho et al. [32]. See also James [36]

and references therein. Let Γ(·) denote the Gamma function. For any α ∈ (0, 1) and c > 0 let Sα,c
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be a polynomially tilted α-stable random variable, i.e. fSα,c(s) = Γ(cα+ 1)s−αcfα(s)/Γ(c+ 1),

and let Ba,b be a Beta random variable with parameter (a, b) independent of Sα,c. Then,

Vn,k =
αkΓ(k)

Γ(n)
E

[
h

(
Sα,k

Bαk,n−αk

)]
. (6)

We refer to Chapter 4 of Pitman [54] for additional details on (6). For the Dirichlet process, the

expression of Vn,k is well-known from the seminal work of Ewens [20], i.e.

Vn,k =
θk

(θ)n
(7)

for any θ > 0. See also Antoniak [2] for an alternative derivation of (7) in terms of the urn scheme

description of the Dirichlet process in Blackwell and MacQueen [9]. For the M -dimensional

symmetric Dirichlet distributions, for any α < 0 one has

Vn,k =

∏k−1
i=0 (M |α|+ iα)

(M |α|)n
. (8)

Conditionally to M = m, the expression (8) dates back to the seminal work of Fisher et al. [26].

In particular they derived (8) and they also considered the passage to the limit as m → +∞
and −α → 0 for fixed θ = mα > 0, which leads to the weight in (7). See also Johnson [37],

Watterson [70] and Engen [19] for a detailed account of the M -dimensional symmetric Dirichlet

species sampling model.

Among Gibbs-type species sampling models with α ∈ (0, 1), the two parameter Poisson-

Dirichlet process certainly stands out. See, e.g., Perman et al. [50], Pitman [51], Pitman and

Yor [55] and Pitman [53]. Another noteworthy example is the normalized generalized Gamma

process, introduced in Pitman [53] and further investigated in Bayesian nonparametrics, e.g.,

James [35], Lijoi et al. [43], Lijoi et al. [45] and James [36]. For α ∈ (0, 1) and θ > −α, the

two parameter Poisson-Dirichlet process is a Gibbs-type species sampling model with h(t) =

αΓ(θ)t−θ/Γ(θ/α). In particular, by replacing this function in (6), one obtains

Vn,k =

∏k−1
i=0 (θ + iα)

(θ)n
, (9)

where (θ)n is the ascending factorial, i.e., (θ)n :=
∏

0≤i≤n−1(θ + i) with the proviso (θ)0 = 1.

For α ∈ (0, 1) and τ ≥ 0 the normalized generalized Gamma process is a Gibbs-type species

sampling model with h(t) = exp{τ − τ1/αt}. By replacing this function in (6),

Vn,k =
αkeτ

Γ(n)

n−1∑
i=0

(
n− 1

i

)
(−τ1/α)iΓ

(
k − i

α
, τ

)
, (10)

where Γ(·, ·) is the incomplete Gamma function. Note that (9) may be viewed as a suitable

mixture of (10). That is, if Gθ/α,1 is a Gamma random variable with parameter (θ/α, 1) then
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(9) can be written as (10) where τ is replaced by Gθ/α,1. In general, for any θ > 0 the two

parameter Poisson-Dirichlet process may be viewed as hierarchical generalization of the normal-

ized generalized Gamma process, with a Gamma prior over τ . See Section 5 in Pitman and Yor

[55] for details.

The predictive probabilities (5) lead to the distribution of the exchangeable random partition

Πn induced by a sample (X1, . . . , Xn) from a Gibbs-type species sampling model. In particular,

let p
(n)
k (n) denote the EPPF of Πn, that is probability of any particular partition of the set

{1, . . . , n} induced by (X1, . . . , Xn) and featuring Kn = k distinct blocks with frequencies Nn =

n, for any n ≥ 1. Then, by a direct application of the predictive probabilities (5), one may easily

verify that

p
(n)
k (n) = Vn,k

k∏
i=1

(1− α)(ni−1). (11)

Moreover, by marginalizing Pr[Kn = k,Nn = n] = (k!)−1
(

n
n1,...,nk

)
p
(n)
k (n) with respect to the

frequencies n, one obtains the distribution of Kn. In particular, one has

Pr[Kn = k] = Vn,k
C (n, k;α)

αk
, (12)

where C (n, k;α) is the generalized factorial coefficient, namely C (n, k; a) := (k!)−1
∑

1≤i≤k(−1)i
(
k
i

)
(−ai)n.

As discussed in Gnedin and Pitman [54] and De Blasi et al. [17], the mathematical tractability of

Gibbs-type species sampling models originates from the product form of the EPPF (11). Such a

product form is closely related to the notion of product partition model in Quintana and Iglesias

[57].

The role of the parameter α in the distribution (11) is easily interpreted. In particular,

a first interpretation of α follows from the predictive probabilities (5). Indeed, α > 0 acts an

interesting reinforcement mechanism in the empirical part of the predictive probability (5). Note

that the probability that Xn+1 coincides with the species X∗i , for any i = 1, . . . , k, is a function

of the frequency ni and α. In particular, the ratio of the probabilities assigned to any pair of

species (X∗i , X
∗
j ) is

ni − α
nj − α

(13)

If α→ 0 the ration (13) reduces to the ratio of the frequencies of the two species, and therefore

the coincidence probability is proportional to the frequency of the species. On the other hand

if α > 0 and ni > nj then the ratio is an increasing function of α. Accordingly, as α increases

the mass is reallocated from the species X∗j to the species X∗i . In other terms the sampling

procedure tends to reinforce, among the observed species, those having higher frequencies. See

De Blasi et al. [17] and references therein for a detailed discussion on such a reinforcement
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mechanism. If α < 0, the reinforcement mechanism works in the opposite way in the sense that

the coincidence probabilities are less than proportional to the species frequencies.

A further interpretation of the parameter α arises from the large n asymptotic behavior of

the random variable Kn with distribution (12). This behaviour was first investigated by Korwar

and Hollander [39] for the Dirichlet process, and then extended by Pitman [53] to the general

framework of Gibbs-type species sampling model. See also Gnedin and Pitman [27] and Pitman

[54] for details. The parameter α determines the rate at which Kn increases, as the sample size

n increases. Three different rates may be identified for Gibbs-type species sampling models. Let

cn(α) :=


nα if α ∈ (0, 1)

log(n) if α = 0

1 if α ∈ (−∞, 0),

for any n ≥ 1. Then there exists a random variable Sα, positive and finite almost surely, such

that
Kn

cn(α)
→ Sα (14)

almost surely, as n → +∞. Using the terminology in Pitman [53], Sα is referred to as the

α-diversity of the the Gibbs-type species sampling model. More precisely: i) for α ∈ (0, 1) the

α-diversity coincides, in distribution, with T−αα,h ; ii) for α = 0 the α-diversity is a random variable

whose distribution degenerates at θ > 0; iii) for α < 0 the α-diversity coincides, in distribution,

with the random number M of species in the population. The larger α, the faster the rate

of increase of Kn or, in other terms, the more new species are generated from the sampling

mechanism described in (5).

Gibbs-type species sampling models have been extensively used in the context of Bayesian

nonparametric inference for species sampling problems. See, e.g., Lijoi et al. [42], Lijoi et al.

[45], Favaro et al. [21], Favaro et al. [22], Bacallado et al. [5, 6] and Arbel et al. [3]. Species

sampling problems are arguably the field in which the mathematical tractably of Gibbs-type

species sampling models can be most appreciated. In the last few years a plethora of posterior

properties of Gibbs-type priors, for finite sample sizes and asymptotically, have been derived and

applied for estimating population’s features and predicting features of additional unobservable

samples. Gibbs-type species sampling models have been also applied in the context of mixture

modeling, thus generalizing the seminal work by Lo [47]. See, e.g., Ishwaran and James [34], Lijoi

et al. [41], Lijoi et al. [42], Favaro and Walker [23] and Lomeli et al. [49]. While maintaining the

same computational tractability of the Dirichlet process mixture model, the availability of the

additional parameter α allows for a better control of the clustering behaviour. Most recently,

Gibbs-type species sampling models have been proposed for Bayesian nonparametric inference
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for ranked data in Caron et al. [12], sparse exchangeable random graphs and networks in Caron

and Fox [12] and Herlau [30], feature allocations in Teh and Görür [66], Broderick et al. [10],

Heaukulani and Roy [29], Roy [62] and Battiston et al. [7], reversible Markov chains in Bacallado

et al. [4], dynamic textual data in Chen et al. [14] and Chen et al. [15], and bipartite graphs in

Caron [11].

