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Abstract

Consider a population of individuals belonging to an infinity number of types, and assume

that type proportions follow the two-parameter Poisson-Dirichlet distribution. A sample of

size n is selected from the population. The total number of different types and the number of

types appearing in the sample with a fixed frequency are important statistics. In this paper

we establish the moderate deviation principles for these quantities. The corresponding rate

functions are explicitly identified, which help revealing a critical scale and understanding the

exact role of the parameters. Conditional, or posterior, counterparts of moderate deviation

principles are also established.
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1 Introduction

Consider a population of countable number of individuals belonging to an infinite number of

types. The type of each individual is labelled by a point in a Polish space S. The type proportions

in the population are thus a point p = (p1, p2, . . .) in the space 4 := {q = (q1, q2, . . .) : qi ≥
0,
∑∞

j=1 qj = 1}. For each n ≥ 1, let X1, X2, . . . , Xn be a random sample of size n from the

population with Xi denoting the type of the ith sample. The sample diversity is defined as

Kn := total number of different types in the sample.

For any 1 ≤ l ≤ n, set

Ml,n := total number of types that appear in the sample l times.
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The quantity Ml,n is typically referred to as the sample diversity with frequency l. Both the

random variables Kn and Ml,n, as well as related functions, provide important statistics for

inference about the population diversity.

A natural scheme arises in the occupancy problem. Consider a countable numbers of urns.

Balls are put into the urns independently and each ball lands in urn i with probability pi. After

n balls are put into the urns, the total number of occupied urns is Kn, and Ml,n is the numbers

of urns with l balls inside. Assuming that p1 ≥ p2 ≥ . . ., a comprehensive study of Kn and Ml,n

was carried out in [15]. See also [14], [1], [2] for some recent contributions. A comprehensive

survey of recents progresses in this context is found in [11].

Adding randomness to the type proportions p, the population will have random type pro-

portions with the law P being a probability on 4. Note that, instead of being independent

and identically distributed (iid), the random sample X1, X2, . . . , Xn becomes exchangeable. In

particular, following the de Finetti theorem, the random type proportions are recovered from

the masses of the limit of empirical distributions of the random sample as n tends to infinity.

This framework fits naturally in the context of Bayesian nonparametric inference. See, e.g.,

[7]. In particular the law P can be viewed as the prior distribution on the unknown species

composition (pi)i≥1 of the population. The main interests in Bayesian nonparametrics are the

posterior distribution of P given an initial sample (X1, . . . , Xn) and associated statistical infer-

ences. More specifically, given an initial sample (X1, . . . , Xn), interest lies in making inference

based on certain statistics induced by an additional unobserved sample of size m. These in-

clude, among others, the sample diversity K
(n)
m and the sample diversity M

(n)
l,m with frequency l

to be observed in the additional sample of size m. We call K
(n)
m and M

(n)
l,m the posterior sample

diversity and the posterior sample diversity with frequency l, respectively.

The most studied family of probabilities on 4 is Kingman’s Poisson-Dirichlet distribution

([16]) describing in the genetics context the distribution of allele frequencies in a neutral popu-

lation. This is followed by the study of the two-parameter Poisson-Dirichlet distribution ([18]).

Various generalizations of these models can be found in [3], [19] and the references therein.

The focus of this paper is on the asymptotic behaviour of all these sample diversities when

the random proportions in the population follow Kingman’s Poisson-Dirichlet distribution and

its two-parameter generalization. Specifically, for any α in [0, 1) and θ > −α, let Uk, k = 1, 2, · · · ,
be a sequence of independent random variables such that Uk has Beta(1−α, θ+kα) distribution.