3 Sufficientness postulates and urn schemes for Gibbs-type pri-

ors

A noteworthy generalization of Johnson’s sufficientness postulate was first discussed in the

work of Zabell [74]. Specifically, let P be an arbitrary species sampling model with predic-

tive probabilities (30), and consider the following assumptions: A1) Pr[Πn = πn] > 0 for all

the partitions πn of {1, . . . , n}, that is no scenario is deemed, a priori, to be impossible; A2)

g(n, k,n) = g(n, k), that is the probability of observing a new species depends only on n and k;

A3) fi(n, k,n) = f(n, ni), that is the probability of observing the species X∗i depends only on

n and ni. Zabell [74] showed that if just these three assumptions are imposed, then there exist

three parameters α ∈ (0, 1), θ > −α and cn ≥ 0 such that

i) if k ≥ 2 then

g(n, k) =
θ + kα

θ + n
; f(n, ni) =

ni − α
θ + n

; (15)

ii) if k = 1 then

g(n, k) =
θ + α

θ + n
− cn; f(n, n) =

n− α
θ + n

+ cn. (16)

In other words, if a species sampling model satisfies the assumptions A1)-A3), then the functions

g and fi in the predictive probabilities (30) must have the expressions (15) and (16). Zabell’s

sufficientness postulate may be viewed as a nonparametric counterpart of the classical Johnson’s

postulate, in the sense that it allows to remove the assumption of a prespecified number T < +∞
of possible species in the population. See Zabell [71], Zabell [73] and references therein for details.

As discussed in Zabell [74], the parameters (cn)n≥1 represent adjustments of the predictive

probabilities that arise when only one species is observed in an exchangeable sequence (Xi)i≥1 of

trials. That is a partition consisting of a single block is observed. Accordingly one may set cn = 0,

for any n ≥ 1, by imposing the following additional assumption: A4) Pr[Kn > 1] = 1 almost

surely for any n ≥ 1. In particular, let (X1, . . . , Xn) be a sample of size n from an arbitrary

species sampling model P , such that (X1, . . . , Xn) features Kn = k ≤ n species X∗1 , . . . , X
∗
Kn
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with corresponding frequencies Nn = n. Then under A1)-A4) one has

Pr[Xn+1 ∈ · |X1, . . . , Xn] =
θ + kα

θ + n
ν0(·) +

1

θ + n

k∑
i=1

(ni − α)δX∗
i
(·), (17)

for any n ≥ 1, which are precisely the predictive probabilities of the two parameter Poisson-

Dirichlet process. An intuitive description of (17) was proposed by Zabell [74] in terms of the

following Pólya-like urn scheme. Consider an urn containing both colored and black balls, where

colored balls may be interpreted as the individuals with their associated species (color). Balls

are drawn and then replaced, in such a way that the probability of a particular ball being drawn

at any stage is proportional to its selection weight. Initially the urn contains a black ball with

weight θ > 0, and at the n-th draw: i) if we pick a colored ball then it is returned to the urn

with ball of the same color with weight 1; ii) if we pick a black ball, then it is returned to the urn

with a black ball of weight α ∈ (0, 1) and a ball of a new color with weight 1− α. If Xn is the

color of the ball returned in the urn after the n-th draw, and such a color is generated according

to the nonatomic distribution ν0, then it can be easily verified that the predictive probabilities

Pr[Xn+1 ∈ · |X1, . . . , Xn] coincides with (17), for any α ∈ (0, 1) and θ > 0.

According to Zabell’s sufficientness postulate, the two parameter Poisson-Dirichlet process

is the unique species sampling model for which the function g depends only on n and k, and

the function fi depends only on n and ni, for any i = 1, . . . , k. As a limiting special case of

Zabell’s characterization, for α → 0 the Dirichlet process is the unique species sampling model

for which the function g depends only on n, and the function fi depends only on n and ni,

for any i = 1, . . . , k. The predictive probabilities (5) of a Gibbs-type species sampling model

generalize those of the two parameter Poisson-Dirichlet process by introducing the dependency

on k in the function f . In particular, within the class of Gibbs-type species sampling model

one may rephrase Zabell’s sufficientness postulated as follows: for any index α ∈ (0, 1) the two

parameter Poisson-Dirichlet process is the unique Gibbs-type species sampling model for which

the ratio Vn+1,k/Vn,k in (5) simplifies in such a way to remove the dependency on the number k

of observed species. The normalized generalized Gamma process, whose predictive probabilities

are expressed in terms of the Vn,k’s in (10), is a representative example of a Gibbs-type species

sampling model for which such a simplification does not occur. See, e.g., Lijoi et al. [43] and

Lijoi et al. [45] for details. The predictive probabilities of Gibbs-type species sampling models

thus suggest for a generalization of the Zabell’s sufficientness postulate, where the assumption

A3) is replaced by the assumption fi(n, k,n) = f(n, k, ni), that is the probability of observing

the species X∗i depends only on n, k and ni, for any i = 1, . . . , k. The following generalization

of the Zabell’s sufficientness postulate can be proved.
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Proposition 3.1 Let P be a pecies sampling model with predictive probabilities of the form

(30), and allowing either for an infinite number of species or for a finite random number T of

species, with T being supported on N. Furthermore, assume that

A1) Pr[Πn = πn] > 0 for all the partitions πn of the set {1, . . . , n};

A2) g(n, k,n) = g(n, k);

A3) fi(n, k,n) = f(n, k, ni) for any i = 1, . . . , k.

Under A1)-A3) there exists a parameter α < 1 and a collection of nonnegative weights (Vn,k)1≤k≤n,n≥1

with V1,1 = 1 and satisfying Vn,k = Vn+1,k(n− αk) + Vn+1,k+1 such that

g(n, k) =
Vn+1,k+1

Vn,k
; f(n, k, ni) =

Vn+1,k

Vn,k
(ni − α)

for any i = 1, . . . , k. In other terms, if a species sampling model P satisfies the assumptions

A1)-A3) then P is a Gibbs-type species sampling model with parameter α < 1.

As we pointed out in the Introduction, Zabell’s sufficientness postulate generalizes the origi-

nal framework of Regazzini [58] and Lo [48] by introducing the dependency on k in the function

g. Proposition 1 provides an even more general framework by introducing the dependency on

k in both the function g and the function fi, for any i = 1, . . . , k, while maintaining the same

structure with respect to the dependency on the frequencies counts n. The proof of Proposition

1 is rather long and technical, although along lines similar to the proof of Zabell’s sufficientness

postulate. In particular it consists of verifying the following main steps:

i) showing that the function f(n, k, ni) is a linear with respect to ni, for any n ≥ 1, 1 ≤ k ≤ n,

i.e., there exist parameters an,k and bn,k such that f(n, k,m) = an,k + bn,km;

ii) showing that the parameter bn,k is different from zero, for any n ≥ 1 and 1 ≤ k ≤ n; this

allows us to introduce an additional parameter αn,k = −an,k/bn,k, which we show to be

independent of n and k and to be strictly less than 1;

iii) introducing the new parametrization Vn,k, showing that it satisfies the recursion specific

of the Gibbs-type prior and finally recovering the fi and g of a generic Gibbs-type prior.

See Section 1 of the supplementary material for the proof of Proposition 1. Note that Proposition

1 does not characterize the entire class of Gibbs-type species sampling models. Indeed we

confined ourself to species sampling models allowing either for an infinite number of species

or for a finite random number T of species, with T being supported on N. According to the

characterization of Gnedin and Pitman [27], this restriction excludes Gibbs-type species sampling
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models with α < 0 and with M being a distribution with finite support. It remains an open

problem to check whether it is possible to characterize the entire class of Gibbs-type priors by

relaxing A1).

One can derive an intuitive urn scheme that describes the predictive probabilities for the

class of Gibbs-type species sampling model. Let (Vn,k)1≤k≤n,n≥1 be a collection of nonnegative

weights such that V1,1 = 1 and Vn,k = Vn+1,k(n − αk) + Vn+1,k+1. Consider an urn containing

both colored and black balls, where colored balls may be interpreted as the individuals with their

associated species (color). The urn initially contains only a black ball with an arbitrary weight.