If

V1(α, θ) = U1, Vn(α, θ) = (1− U1) · · · (1− Un−1)Un, n ≥ 2.

then

V(α, θ) = (V1(α, θ), V2(α, θ), · · · ) ∈ 4
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with probability 1. The law of the descending order statistic P(α, θ) = (P1(α, θ), P2(α, θ), · · · )
of V(α, θ) is the so-called the two-parameter Poisson-Dirichlet distribution and is denoted by

PD(α, θ). Kingman’s Poisson-Dirichlet distribution which corresponds to α = 0. The sample

diversities Kn,K
(n)
m , Ml,n and M

(n)
l,m depend on the parameters θ and α. For notational conve-

nience we will not indicate the dependence explicitly. When α = 0, the parameter θ corresponds

to the scaled population mutation rate. The sample diversity Kn turns out to be a sufficient

statistic for the estimation of θ.

There have been many studies on the behaviour of Kn and Ml,n, as n goes to infinity, and of

K
(n)
m and M

(n)
l,m , as m goes to infinity. In the case α = 0, one can represent Kn as the summation

of independent Bernoulli random variables and show that Kn
lnn converges to θ almost surely. In

[12] (α = 0, θ = 1) and [13](α = 0, general θ) the following central limit theorem was obtained

Kn − θ lnn√
lnn

⇒ N(0, 1),

as n goes to infinity, with⇒ denoting the weak convergence. When the parameter α is positive,

the Gaussian limit no longer holds. In particular, it was shown in [17] that one has

lim
n→∞

Kn

nα
= Sα,θ, a.s.

where Sα,θ is related to the Mittag-Leffler distribution. For any l ≥ 1, the following holds ([19]):

lim
n→∞

Ml,n

nα
= (−1)l−1

(
α

l

)
Sα,θ, a.s.

The random variable Sα,θ is referred to as the α-diversity of the PD(α, θ) distribution. Large

deviation principles for Kn were established in [10]. The fluctuation behaviour of K
(n)
m and

M
(n)
l,m , as m goes to infinity, were studied in [6], where the notion of posterior α-diversity were

introduced. Moreover, the associated large deviation principles have been recently established

in [8] and [9].

The main results of the present paper are the moderate deviation principles (henceforth

MDPs) for the sample diversities Kn, K
(n)
m , Ml,n and M

(n)
l,m under PD(α, θ) with α > 0. Our

study is motivated by a better understanding of the non-Gaussian moderate deviation behaviour

and a refined analysis about the role of the parameters α and θ involved. Interestingly, our

results identify a critical scale and reveal the role of the parameters θ and α explicitly. The

paper is organized as follows. Section 2 contains the study of MDPs for the sample diversities

Kn and Ml,n . The corresponding results for the posterior sample diversities are then presented

in Section 3. A key step here is a Bernoulli representation of K
(n)
m and M

(n)
l,m . All terminologies

and theorems on large and moderate deviations are based on the reference [5].
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2 Moderate deviations for Kn and Ml,n

In the case α = 0 and θ > 0, Kn is the summation of independent Bernoulli random variables,

and for each 1 ≤ l ≤ n Ml,n is approximately a Poisson random variable. Accordingly, the

corresponding moderate deviations are standard. Hence we assume in the sequel that 0 < α < 1

and θ + α > 0.

Moderate deviations in these cases lie between the fluctuation limit results for Kn
nα and

Ml,n

nα ,

and the large deviation results for Kn
n and

Ml,n

n , respectively. In particular our objectives consist

of establishing large deviation principles for Kn
nαβn

and
Ml,n

nαβn
where βn converges to infinity at a

slower pace than n1−α as n tends to infinity. More specifically, we assume that βn satisfies

lim
n→∞

βn
n1−α

= 0, lim
n→∞

βn
(lnn)1−α

=∞. (1)

The assumption that βn grows faster that (lnn)1−α is crucial for establishing the following MDP.

Theorem 2.1 For any α ∈ (0, 1) and for any θ > −α, Kn
nαβn

satisfies a large deviation principle

on R with speed β
1/(1−α)
n and rate function Iα(·) defined by

Iα(x) =


(1− α)αα/(1−α)x1/(1−α) if x > 0,

+∞ if x ≤ 0.

Proof. Let us define K̃n = Kn
nαβn

. First, by a direct calculation, one has that for any λ ≤ 0

lim
n→∞

1

β
1/(1−α)
n

lnE
[
exp{λβ1/(1−α)n K̃n}

]
= 0.

For any λ > 0, set yn = 1 − exp{−λn−αβα/(1−α)n }. First assume θ = 0. Then by equation

(3.5) in [10], we have

E
[
exp{λβ1/(1−α)n K̃n}

]
= E

[
(1− yn)−Kn

]
=

∞∑
i=0

yin

(
iα+ n− 1

n− 1

)
.

Let biαc denote the integer part of iα. It follows from direct calculation that

∞∑
i=0

yin

(
iα+ n− 1

n− 1

)
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≥
∞∑
i=0

yin

(
biαc+ n− 1

n− 1

)
=

∞∑
k=0

(
k + n− 1

n− 1

) ∑
biαc=k

yin

≥ y1/αn

∞∑
k=0

(
k + n− 1

n− 1

)
(y1/αn )k =

y
1/α
n

(1− y1/αn )n
.

On the other hand,

∞∑
i=0

yin

(
iα+ n− 1

n− 1

)

≤
∞∑
i=0

yin

(
biαc+ n

n− 1

)
=

∞∑
i=0

yin
biαc+ n

biαc+ 1

(
biαc+ n− 1

n− 1

)

≤ n
∞∑
k=0

(
k + n− 1

n− 1

) ∑
biαc=k

(y1/αn )iα ≤ n

α

∞∑
k=0

(
k + n− 1

n− 1

)
(y1/αn )k

=
n

α

1

(1− y1/αn )n
.

Putting these together and applying assumption (1) one gets

lim
n→∞

1

β
1/(1−α)
n

lnE
[
exp{λn−αβα/(1−α)n Kn}

]
= lim

n→∞
ln

[
1−

(
1− exp{−λn−αβα/(1−α)n }

)1/α ]−nβ−1/(1−α)
n

= λ1/α.

Since the law of Kn under PD(α, θ) is equivalent to the law of Kn under PD(α, 0), the above

limit holds for λ ≥ 0,

Set

Λ(λ) =


λ1/α if λ > 0,

0 otherwise.

Noting that Iα(x) = supλ∈R{λx − Λ(λ)}, the conclusion holds following Gärtner-Ellis theorem

([5]).

�

Theorem 2.1 introduces a moderate deviation principle for Kn. Rewrite the rate function as

Iα(x) = exp{ 1

1− α
[Hα + lnx]}

with Hα = (1 − α) ln(1 − α) + α lnα being the entropy function, it follows that αx = 1 is a

critical curve. For 0 < x ≤ 1, Iα(x) is decreasing in α. For x > 1 Iα(x) decreases for α in
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(0, 1/x), increases for α in (1/x, 1). The minimum is achieved at the point 1/x. Discounting the

scale differences, these results provide a refined comparison between different models in terms

of deviation manners.

In the next theorem we establish the MDP for Ml,n for any l ≥ 1.

Theorem 2.2 For any α ∈ (0, 1) and for any θ > −α,
Ml,n

nαβn
satisfies a large deviation principle

on R with speed β
1/(1−α)
n and rate function Iα,l(·) defined by

Iα,l(x) =


(1− α)

(
l!

(1−α)(l−1)↑1

)α/(1−α)
x1/(1−α) if x > 0,

+∞ if x ≤ 0,

where (a)j↑b = a(a+ b) · · · (a+ (j − 1)b) with the proviso (a)0↑b = 1.

Proof. Let yn be as in Theorem 2.1. Set

yn,l =
α(1− α)(l−1)↑1

l!

yn
1− yn

.