Balls are drawn successively from the urn with probabilities proportional to their weights, and

the drawing mechanism is described by the following Pólya-like urn scheme. Assuming that at

the i-th draw black balls have weight M , and that there are k distinct colors in the urn with

weights M1, . . . ,Mk, respectively, at the (i+ 1)-th draw:

i) if we pick a black ball, then it is returned to the urn together with a black ball of weight

B∗i+1 = M
Vi+2,k+2Vi+1,k

Vi+2,k+1Vi+1,k+1
−M, (18)

and a ball of a new color with weight

A∗i+1 = (1− α)M
Vi+1,k

Vi+1,k+1
; (19)

ii) if we pick a non-black ball, then it is returned to the urn together with a black ball of

weight

B̃i+1 = M
Vi+2,k+1Vi+1,k

Vi+2,kVi+1,k+1
−M, (20)

and an additional ball of the same color with weight

Ãi+1 = M
Vi+1,k

Vi+1,k+1
. (21)

If Xn is the color the non-black ball returned in the urn after the n-th draw, then it can be

verified that Pr[Xn+1 ∈ · |X1, . . . , Xn] coincides with the predictive probabilities (5) of the class

of Gibbs-type species sampling models. We refer to Section 2 of the supplementary material for

details on formulae (36), (37), (38) and (39). Hereafter we denote by Xn,k a sample of size n

from the above urn scheme and featuring Kn = k ≤ n distinct colors, labelled by X∗1 , . . . , X
∗
Kn

,

with frequencies Nn = n.

Note that the urn scheme proposed in Zabell [74] is recovered from (36), (37), (38) and (39)

by setting Vn,k of the form (9) and M = θ+kα. Note that under this assumptions the black ball

is updated only when the black ball is drawn. This is indeed a feature of Zabell’s urn scheme.
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Differently, in our urn scheme the weight of the black ball is updated when the black ball is

drawn (36) and also when a non-black ball is drawn (38). According to (38), in order to update

the black ball only when the black ball is drawn we must assume the following constrain

Vn+2,k+1Vn+1,k

Vn+2,kVn+1,k+1
= 1. (22)

By means of (5), it can be easily verified that the assumption (52) is equivalent to

Pr[Xn+2 is of color X∗i |Xn+1,k+1] (23)

= Pr[Xn+2 is of color X∗i |Xn+1,k],

for i = 1, . . . , k, i.e. the probability of observing at the next step a species of type i is independent

of k. By Zabell’s sufficientness postulate and Proposition 1 together, we know that, for any

α ∈ (0, 1) and θ > −α, the two parameter Poisson-Dirichlet process is the unique Gibbs-type

species sampling model for which (23) holds true. In Section 2 of the supplementary material

we present a direct proof of this fact, which is stated here as a proposition. This proposition

holds true for all α < 1 and does not rely on Zabell’s characterization but only on Proposition

1.

Proposition 3.2 The two parameter Poisson-Dirichlet process is the unique Gibbs-type species

sampling model for which the assumptions (52) hold true.

Now, let us consider the alternative scenario in which the weight of the black ball is not

updated neither when the black ball is drawn, nor when a non-black ball is drawn. Recall that,

from the Pólya-like urn scheme of Zabell [74], this scenario is obtained by letting α → 0. In

other terms we are considering the predictive probabilities characterizing the Dirichlet process.

According to (36) and (38), in order to never update the black ball we must assume condition

(52) together with
Vn+2,k+2Vn+1,k

Vn+2,k+1Vn+1,k+1
= 1. (24)

By means of (5), it can be easily verified that the two assumptions are equivalent to assuming

(23) and

Pr[Xn+2 is a new color |Xn+1,k+1] (25)

= Pr[Xn+2 is a new color |Xn+1,k].

According to Regazzini [58], for any θ > 0 the Dirichlet process is the unique species sampling

model for which (23) and (25) hold true. The next proposition provides an alternative proof of

this result, not relying on the results of Regazzini [58], by only on Proposition 1. Its proof is

presented in Section 2 of the supplementary material.
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Proposition 3.3 The Dirichlet process is the unique Gibbs-type species sampling model for

which the assumptions (23) and (25) hold true.

So far we discussed the relationship between: i) the dependency on k of the ratio Vn+1,k+1/Vn,k

and Vn+1,k/Vn,k, which appear in the predictive probabilities (5); ii) the updates of the black

ball in the above Pólya-like urn scheme. According to Proposition 3.2 the weight of the black

ball is updated only when the black-ball is drawn if and only if Vn+1,k+1/Vn,k depends on k

and Vn+1,k/Vn,k does not depend on k. The opposite scenario consists of updating the weight

of the black ball when a non-black ball is drawn, and not updating it when the black ball is

drawn. According to (36) and (38), this scenario is obtained by assuming only (24). In the

next proposition we show that this constraint alone implies that α = 0. That is, imposing not

to reinforce the black ball when a black ball is picked leads to the trivial scenario in which the

weight of the black ball is actually never updated. See Section 2 of the supplementary material

for the proof of the next proposition.

Proposition 3.4 The Dirichlet process is the unique Gibbs-type species sampling model for

which the assumption (25) holds true.

If α→ 0 then the urn scheme of Zabell [74] reduces to the Pólya-like urn scheme introduced

by Hoppe [33]. Hoppe [33] showed that the configuration of the colored balls after n draws

from the urn is distributed as the sampling formula of Ewens [20], i.e, the distribution of the

number of different gene types (alleles) and their frequencies at a selectively neutral locus under

the infinitely-many-alleles model of mutation with rate θ > 0. Hence, the following natural

genetic interpretation for the Hoppe’s urn scheme: colors are mutations and the black ball,

which is ignored in describing the urn configuration, is a device for introducing new mutations.

See Crane [16] for detailed account of the interplay between Hoppe’s urn and Ewens sampling

formula, as well as for their genetic interpretations. Under the Zabell’s urn scheme, as well as

under our general urn scheme, the distribution of the configuration of the colored balls after n

draws from the urn can be easily derived from (11). See, e.g., Pitman [51] and Pitman [53].

However, despite explicit generalized Ewens sampling formulae are available, we are not aware

of any genetic interpretation of them. Even for the simplest case of the Zabell’s urn scheme, a

natural genetic interpretation seems missing from the literature. While the parameter θ might

be still interpreted as a mutation parameter, it is not clear a natural genetic interpretation for

the parameter α ∈ (0, 1). See Feng and Hoppe [24] for a discussion.
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4 Sufficientness postulates and hierarchical Dirichlet processes

The hierarchical Dirichlet process was introduced in Teh et al. [67], while its two parameter

generalization is due to Teh [65]. Let P be a species sampling model with nonatomic base dis-

tribution ν0. Hierarchical species sampling models are defined as collections of species sampling

models, say P1, . . . , Pr, with the same random base distribution P . Due to the discreteness of P ,

the support of the Pj ’s is contained in that of P and, hence, all the Pj ’s share the same random

support of P . A sample from a hierarchical species sampling model is then part of a random

array (Xj,i)i≥1,1≤j≤r, which is partially exchangeable in the sense de Finetti [18] originally at-

tached to this term, i.e., each sequence (Xj,i)i≥1 is exchangeable for all j ≤ r. The distribution

of a sample (Xj,i)1≤i≤nj ,1≤j≤r from a hierarchical species sampling model can be expressed in

the following hierarchical form

Xj,i |Pj
ind∼ Pj i = 1, . . . , nj , j = 1, . . . , r, (26)

Pj |P
ind∼ Pj(P ) j = 1, . . . , r,

P ∼ P,

where nj is the size of the sample from Pj and, in the second line, Pj is indexed by j be-

cause the conditional distribution may depend on additional population-specific parameters and

P . One may think of the sample (Xj,i)1≤i≤nj ,1≤j≤r as a collection of samples from r different

populations. Within population, observations are exchangeable, but across populations their

dependence becomes weaker. Consideration of hierarchical models defined by layers of species

sampling models raises the interesting problem of whether there exists sufficientness postulates

that characterize the resulting models. In this section we discuss such a problem with respect to

the two parameter hierarchical Poisson-Dirichlet process, namely: i) the Pj ’s are two parameter

Poisson-Dirichlet process with parameters αj ∈ [0, 1), θj > −αj and with common base distri-

bution P ; ii) P is a two parameter Poisson-Dirichlet process with parameters α ∈ [0, 1), γ > −α
and nonatomic base distribution ν0.