By an argument similar to the proof of Lemma 2.1 in [8], we obtain that for any λ > 0

E
[

exp{λn−αβα/(1−α)n Ml,n}
]

= E
[(

1

1− yn

)Ml,n
]

=

bn/lc∑
i=0

yin,l
n

n− il + αi

(
n− il + iα

n− il

)
.

Note that, since 1 ≤ n
n−il+αi ≤

l
α for i = 0, . . . , bn/lc, it follows that the large n approximation

of

E
[

exp{λn−αβα/(1−α)n Ml,n}
]

is equivalent to that of

Hn,l =

bn/lc∑
i=0

yin,l

(
n− il + iα

n− il

)
.

Set

H−n,l =

bn/lc∑
i=0

yin,l

(
n− il + biαc

n− il

)
and

H+
n,l =

bn/lc∑
i=0

yin,l

(
n− il + biαc+ 1

n− il

)
.
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It is clear that

H−n,l ≤ Hn,l ≤ H+
n,l ≤ (n+ 1)H−n,l.

The assumption for βn guarantees that the factor n+ 1 in the upper bound does not contribute

to the scaled logarithmic limit. Accordingly, we can write

lim
n→∞

1

β
1/(1−α)
n

lnE
[

exp{λn−αβα/(1−α)n Ml,n}
]

= lim
n→∞

1

β
1/(1−α)
n

lnH−n,l. (2)

To estimate H−n,l, we write

H−n,l =

bn/lc∑
i=0

(y
1/α
n,l )iα

(n− il + 1) · · · (n− il + biαc)
(biαc)!

=

bn/lc∑
i=0

(y
1/α
n,l )iα−biαc(ny

1/α
n,l )biαc

(1 + (1− il)/n) · · · (1 + (biαc − il)/n)

(biαc)!

which is controlled from below by

bn/lc∑
i=0

(y
1/α
n,l )iα−biαc(ny

1/α
n,l )biαc

(1 + (1− il)/n)biαc

(biαc)!

and from above by

bn/lc∑
i=0

(y
1/α
n,l )iα−biαc(ny

1/α
n,l )biαc

(1 + (biαc − il)/n)biαc

(biαc)!
.

Since (y
1/α
n,l )iα−biαc does not affect the scaled logarithmic limit in (2), it suffices to focus on

Dn,l =

bn/lc∑
i=0

(ny
1/α
n,l )biαc

(1 + (1− il)/n)biαc

(biαc)!

and

Jn,l =

bn/lc∑
i=0

(ny
1/α
n,l )biαc

(1 + (biαc − il)/n)biαc

(biαc)!

Set γn = bβ1/(1−α)n c and write

Dn,l = D1
n,l +D2

n,l

with

D1
n,l =

γn∑
i=0

(ny
1/α
n,l )biαc

(1 + (1− il)/n)biαc

(biαc)!
.

It follows that

D2
n,l =

bn/lc∑
i=γn+1

(ny
1/α
n,l )biαc

(1 + (1− il)/n)biαc

(biαc)!
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≤
bn/lc∑
i=γn+1

(ny
1/α
n,l )biαc

(biαc)!
≤ 1

α

∞∑
k=b(γn+1)αc

(ny
1/α
n,l )k

k!
(3)

≤ 1

α

(ny
1/α
n,l )b(γn+1)αc

b(γn + 1)αc!
exp{ny1/αn,l }.

By direct calculation, we have

lim
n→∞

ny
1/α
n,l

β
1/(1−α)
n

=

(
α(1− α)(l−1)↑1

l!
λ

)1/α

(4)

and

lim
n→∞

1

β
1/(1−α)
n

lnb(γn + 1)αc! =∞. (5)

Hence

lim
n→∞

1

β
1/(1−α)
n

lnD2
n,l = −∞.

This implies that

lim
n→∞

1

β
1/(1−α)
n

lnDn,l = lim
n→∞

1

β
1/(1−α)
n

lnD1
n,l.