To describe the two parameter hierarchical Poisson-Dirichlet process we adopt the notation

of Teh and Jordan [68]. Let X∗∗1 , . . . , X
∗∗
K be the K distinct species observed in the joint sample

from the r populations. Observations in population j are grouped in clusters. We remark that

there may be two or more clusters in the population j composed of individuals of the same

species. We therefore denote by mj,k the number of clusters in population j sharing species

X∗∗k and by nj,t,k the number of observations in population j, belonging to the t-th cluster

and having species X∗∗k . Within cluster t observations belong to the same species. We use
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dots in the subscripts to denote that we are summing over indexes, e.g. nj·· and mj· are the

number of observations and the number of clusters in population j respectively. Finally, we

denote by (X∗j,1, . . . , X
∗
j,mj·

) the species of the mj· clusters in population j. Given a sample

(Xj,i)1≤j≤r,1≤i≤nj·· , the predictive probability of Xj,i+1 is

θj +mj·αj
θj + nj··

P (·) +
1

θj + nj··

mj·∑
t=1

(njt· − αj)δX∗
j,t

(·) (27)

for any j = 1, . . . , r, whereas the predictive probability for a new cluster X∗j,mj·+1 is

γ +Kα

γ +m··
ν0(·) +

1

γ +m··

K∑
k=1

(m·k − α)δX∗∗
k

(·), (28)

These two formulae should be understood as follows. Xj,i+1 joins the t-th cluster in population

j and belongs to species X∗j,t with probability proportional to (njt· − αj), or it forms a new

cluster with probability proportional to (θj +mj·αj). In this latter case, the species of this new

cluster, X∗j,mj·+1 is sampled from (28). Such a species is one of those already observed among

all populations, say X∗k , with probability proportional to (m·k−Kα), or it is a new species with

probability proportional to (γ + Kα). The parameters αj and θj have the same interpretation

as for the predictive probabilities (17). Instead, α and γ control the total number and the

sharing of cluster values among populations: the lower γ the lower is the average total number

of different species observed K; the larger α the lower is the number of species shared across

populations. We refer to Teh and Jordan [68] for further details.

The predictive probabilities of the hierarchical Dirichlet process arises from (27) and (28)

by setting α = 0 and αj = 0 for any j = 1, . . . , r. We refer to Teh et al. [67] for a detailed

account on this predictive probabilities, with a description in terms of the so-called Chinese

restaurant franchise process. We assume the θj = θ for any j = 1, . . .. Now, let (Xi)i≥1 be an

exchangeable sequence directed by a Dirichlet process P with parameter γ and base distribution

ν0. Given P , or equivalently given (Xi)i≥1, let (Xj,i)i≥1,j≥1 be a collection of conditionally

independent exchangeable sequences, the j-th sequence being directed by a Dirichlet process Pj

with parameter θ and base distribution P . We observe that in order to implement the second

level of the hierarchy, and generate a finite sample of observations from multiple populations, it

is not necessary to resort to P , but it is sufficient to have a truncated version of the Pólya urn

sequence (Xi)i≥1. In particular, it is enough to have at hand (Xi)i≤n··· , because the exchangeable

sequences at the second level of the hierarchy needs at most n··· conditional independent samples

from P . In the next proposition we introduce a sufficientness postulate for the hierarchical

Dirichlet process. Our postulate thus extends the characterization of Regazzini [58] and reveals

some limitations of the hierarchical Dirichlet process.
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Proposition 4.1 Let (Xj,i)i≥1,j≥1 be a partially exchangeable array directed by a hierarchical

species sampling model, and assume that its predictive probabilities are such that the conditional

probability of X`,n`+1 given the sample (Xj,i)1≤i≤nj ,j≤r is

wn`F̂`,n` + (1− wn`)F [(Xj,i)1≤i≤nj ,j≤r] (29)

where

i) F̂`,n` is the empirical distribution of X`,1, . . . , X`,n`;

ii) wn` varies only with the population specific sample sizes n`;

iii) F [(Xj,i)1≤i≤nj ,j≤r] does not depend on `.

Then the hierarchical Dirichlet process is the directing measure of the array (Xj,i)i≥1,j≥1.

The proof of Proposition 4.1 is presented in Section 3 of the supplementary material. Propo-

sition (4.1) imposes some constraints on the predictive probabilities of the partially exchangeable

array (Xj,i)i≥1,1≤j≤r. In particular, the constraint on the form (62) for the predictive probabil-

ities, with the function F [(Xj,i)1≤i≤nj ,j≤r] not depending on ` and the weights wn` depending

only on the sample size n`, is the most relevant in practice. Indeed this constraint requires

that the conditional probability of discovering a new species in an additional sample from the

population j, given the sample (Xj,i)1≤i≤nj ,1≤j≤r, depends only on the size of the sample from

the population j, in a way that is homogeneous across populations. More formally, probabilities

of discovering a new species by sampling from one of the populations are proportional to the

vector of weights [(1−wn1), . . . , (1−wnr)]. This assumption is violated in numerous real-world

examples, as evidenced in Figure 1. This figure shows an estimate of the Shannon entropy for

the distribution of bacterial species in 900 samples of the vaginal microbiome taken from the

work of Ravel et al. [59]. Note that the predictive probabilities of a hierarchical Dirichlet pro-

cess, conditioned on these data, would assign an equal probability to the event of discovering a

new species from each of these populations, because the sample sizes nj ’s are equal, despite the

evident disparity in the diversity of species.

Proposition 5 does not extend easily to the two parameter hierarchical Poisson-Dirichlet

process. In fact, we believe it may not be trivial to provide a suffientness postulate for this

model, unless one makes use of latent variables. Specifically, consider the predictive probabilities

(27) and (28). If we condition on a set of variables that determine the steps in (Xj,i)i≥1,1≤j≤r in

which P is sampled, then it is not difficult to formulate sufficientness conditions that characterize

the exchangeable sequences. In particular the sufficientness characterization of Zabell [74] could
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Figure 1: The empirical Shannon entropy in the microbial distribution across 900 samples of the

vaginal microbiome (Ravel et al. [59]), which are ranked according to the level of diversity. The

dashed blue line shows the Shannon entropy of the Uniform distribution for the same number

of species.

be applied to each layer of the process. However, conditioning on this set of variables is not in

the spirit of Johnson sufficientness postulate because, first, the variables that determine when P

is sampled are not observable since the species observed at those steps are not necessarily “new”,

and second, unlike the exchangeability of a random partition the hierarchical structure assumed

does not have an apparent subjective motivation. We also note that model interpretability, in

this case, is provided by the overall probability construction, rather than by characteristics of

the joint distribution of dependent random partitions, which in most cases presents analytic

expressions that are far from trivial. With the exception of the correlations between the random

probabilities P1, . . . , Pr, results to quantify and understand the degree of dependence among

(Xj,i)i≥1,1≤j≤r remain limited.

5 Discussion

In this paper we reviewed and discussed some nonparametric counterparts of the celebrated

Johnson’s “sufficientness” postulate. In particular we presented a general framework for “suffi-

cientness” which extends previous characterizations by Regazzini [58], Zabell [71], Lo [48] and

Zabell [?] for the Dirichlet process and two parameter Poisson-Dirichlet process. The reader is

referred to the works of Zabell [72], Walker and Muliere [69], Rolles [61] and Bacallado et al. [4]

for related “sufficientness” characterizations in the context of neutral to the right random prob-

ability measures and Markov chains. Following the parallel with the “sufficientness” postulates
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for the Dirichlet process and the two parameter Poisson-Dirichlet process, we paired our postu-

late with a simple Pólya-like urn scheme for describing the predictive probabilities of Gibbs-type

species sampling priors. Such a scheme provides a novel and intuitive interpretation of these

predictive probabilities in terms of the updates of a sequence of balls drawn for a Pólya-like urn.

We find this interpretation particularly useful in order to highlights the fundamental differences

between the Dirichlet process, the two parameter Poisson-Dirichlet process, and the more gen-

eral class of Gibbs-type species sampling models. In particular we show how the sufficientness

postulates originally proposed by Zabell [74] and Regazzini [58] may be rephrased in terms of

our Pólya-like urn scheme.