Noting that limn→∞max10≤i≤γn{|(1− il)/n|} = 0, we obtain

lim
n→∞

1

β
1/(1−α)
n

lnD1
n,l = lim

n→∞

1

β
1/(1−α)
n

ln

γn∑
i=0

(ny
1/α
n,l )biαc

(biαc)!
.

By an argument similar to that used in deriving the estimation (3), and taking into account

of (4), we obtain that

lim
n→∞

1

β
1/(1−α)
n

lnDn,l (6)

= lim
n→∞

1

β
1/(1−α)
n

ln

γn∑
i=0

(ny
1/α
n,l )biαc

(biαc)!

= lim
n→∞

1

β
1/(1−α)
n

ln exp{ny1/αn,l }

=

(
α(1− α)(l−1)↑1

l!
λ

)1/α

,

Similarly we can prove that

lim
n→∞

1

β
1/(1−α)
n

ln Jn,l =

(
α(1− α)(l−1)↑1

l!
λ

)1/α

. (7)

The result now follows from (2), (6), (7) and Gärtner-Ellis theorem.

�
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3 Moderate deviations for K
(n)
m and M

(n)
l,m

Given n ≥ 1, let Xn = (X1, . . . , Xn) be a sample from the population with type proportions

following two parameter Poisson-Dirichlet distribution PD(α, θ). Let the sample Xn featur-

ing Kn = j ≤ n distinct types with corresponding frequencies Nn = (N1,1, . . . , N1,Kn) =

(n1, . . . , nj), and let Ml,n be the number of distinct types with frequency 1 ≤ l ≤ n. Now

consider an additional sample X
(n)
m = (Xn+1, . . . , Xn+m) of size m, and let K

(n)
m and M

(n)
l,m be

the sample diversity and sample diversity with frequency 1 ≤ l ≤ m in X
(n)
m . In this section

we derive the MDPs for K
(n)
m and M

(n)
l,m as m tends to infinity given Xn, Kn and Nn. The law

of the type proportions of the population is now the posterior distribution of PD(α, θ) given

Xn. Structurally we can divide the type into two groups: types appeared in the sample Xn and

brand new types.

Let L
(n)
m be the number of Xn+i’s, for i = 1, . . . ,m, that do not coincide with Xi’s, for

i = 1, . . . , n. Also, let

i) K̃
(n)
m be the number of new distinct types in the additional sample Xm, i.e. the number of

types in X
(n)
m which do not coincide with any of the types that appear in the initial sample

Xn;

ii) M̃
(n)
l,m be the number of new distinct types with frequency l in the additional sample Xm,

i.e., the number of types with frequency l among the new types that appear in X
(n)
m , such

that
m∑
l=1

M̃
(n)
l,m = K̃(n)

m and
n∑
l=1

lM̃
(n)
l,m = L(n)

m .

Since the sample Xn is fixed, the moderate deviations for K
(n)
m and M

(n)
l,m are equivalent to

the corresponding moderate deviations for K̃
(n)
m and M̃

(n)
m,l . Thus we will focus on K̃

(n)
m and M̃

(n)
m,l

in the sequel. The key step in the proof is the following representation for the conditional, or

posterior, distributions of K̃
(n)
m given (Kn,Nn) and of M̃

(n)
l,m given (Kn,Nn), for any l = 1, . . . ,m.

With a slight abuse of notation, throughout this section we write X |Y to denote a random

variable whose distribution coincides with the conditional distribution of X given Y .

Theorem 3.1 For any k ≥ 1 and p ∈ [0, 1], let Zk,p be Binomial random variable with parameter

(k, p), and for any a, b > 0 let Ba,b be a Beta random variable with parameter (a, b). If K∗m

and M∗l,m denote the number of distinct types and the number of distinct types with frequency

1 ≤ l ≤ m, respectively, in a sample of size m from PD(α, θ + n), then we have

K̃(n)
m | (Kn = j,Nn = (n1, . . . , nj))

d
= K̃(n)

m | (Kn = j)
d
= ZK∗m,B θ

α+j, nα−j
(8)
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and

M̃
(n)
l,m | (Kn = j,Nn = (n1, . . . , nj))

d
= M̃

(n)
l,m | (Kn = j)

d
= ZM∗l,m,B θ

α+j, nα−j
(9)

where
d
= denotes the equality in distribution, and B θ

α
+j,n

α
−j is independent of K∗m and of M∗l,m.

Proof. Since all random variables involved are bounded, it suffices to verify the equality of all

moments. We start by recalling some moment formulate for K∗m and M∗l,m (cf. [20] and [6]). In

particular one has

E[(K∗m)r↓1] =

(
θ + n

α

)
r↑1

r∑
i=0

(−1)r−i
(
r

i

)
(θ + n+ iα)m↑1

(θ + n)m↑1
(10)

and

E[(M∗l,m)r↓1] (11)

= (m)rl↓1

(
α(1− α)(l−1)↑1

l!

)r (
θ + n

α

)
r↑1

(θ + n+ rα)(m−rl)↑1

(θ + n)m↑1
,

where (c)j↓1 = (c)j↑−1 Moreover, let us recall the factorial moment of order r of the Binomial

random variable Zn,p, i.e.,

E[(Zn,p)
r] =

r∑
t=0

S(r, t)(n)t↓1p
t, (12)

with S(n, k) being the Stirling number of the second kind. If S(n, k; a) denotes the non-central

Stirling number of the second kind, see [4], then by means of Proposition 1 in [7] we have

E[(K̃(n)
m )r |Kn = j]

=
r∑
i=0

(−1)r−i
(
j +

θ

α

)
i↑1
S

(
r, i; j +

θ

α

)
(θ + n+ iα)m↑1

(θ + n)m↑1

(by expanding S(r, i; j + θ/α) as a finite sum)

=
r∑
i=0

(−1)−i
(θ + n+ iα)m↑1

(θ + n)m↑1

r∑
t=i

(−1)t
(
t

i

)
S(r, t)

(
j +

θ

α

)
t↑1

=
r∑
t=0

S(r, t)

(
j + θ

α

)
t↑1(

θ+n
α

)
t↑1

(
θ + n

α

)
t↑1

t∑
i=0

(−1)t−i
(
t

i

)
(θ + n+ iα)m↑1

(θ + n)m↑1

(by Equation (10))

=
r∑
t=0

S(r, t)

(
j + θ

α

)
t↑1(

θ+n
α

)
t↑1

E[(K∗m)t↓1]

(by expanding (j + θ/α)t↑1/((θ + n)/α)t↑1 as an Euler integral)

=
r∑
t=0

S(r, t)E[(K∗m)t↓1]
Γ
(
θ+n
α

)
Γ
(
θ
α + j

)
Γ
(
n
α − j

) ∫ 1

0
xt+

θ
α
+j−1(1− x)

n
α
−j−1d x
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=

r∑
t=0

S(r, t)E[(K∗m)t↓1]E[(B θ
α
+j,n

α
−j)

t]

= E

[
E

[
r∑
t=0

S(r, t)(K∗m)t↓1(B θ
α
+j,n

α
−j)

t

]]
(by Equation (12))

= E
[(
ZK∗m,B θ

α+j, nα−j

)r]
and the proof of the representation (8) is completed. Similarly, by Theorem 2 in [6] we can write

E[(M̃
(n)
l,m)r |Kn = j]

=
r∑
t=0

S(r, t)(m)tl↓1

(
α(1− α)(l−1)↑1

l!