The Pólya-like urn schemes for the Dirichlet process and the two-parameter Poisson-Dirichlet

process are often applied in hierarchical constructions. While hierarchical species sampling priors

had a tremendous impact on several applied fields, it still remains difficult to guide a selection of

the prior distribution with subjective arguments, such as the number of species and their vari-

ability across populations. On the other hand it also remains challenging to tune hierarchical

constructions to optimize the performance of the resulting tools, quantified by classification and

prediction error metrics. Our hope, and a motivation for our work, is that “sufficientness” pos-

tulates and urn schemes contribute to a better understanding and interpretability of hierarchical

constructions [67] and dependent random distributions [64] that combine layers of exchangeable

random partitions. In particular the study of Gibbs-type exchangeable random partitions has

the potential of contributing to the critical evaluation of hierarchical constructions for data anal-

ysis. When, for example, heterogeneous populations, say in ecology of microbiome studies, are

modeled using dependent random partitions embedded in hierarchical constructions, how can we

use the imputed layers of partitions generated through Markov chain Monte Carlo algorithms or

other approaches to evaluate the construction of the prior model? When can we say that the use

of hierarchical species sampling priors appears appropriate? Which type of assumption can we

leverage on to tackle this type of problems? The theoretical characterization and classification

of random partitions will allow the statistical and machine learning communities to approach

these problems.
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A Proofs of Section 3

A.1 Proof of Proposition 1

For the sake of clarity we start by recalling the statement of Proposition 1.

Proposition 1 Let P be an arbitrary species sampling model with predictive probabilities of the

form

Pr[Xn+1 ∈ · |Xn,k] = g(n, k, n1, . . . , nk)ν0(·) +
k∑
i=1

fi(n, k, n1, . . . , nk)δX∗
i
(·), (30)

for all n > 1, where g and fi are non-negative functions satisfying the constraint g(n, k, n1, . . . , nk)+∑
1≤i≤k fi(n, k, n1, . . . , nk) = 1 and ν0 is a diffuse base measure. Furthermore, consider the fol-

lowing set of assumptions:

A1) Pr[Πn = πn] > 0 for all the partitions πn of the set {1, . . . , n};

A2) g(n, k, n1, . . . , nk) = g(n, k);

A3) fi(n, k, n1, . . . , nk) = f(n, k, ni) for all i = 1, . . . , k;

Under A1-A3 there exist a parameter α < 1 and a triangular array of nonnegative weights

(Vn,k)n≥1,1≤k≤n with V1,1 = 1 and satisfying the recursion Vn,k = Vn+1,k(n − αk) + Vn+1,k+1,

such that

g(n, k) =
Vn+1,k+1

Vn,k
; f(n, k, ni) =

Vn+1,k

Vn,k
(ni − α)
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for all i ≤ k. In other terms, if a species sampling model P satisfies the assumptions A1-A3 then

P is either a Gibbs-type species sampling model with parameter 0 ≤ α < 1 or a Gibbs-type prior

species sampling model with α < 0 and an unknown known of species with unbounded support.

We divide the proof into five parts. In the next lemma, we start by showing that assumption

A1 implies that g cannot take values 0 or 1.

Lemma A.1 0 < g(n, k) < 1 for all n ≥ 1 and k ≤ n.

Proof. Let us assume that g(n, k) = 0 for some (n, k). From A1, every partition has positive

probability. Hence, let us consider a partition with k species observed in a sample of n and let

us consider the two events 1) observe a new species at the (n + 1) − th sample and observe a

species of type X∗i at the (n + 2)− th one, 2) observe a species of type X∗i at the (n + 1)− th
sample and a new species at the (n+ 2)− th one. By exchangeability, these two events have the

same probability. Therefore,

g(n, k)f(n+ 1, k + 1, ni) = f(n, k, ni)g(n+ 1, k) (31)

for all ni ≤ n−k+1. Because g(n, k) = 0, we have 0 = f(n, k, ni)g(n+1, k) for all ni ≤ n−k+1.

From g(n, k) +
∑k

i=1 f(n, k, ni) = 1 (and g(n, k) = 0), it cannot be f(n, k, ni) = 0 for all

ni ≤ n− k + 1. Hence it must be g(n+ 1, k) = 0. By induction, g(m, k) = 0 for all m ≥ n. Let

us now consider a sample of size n−1, displaying k species, and let us consider the two events 1)

observe a species of type X∗i at the n− th sample and observe a new species at the (n+ 1)− th
one, 2) observe a new species at the n− th sample and a species of type X∗i at the (n+ 1)− th
one. By exchangeability, these two events have the same probability. Therefore,

f(n− 1, k, ni)g(n, k) = g(n− 1, k)f(n, k + 1, ni)

for all ni ≤ n − k. Because g(n, k) = 0, 0 = g(n − 1, k)f(n, k + 1, ni) for all ni ≤ n − k.

f(n, k + 1, ni) cannot be equal to zero for all ni ≤ n − k, otherwise (since also g(n, k) = 0), a

partition of n + 1 elements with k + 1 blocks would have probability 0, against A1. Hence, it

must g(n − 1, k) = 0 and, by induction, g(m, k) = 0 for all m ∈ {k, . . . , n}. Hence, we have

shown that if g(n, k) = 0 for some (n, k), then g(m, k) = 0 for all m ≥ k, which implies that any

partition with n elements and l(≥ k) blocks has probability 0, against A1. Therefore it must be

g(n, k) > 0 for all (n, k).

Let us now assume that g(n, k) = 1 for some (n, k). From g(n, k) +
∑k

i=1 f(n, k, ni) = 1, it

follows that f(n, k, ni) = 0 for all ni ≤ n − k + 1. From formula (31), it also follows that

f(n + 1, k + 1, ni) = 0 for all ni ≤ n − k + 1. Hence, g(n + 1, k + 1) = 1 and inductively

27



g(n+ j, k+ j) = 1 for all j ≥ 1. Let us consider a partition of n− 1 elements divided into k− 1

blocks, and let us consider the two events 1) observe an element of type X∗i at the n− th sample

and a new species at the (n+ 1)− th one, 2) observe a new species at the n− th sample and a

species of type X∗i at the (n+ 1)− th sample. By exchangeability,

f(n− 1, k − 1, ni)g(n, k − 1) = g(n− 1, k − 1)f(n, k, ni)

for all ni ≤ n − k + 1. Since f(n, k, ni) = 0 for all ni ≤ n − k + 1, we have f(n − 1, k −
1, ni)g(n, k − 1) = 0 for all ni ≤ n− k + 1. g(n, k − 1) cannot be equal to zero, otherwise (since

also f(n, k, ni) = 0 for all ni ≤ n−k+ 1) a partition of n+ 1 elements with k blocks would have

probability zero, against A1. Hence, it must be f(n − 1, k − 1, ni) = 0 for all ni ≤ n − k + 1,

which implies g(n − 1, k − 1) = 1. By induction, g(n − j, k − j) = 1 for all i < k. We have

shown that g(n, k) = 1 implies g(n+ j, k + j) = 1 for all i > −k. Therefore, any partition of m

elements with l blocks, with m− l > n− k, has probability zero, against A1. Hence, it must be

g(n, k) < 1 for all (n, k).

�

In the next proposition, we proceed by showing that fi(n, k, ni) must be a linear function of ni,

for all n ≥ 1 and 2 ≤ k ≤ n. The special case k = 1 will be considered separately later on.

Proposition A.1 For all n ≥ 1, 2 ≤ k ≤ n and 1 ≤ m ≤ n − k + 1 there exist constants an,k

and bn,k such that f(n, k,m) = an,k + bn,km.

Proof. If n ≤ 3 it is immediate to set the constants an,k and bn,k in such a way that the function

f(n, k,m) is linear with respect to m. Therefore, let us consider the case n ≥ 4. If k = n

then m = 1 and we can choose an,n and bn,n such that f(n, n, 1) = an,n + bn,n. Furthermore, if

k = n − 1 then 1 ≤ m ≤ 2 and an,n−1 and bn,n−1 are the solutions of the following system of

equations

f(n, n− 1, 1) = an,n−1 + bn,n−1

f(n, n− 1, 2) = an,n−1 + bn,n−12.

If 3 ≤ k ≤ n−2 then 1 ≤ m ≤ n−k+1 and we can prove the linearity of the function f(n, k,m)

by choosing an,k, bn,k as the solutions of the following system of equations

f(n, k, 1) = an,k + bn,k

f(n, k, n− k + 1) = an,k + bn,k(n− k + 1),
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and then showing that f(n, k,m) has constant increments in m, namely f(n, k,m + 1) −
f(n, k,m) = f(n, k,m) − f(n, k,m − 1) for all 1 < m < n − k + 1. Let us consider a par-

tition of n elements with k blocks of the form (n1, n2, . . .) = (2, 2, . . .), with the last k−2 groups

having a total of n3 + . . .+ nk = n− 4 elements. Then,

f(n, k, 2) + f(n, k, 2) +

k∑
i=3

f(n, k, ni) + g(n, k) = 1

and, removing one element of X∗1 and adding it to X∗2 , we obtain

f(n, k, 1) + f(n, k, 3) +

k∑
i=3

f(n, k, ni) + g(n, k) = 1.

By equating these identities we obtain f(n, k, 3) − f(n, k, 2) = f(n, k, 2) − f(n, k, 1). Along

the same lines, for the partition (n1, n2, . . .) = (j, 2, . . .) for any 3 ≤ j ≤ n − k we obtain

f(n, k, ni + 1) − f(n, k, ni) = f(n, k, ni) − f(n, k, ni − 1) for any 1 < ni < n − k + 1. Finally,

if k = 2 by exchangeability f(n, 2, ni)g(n+ 1, 2) = g(n, 2)f(n+ 1, 3, ni). Therefore f(n, 2, ni) is

linear since g(n+ 1, 2) > 0 from Lemma A.1 and since we already showed that f(n+ 1, 3, ni) is

linear.

�

In the next lemma, we show that bn,k of Proposition A.1 must be different from zero.

Lemma A.2 For all n ≥ 1 and 2 ≤ k ≤ n, bn,k 6= 0.

Proof. For n = 1 there is nothing to prove since we are assuming k > 1. For n = 2 and k = 2,

b2,2 can be arbitrarily selected in such a way to be different from 0. Now, let us assume that

bn,k = 0 for some n ≥ 3 and 2 ≤ k ≤ n. Given a sample Xn,k, let us consider the following two

events: 1) we observe the species X∗i at the (n+ 1)-th draw and a new species at the (n+ 2)-th

draw; 2) we observe a new species at the (n+ 1)-th draw and the species X∗i at the (n+ 2)-th

draw. By exchangeability these two events have the same probability, and from Proposition

(A.1),

(1− kan,k)(an+1,k+1 + bn+1,k+1ni) = an,k(1− kan+1,k − bn+1,k(n+ 1)),

that is

(1− kan,k)bn+1,k+1ni = an,k(1− kan+1,k − bn+1,k(n+ 1))− (1− kan,k)an+1,k+1.

Therefore (1− kan,k)bn+1,k+1ni is constant as a function of ni in the range 1 ≤ ni < n− k + 1.

It follows that if n ≥ 3, so that both ni = 1 and ni = 2 are possible, then either 1 − kan,k = 0

or bn+1,k+1 = 0. If 1− kan,k = 0 then an,k = k−1, which implies

0 =
1

k
(1− kan+1,k − bn+1,k(n+ 1)) =

1

k
g(n+ 1, k),
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where, from Lemma A.1, g(n+1, k) > 0. Hence bn+1,k+1 = 0. Furthermore, given Xn,k consider

the following two events: 1) we observe the species X∗i at the (n + 1)-th draw and the species

X∗j at the (n+ 2)-th draw; 2) we observe the species X∗j at the (n+ 1)-th draw and the species

X∗i at the (n+ 2)-th draw. By exchangeability, one has

an,k(an+1,k + bn+1,kni) = an,k(an+1,k + bn+1,knj).

Therefore either an,k = 0 or bn+1,k = 0. If an,k = 0 then g(n, k) = 1 against the assumption

Lemma A.1, hence it must be bn+1,k = 0. Therefore, if bn,k = 0 then it must be bn+1,k =

bn+1,k+1 = 0. If bn,k = 0, then also must be bn−1,k−1 = 0. Indeed, if we consider a partition

of n− 1 elements and k − 1 blocks, by exchangeability, the following two events have the same

probability: 1) observe species X∗i at the (n − 1)-th draw and a new species at the n-th draw;

2) observe a new species at the (n − 1)-th draw and species X∗i at the n-th draw. Therefore,

one has

(an−1,k−1 + bn−1,k−1ni)g(n, k) = g(n− 1, k − 1)(an,k + bn,kni)

and rearranging,

bn−1,k−1ni =
g(n− 1, k − 1)

g(n, k)
an,k − an−1,k−1,

which must be satisfied for all ni ≤ n − k + 1. As a consequence, it must be bn−1,k−1 = 0.

Furthermore, by similar arguments, if bn,k = 0 then also must be bn−1,k = 0. Indeed, considering

the two events: 1) observe species X∗i at the (n−1)-th sample and species X∗j at the n-th sample,

2) observe species X∗j at the (n− 1)-th sample and species X∗i at the n-th sample, one has

(an−1,k + bn−1,kni)(an,k + bn,knj) = (an−1,k + bn−1,knj)(an,k + bn,kni)

and

(an−1,k + bn−1,kni)an,k = (an−1,k + bn−1,knj)an,k

with an,k 6= 0, otherwise g(n, k) = 1 which is against Lemma A.1. Accordingly bn−1,kni =

bn−1,knj which implies bn−1,k = 0. Accordingly, if bn,k = 0, then all bm,l = 0 for any m ≥ 2 and

2 ≤ l ≤ m. Arguing as before we see that (1 − kan,k)an+1,k+1 = an,k(1 − kan+1,k). Indeed for

any fixed k one can apply the same arguments considered in the proof of Lemma 2 of [?]. In

particular, the recursion admits a solution with all elements between 0 and 1 only if the initial

condition (an,2)n≥2 is constant after some n∗, which in turns implies that for n large all an,k

must be constant. Let us denote by a the common value of an,k for n large. Since a > 0 it

follows that na > 1 for large n. But this is impossible because 1− an = g(n, n) > 0.

�
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We can now introduce the new parameter rn,k = −an,k/bn,k, which is well defined for all n ≥ 1

and 2 ≤ k ≤ n, because we just showed that bn,k 6= 0. With this new parametrization, we can

write

f(n, k, ni) = bn,k(ni − rn,k)

and

g(n, k) = 1−
k∑
i=1

f(n, k, ni) = 1− bn,k(n− krn,k).

In the next lemma we show that the parameter rn,k is constant with respect to both n and k

and we denote its value by α. Moreover, we show that α must be smaller than 1.

Lemma A.3 For all n ≥ 1 and 2 ≤ k ≤ n, rn,k is constant and smaller than 1.

Proof. We start by showing that rn,k is constant with respect to variations of n ≥ 1 and

2 ≤ k ≤ n. If n = 2, we can choose a2,2 and b2,2, satisfying −a2,2
b2,2

= α and f(2, 2, 1) = a2,2 + b2,2.

So, let assume n ≥ 3 and consider the following events: 1) we observe the species X∗i at the

(n+ 1)-th draw and the species X∗j at the (n+ 2)-th draw; 2) we observe the species X∗j at the

(n+ 1)-th draw and the species X∗i at the (n+ 2)-th draw. By exchangeability these two events

have the same probability. In particular we can write

bn,k(ni − rn,k)bn+1,k(nj − rn+1,k) = bn,k(nj − rn,k)bn+1,k(ni − rn+1,k).

Hence (ni − rn,k)(nj − rn+1,k) = (nj − rn,k)(ni − rn+1,k), which implies that ni(rn,k − rn+1,k) =

nj(rn,k − rn+1,k). In particular, since n ≥ 3 both ni = 1 and nj = 2 are possible. Therefore

rn,k = rn+1,k, namely rn,k = rk for any n ≥ k. Now, consider the following events: we observe

the species X∗i at the (n+ 1)-th draw and a new species at the (n+ 2)-th draw; ii) we observe

a new species at the (n+ 1)-th draw and the species X∗i at the (n+ 2)-th draw. As before, by

exchangeability

bn,k(ni − rk)(1− bn+1,k(n+ 1) + kbn+1,krk) = (1− bn,kn+ kbn,krk)bn+1,k+1(ni − rk+1)

i.e.,

ni(bn,k(1− bn+1,k(n+ 1) + kbn+1,krk)− (1− bn,kn+ kbn,krk)bn+1,k+1)

= bn,krk(1− bn+1,k(n+ 1) + kbn+1,krk)− rk+1(1− bn,kn+ kbn,krk)bn+1,k+1.