)t(
j +

θ

α

)
t↑1

(θ + n+ tα)(m−tl)↑1

(θ + n)m↑1

(by Equation (11))

=

r∑
t=0

S(r, t)

(
j + θ

α

)
t↑1(

θ+n
α

)
t↑1

E[(M∗l,m)t↓1]

(by expanding (j + θ/α)t↑1/((θ + n)/α)t↑1 as an Euler integral)

=

r∑
t=0

S(r, t)E[(M∗l,m)t↓1]
Γ
(
θ+n
α

)
Γ
(
θ
α + j

)
Γ
(
n
α − j

) ∫ 1

0
xt+

θ
α
+j−1(1− x)

n
α
−j−1d x

=
r∑
t=0

S(r, t)E[(M∗l,m)t↓1]E[(B θ
α
+j,n

α
−j)

t]

= E

[
E

[
r∑
t=0

S(r, t)(M∗l,m)t↓1(B θ
α
+j,n

α
−j)

t

]]
(by Equation (12))

= E
[(
ZM∗l,m,B θ

α+j, nα−j

)r]
and the proof of the representation (9) is completed.

�

Now are ready to prove the main result of this section.

Theorem 3.2 For any α ∈ (0, 1) and θ > −α, the conditional laws of K̃
(n)
m

mαβm
and

M̃
(n)
m,l

mαβm
satisfy

MDPs that are the same as Km
mαβm

and
Ml,m

mαβm
, respectively, as m tends to infinity.

Proof. First observe that the MDPs for K∗m
mαβm

and
M∗m,l
mαβm

are the same as the corresponding

MDPs for Km
mαβm

and
Ml,m

mαβm
, respectively. Furthermore, for any λ ≤ 0 it is not difficult to see

that

lim
m→∞

1

β
1/(1−α)
m

lnE[eλm
−αβ

α/(1−α)
m K̃

(n)
m |Kn = j]

11



= lim
m→∞

1

β
1/(1−α)
m

lnE[eλm
−αβ

α/(1−α)
m M̃

(n)
m,l |Kn = j]

= 0.

Let {Yi : i ≥ 1} be iid Bernoulli with parameter η = B θ
α
+j,n

α
−j . it follows from Theorem 3.1

that

K̃(n)
m

d
=

K∗m∑
i=1

Yi, M̃
(n)
m.l

d
=

M∗l,m∑
i=1

Yi.

Hence for λ > 0,

E[eλm
−αβ

α/(1−α)
m K̃

(n)
m |Kn = j] ≤ E[eλm

−αβ
α/(1−α)
m K∗m ]

and

E[eλm
−αβ

α/(1−α)
m K̃

(n)
m |Kn = j]

E
[
E[

(
1− η + ηeλm

−αβ
α/(1−α)
m

)K∗m
]

]
≥ E

[
eλm

−αβ
α/(1−α)
m K∗mE[ηK

∗
m ]

]
≥ E

[
eλm

−αβ
α/(1−α)
m K∗m

Γ( θ+nα )

Γ( θα)

Γ(K∗m + θ
α)

Γ(K∗m + θ+n
α )

]
≥ 1

mγ(m,α,θ,n,j)
E[eλm

−αβ
α/(1−α)
m K∗m ]

where γ(m,α, θ, n, j) is sequence of positive numbers converging to n
α − j for large m. Thus we

have

lim
m→∞

1

β
1/(1−α)
m

lnE[eλm
−αβ

α/(1−α)
m K̃

(n)
m |Kn = j] = λ1/α. (13)

Similarly we can show that

lim
m→∞

1

β
1/(1−α)
m

lnE[eλm
−αβ

α/(1−α)
m M̃

(n)
m |Kn = j] =

(
α(1− α)(l−1)↑1

l!
λ

)1/α

which combined with (13) led to the theorem.

�

The MDP results in Theorems 2.1, 2.2 and 3.2 identify a critical scale at (lnm)1−α. It is

not clear whether MDP holds when βm is at or has a slower growth rate than (lnm)1−α. Our

calculations indicate that if such MDPs hold true, then the posterior MDP and the unconditional

MDP may be different.
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