Note that, since the right-hand side does not depend on the frequency ni, then it must be

ni(bn,k(1− bn+1,k(n+ 1) + kbn+1,krk)− (1− bn,kn+ kbn,krk)bn+1,k+1) = 0 (32)
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and in turns

bn,krk(1− bn+1,k(n+ 1) + kbn+1,krk)− rk+1(1− bn,kn+ kbn,krk)bn+1,k+1 = 0. (33)

Now let us consider Equation (32) and Equation (33). In particular these equations lead to

bn+1,k+1

bn,k
=

(1− bn+1,k(n+ 1) + kbn+1,krk)

(1− bn,kn+ kbn,krk)
(34)

and
rk+1

rk
=
bn,k(1− bn+1,k(n+ 1) + kbn+1,krk)

bn+1,k+1(1− bn,kn+ kbn,krk)
, (35)

respectively. By combining Equation (34) with Equation (35) we obtain rk+1/rk = 1. Accord-

ingly, rk does not depend on k, and we denote by α the value of rk.

Finally, we must check that α < 1. If α = 1, then g(n, n) = 1, against assumption Lemma

A.1. If α > 1, because f(n, k, ni) ≥ 0, we must have, bn,k(ni − α) ≥ 0 for all n, k ≤ n and

ni ≤ n−k+1. If we consider ni > α > nj (with n large enough), it must be true bn,k(ni−α) ≥ 0

and bn,k(nj − α) ≥ 0, which together imply bn,k = 0, against Lemma A.2.

�

Note that so far we have considered n ≥ 1 and 2 ≤ k ≤ n. For the case k = 1 the only possible

value for f is f(n, 1, n). In order to have a common notation it is convenient to define also

the additional parameter bn,1 = f(n, 1, n)/(n − α). We can now introduce, for any n ≥ 1 and

1 ≤ k ≤ n the new parameters defined as follows

Vn,k =
n−1∏
i=k

bi,k

k−1∏
j=1

(1− jbj,j(1− α))

with the proviso
∏
m≤l≤m−1 = 1 for any m ≥ 1, which also implies that V1,1 = 1. Observe that

bn,k = Vn+1,k/Vn,k and f(n, k, ni) and g(n, k) can be written as follows

f(n, k, ni) =
Vn+1,k

Vn,k
(ni − α)

and

g(n, k) = 1−
Vn+1,k

Vn,k
(n− kα).

We conclude by showing that for any n ≥ 1 and 1 ≤ k ≤ n the Vn,k’s, with V1,1 = 1, satisfies

the triangular recursion Vn,k = Vn+1,k(n− αk) + Vn+1,k+1.

Lemma A.4 For all n and for all k ≤ n, Vn,k satisfy the recursion Vn,k = Vn+1,k+1+Vn+1,k(n−
kα).
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Proof. Fix k. We prove that the property holds for all n ≥ k using induction on n. For n = k,

the property holds by simple algebraic calculations. Assume it holds for n, we show it holds for

n+ 1. Let us consider the following events: 1) we observe a new species at the (n+ 1)-th trial

and the species X∗i at the (n + 2)-th trial; 2) we observe the species X∗i at the (n + 1)-th trial

and a new species at the (n+ 2)-th trial. By exchangeability, we have(
1−

Vn+1,k

Vn,k
(n− kα)

)(
Vn+2,k+1

Vn+1,k+1
(ni − α)

)
=

(
Vn+1,k

Vn,k
(ni − α)

)(
1−

Vn+2,k

Vn+1,k
(n+ 1− kα)

)
,

which implies
Vn+2,k+1

Vn+1,k+1
=
Vn+1,k − Vn+2,k(n+ 1− αk)

Vn,k − Vn+1,k(n− αk)
.

By the induction hypothesis the denominator of the left-hand side is equal to the denominator

of the right-hand side, and so must be the two numerators. Hence, the recursion holds for n+ 1.

�

This complete the proof of Proposition 1, since by applying the recursion of Lemma A.4, we

obtain

f(n, k, ni) =
Vn+1,k

Vn,k
(ni − α)

and

g(n, k) =
Vn+1,k+1

Vn,k
.

B Derivation of the Polya-like urn scheme for the Gibbs-type

priors

We start by recalling the urn scheme for a general Gibbs-type prior. Assuming that at the

i-th draw the black ball has weight M , and that there are k distinct colors in the urn, denoted

by X∗1 , . . . , X
∗
k , with weights M1, . . . ,Mk respectively, the urn scheme works as follows: at the

(i+ 1)-th draw

i) if we pick a black ball, we return it to the urn with additional weight

B∗i+1 = M
Vi+2,k+2Vi+1,k

Vi+2,k+1Vi+1,k+1
−M, (36)

and we also add a ball of a new color with weight

A∗i+1 = (1− α)M
Vi+1,k

Vi+1,k+1
; (37)
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ii) if we pick a non-black ball, we add the following weight to black ball

B̃i+1 = M
Vi+2,k+1Vi+1,k

Vi+2,kVi+1,k+1
−M, (38)

and we add an additional ball of the picked color with weight

Ãi+1 = M
Vi+1,k

Vi+1,k+1
. (39)

We start by proving (36) and (37). Let Xn+1,k+1 be a sample from a Gibbs-type species sampling

model featuring Kn+1 = k + 1 species with frequencies (N1,n+1, . . . , NKn+1,n+1NKn+1+1,n+1) =

(n1, . . . , nk, 1). Assume that after the n-th draw the black ball has weight M , and that there are

k distinct colors, labelled by X∗1 , . . . , X
∗
k , with weights M1, . . . ,Mk, respectively. We denote by

M∗ the updated weight of the black ball, and by M∗k+1 the weight of the ball with color X∗k+1.

Then,

i)

Pr[Xn+1 is a new species |Xn,k] =
Vn+1,k+1

Vn,k
=

M

M +
∑

1≤j≤kMj
(40)

ii)

Pr[Xn+2 is a new species |Xn+1,k+1] (41)

=
Vn+2,k+2

Vn+1,k+1
=

M∗

M∗ +
∑

1≤j≤kMj +M∗k+1

;

iii) for any j = 1, . . . , k

Pr[Xn+2 is a species of type X∗j |Xn+1,k+1] (42)

=
Vn+2,k+1

Vn+1,k+1
(nj − α) =

Mj

M∗ +
∑

1≤j≤kMj +M∗k+1

;

iv)

Pr[Xn+2 is a species of type X∗k+1 |Xn+1,k+1] (43)

=
Vn+2,k+1

Vn+1,k+1
(1− α) =

M∗k+1

M∗ +
∑

1≤j≤kMj +M∗k+1

.

According to (40), and because Vn,k = Vn+1,k(n−αk) +Vn+1,k+1, one has
∑

1≤j≤kMj = M(n−
αk)Vn+1,k/Vn+1,k+1. By means of simple algebraic manipulations,

M∗ =
Vn+2,k+2

(n+ 1− α(k + 1))Vn+2,k+1

(
M∗k+1 +M

(n− αk)Vn+1,k

Vn+1,k+1

)
(44)
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and

M∗k+1 = (1− α)M
Vn+1,k

Vn+1,k+1
. (45)

Then, by combining the identity (44) with the identity (45), we obtain an expression for M∗.

Specifically, M∗ = MVn+2,k+2Vn+1,k/Vn+2,k+1Vn+1,k+1. Finally, it can be easily verified that

M∗ and (45) satisfy (42) for any j = 1, . . . , k. Accordingly, M∗ and (45) are the solutions of the

system of equations defined by (41), (42) and (43).

The proof of (38) and (39) is obtained by using the same arguments applied for (36) and

(37). Specifically, let Xn+1,k be a sample from a Gibbs-type species sampling model, featuring

Kn+1 = k species with frequencies (N1,n+1, . . . , Ni,n+1, . . . , NKn+1,n+1) = (n1, . . . , ni+1, . . . , nk).

Assume that after the n-th draw the black ball has weight M , and that there are k distinct colors,

labelled by X∗1 , . . . , X
∗
k , with weights M1, . . . ,Mk, respectively. We denote by M̃ the updated

weight of the black ball, and by M̃i the updated weight of the ball of color X∗i . Then,

i) for any 1 ≤ j ≤ k,

Pr[Xn+1 is a species of type X∗j |Xn,k] (46)

=
Vn+1,k

Vn,k
(nj − α) =

Mj

M +
∑

1≤j≤kMj
,

ii)

Pr[Xn+2 is a new species |Xn+1,k] (47)

=
Vn+2,k+1

Vn+1,k
=

M̃

M̃ + M̃i +
∑

1≤j 6=i≤kMj

;

iii) for 1 ≤ j 6= i ≤ k

Pr[Xn+2 is a species of type X∗j |Xn+1,k] (48)

=
Vn+2,k

Vn+1,k
(nj − α) =

Mj

M̃ + M̃i +
∑

1≤j 6=i≤kMj

;

iv)

Pr[Xn+2 is a species of type X∗i |Xn+1,k] (49)

=
Vn+2,k

Vn+1,k
(ni + 1− α) =

M̃i

M̃ + M̃i +
∑

1≤j 6=i≤kMj

.

According to (46), and because Vn,k = Vn+1,k(n − αk) + Vn+1,k+1, one has Mi = M(ni −
α)Vn+1,k/Vn+1,k+1. By simple algebraic manipulations, identities (47) and (49) lead to

M̃ =
Vn+2,k+1

(n+ 1− αk)Vn+2,k

(
M̃i +M(n− ni − α(k − 1))

Vn+1,k

Vn+1,k+1

)
(50)
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and

M̃i = (ni + 1− α)M
Vn+1,k

Vn+1,k+1
. (51)

Then, by combining the identity (50) with the identity (51), we can easily obtain an expression

for M̃ . Specifically, M̃ = MVn+2,k+1Vn+1,k/Vn+2,kVn+1,k+1. Finally, it can be easily verified

that M̃ and (51) satisfies (42) for any j = 1, . . . , k. Accordingly, M̃ and (51) is the solution of

the system of equations defined by (47), (48) and (49).

B.1 Other proofs

Proof of Proposition 2. We must show that the weight Vn,k =
∏

0≤i≤k−1(θ + iα)/(θ)(n) is the

only solution of
Vn+2,k+1Vn+1,k

Vn+2,kVn+1,k+1
= 1, (52)

satisfying the Gibbs-type recursion Vn,k = Vn+1,k+1 + (n − kα)Vn+1,k. This is precisely the

form of the Vn,k’s which gives the predictive probabilities of the two parameter Poisson-Dirichlet

process. Recall the constraints V1,1 = 1 and Vn,k = Vn+1,k(n − αk) + Vn+1,k+1. By means of

simple algebraic manipulations, (52) leads to

Vn+2,k+2Vn+1,k

Vn+2,k+1Vn+1,k+1
= 1 + α

Vn+2,k

Vn+2,k+1
, (53)

i.e.,
Vn+2,k+2

Vn+2,k+1
−
Vn+2,k+1

Vn+2,k
= α. (54)

For any fixed n, let us define gn(k) = Vn,k+1/Vn,k as a function of k. Hence (54) becomes the

difference equation gn+2(k+1)−gn+2(k) = α. Given the initial condition cn+2 = gn+2(1), where

cn+2 is an arbitrary positive constant, the difference equation has solution

gn+2(k) = cn+2 + (k − 1)α. (55)

We show that cn+2 does not depend on n. We start by showing that cn+2 = cn+3. Let us

consider the condition (53) with n and k replaced by n+ 1 and k + 1, respectively, i.e.

Vn+3,k+3Vn+2,k+1

Vn+3,k+2Vn+2,k+2
= 1 + α

Vn+3,k+1

Vn+3,k+2
,

that is
gn+3(k + 2)

gn+2(k + 1)
= 1 +

α

gn+3(k + 1)
. (56)

By replacing (55) into (56) we obtain c2n+3 + cn+3(α(k + 1) − cn+2) − cn+2α(k + 1) = 0. The

solution in cn+3 is cn+3 = cn+2. Along the same lines we obtain cn+i = cn+i+1 := c for any

i > 2. Hence, (55) can be written as gn+2(k) = c+ (k − 1)α, that is

Vn+2,k+1 = (c+ (k − 1)α)Vn+2,k. (57)
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Given the initial condition Vn,1 = bn, the difference equation (57) has solution Vn+2,k =

bn+2
∏

0≤i≤k−1(c−α+iα). Furthermore, one can write the difference equation bn+3 = bn+2/(n+

2 + c− α). Since V1,1 = 1 we have the initial condition b1 = 1 and the solution of the difference

equation is bn = 1/(c− α)n. The proof is completed by setting θ = c− α. Indeed recall that c

is positive while the range of θ is θ > −α. �

Proof of Proposition 3. Let (52) and

Vn+2,k+2Vn+1,k

Vn+2,k+1Vn+1,k+1
= 1 (58)

hold true. By means of simple algebraic manipulations, (58) leads to

Vn+2,k+1Vn+1,k

Vn+2,kVn+1,k+1
=

n+ 1− αk
n+ 1− α(k + 1)

, (59)

that is
Vn+2,k+1Vn+1,k

Vn+2,kVn+1,k+1
= 1

if α = 0. By combining identities (53) and (59) it follows that the case α = 0 is the only case,

within the our Pólya-like urn scheme for Gibbs-type species sampling models, for which the

weight of the black ball is never updated. The proof is completed. �

Proof of Proposition 4. Let (58) hold true. From (59), we have

Vn+2,k+1

Vn+2,k
=
Vn+2,k+2

Vn+2,k+1

n+ 1− αk
n+ 1− α(k + 1)

. (60)

Let gn+2(k) = Vn+2,k+1/Vn+2,k. From (60) one has the equation gn+2(k) = gn+2(k+ 1)((n+ 1−
αk)/(n+ 1−α(k+ 1))), with final condition gn+2(n+ 1) = Vn+2,n+2/Vn+2,n+1 = an+2. If we set

a = V2,2/V2,1 > 0, the solution of this equation corresponds to

gn+2(k) = a

n∏
i=k

n+ 1− iα
n+ 1− α(i− 1)

i.e.,

Vn+2,k+1

Vn+2,k
= a

n∏
i=k

n+ 1− iα
n+ 1− α(i+ 1)

.

Therefore, according to (60), for any n ≥ 1 and k ≤ n the following identity must be satisfied

a
n∏
i=k

n+ 1− iα
n+ 1− α(i+ 1)

= a
n+1∏
i=k+1

n+ 2− iα
n+ 2− α(i− 1)

. (61)

The identity (61) is satisfied if and only if α = 0. In particular if α = 0 then we obtain the

difference equation Vn+2,k+1 = aVn+2,k with initial condition Vn+2,1 = bn+2. The solution of
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this difference equation is Vn+2,k = bn+2a
k−1. Furthermore, one has the difference equation

bn+1 = bn/(n + a) with initial condition b1 = 1. The solution of this difference equation is

bn = 1/(a+ 1)(n−1). Hence, Vn,k = ak/(a)n. �

C Proofs of Section 4

C.1 Proof of Proposition 5

For the sake of clarity we start by recalling the statement of Proposition 5.

Proposition 5 Let (Xj,i)i≥1,1≤j≤r be a partially exchangeable array directed by a hierarchical

species sampling model, and assume that its predictive probabilities are such that the conditional

probability of X`,n`+1 given the sample (Xj,i)1≤i≤nj ,j≤r is

wn`F̂`,n` + (1− wn`)F [(Xj,i)1≤i≤nj ,j≤r] (62)

where

i) F̂`,n` is the empirical distribution of X`,1, . . . , X`,n`;

ii) wn` varies only with the population specific sample sizes n`;

iii) F [(Xj,i)1≤i≤nj ,j≤r] does not depend on `.

If (Xj,1)j≥1 satisfies the assumptions of the sufficientness postulate for the Dirichlet process,

then the hierarchical Dirichlet process process is the directing measure of (Xj,i)i≥1,1≤j≤r.

Proof. The exchangeability and sufficientness conditions of (Xj,1)j≥1 imply by Zabell’s charac-

terization that this is a Pólya urn sequence. In addition, since w0 = 0, F [(X1,1, . . . , Xr,1)] for

r ≥ 1 are predictive distributions in this sequence, so de Finetti’s theorem yields

lim
r→∞

F [(X1,1, . . . , Xr,1)]
a.s.
= P,

the empirical distribution of (Xj,1)j≥1. Moreover,

lim
r→∞

F [(X1,1, . . . , (X`,1, . . . , X`,n`), . . . Xr,1)]
a.s.
= P

as F [(X1,1, . . . , (X`,1, . . . , X`,n`), . . . Xr,1)] for r > ` are also predictive distributions in an ex-

changeable sequence. We note that given P , the sequences (X`,i)i≥1 in each environment, are

independent. Moreover, conditioning on P , hypothesis of the theorem is equivalent to those of

Johnson’s sufficientness postulate. This, together with the exchangeability of the samples for

population ` yields the desired characterization for each population. �
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