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Abstract

Structural models of credit risk are known to present both vanishing spreads at very

short maturities and a poor spread fit over longer maturities. The former shortcoming,

which is due to the diffusive behavior assumed for asset values, can be circumvented by

considering discontinuous assets. In this paper we resort to a pure jump process of the

Variance-Gamma type.

First we calibrate the corresponding Merton type structural model to single-name

data for the DJ CDX NA IG and CDX NA HY components. By so doing, we show that

it circumvents also the diffusive structural models difficulties over longer horizons. In

particular, it corrects for underprediction of low risk spreads and overprediction of high

risk ones.

Then we extend the model to joint default, resorting to a recent formulation of the VG

multivariate model and without superimposing a copula choice. We fit default correlation

for a sample of CDX NA names, using equity correlation. The main advantage of our

joint model with respect to the existing non diffusive ones is that it allows calibration

without the equicorrelation assumption, but still in a parsimonious way. As an example

of the default assessments which the calibrated model can provide, we price a FtD swap.

JEL classification numbers: G32, G12

Keywords: credit risk, structural models, Lévy asset prices, default probability, joint

default.



In the credit risk literature the so-called structural form models, pioneered by Merton’s

1974 contribution, play an important role, mainly because of the allure of endogenizing

default arrival in an economic simple framework. As it is well known indeed, in the Mer-

ton (1974) model, default is triggered by the fact that the asset value at debt maturity

is smaller than the debt one. Analogously, in the credit barrier models which have been

inspired by Merton’s original contribution, such as Black and Cox (1976), Longstaff and

Schwartz (1995), Leland and Toft (1996), to mention a few, default can occur before

maturity, if the asset value goes below an appropriate threshold.

In spite of this conceptual simplicity, the original Merton model, as well as its

diffusion-based, threshold extensions, present two main weaknesses. On the theoretical

side, they are unable to produce positive credit spreads in the very short run. Whenever

the asset value follows a diffusion process indeed, default is not a totally unpredictable

stopping time: as a consequence, the spread is null over close maturities. On the cali-

bration side, their ability to explain actual spreads over Treasuries is under discussion.

A number of papers, including Jones, Mason and Rosenfeld (1984) or, more recently,

Lyden and Saraniti (2000), Demchuk and Gibson (2004), Eom, Helwege and Huang

(2004) question the explanatory power of structural models, given that the percentage

of the actual credit spread they are able to explain is modest. In particular, Eom et alii

emphasize underprediction of the Merton model and overprediction of other structural

models for high risk bounds, together with underprediction for low risk ones.

The theoretical shortcomings of the diffusion based models can be eliminated only

by assuming an asset process with jumps, as in Zhou (2001) or Hilberink and Rogers

(2002), or a pure jump asset process, as suggested in Madan (2000).The latter approach

is intuitively quite convincing, since purely discontinuous processes can be interpreted as

time changed Brownian motions. The time change in turn has been suggested by Clark

(1973) and justified - both theoretically and on the empirical ground - by Geman, Madan

and Yor (2000), Geman and Ané (1996), Geman (2005). Geman and Ané for instance

report that the S&P 500, while not presenting normal returns under calendar time,

shows them per unit trade. Geman et alii (2000) conclude that the jump component is

not only present, but of such high activity that no continuous martingale component is

necessary in order to represent financial asset dynamics.

This paper focuses on a particular pure jump Lévy process, a Variance Gamma (VG)

one, in order to show that

• it circumvents also the calibration difficulties of diffusive structural models over

longer horizons;

• it can be extended to multiple defaults without assuming equicorrelation;

• the multivariate extension can be calibrated in a parsimonious way using equity

correlation.
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The literature on credit risk models with pure jump asset values is still in its infancy.

As concerns single defaults, Madan (2000) introduces a terminal default, Merton type

model, with a Lévy process of the VG type for the log-asset value, while Cariboni

and Schoutens (2004) provide its early-default version, together with an illustrative

calibration to a small CDS sample. This paper intervenes in the single firm structural

model discussion by providing a large scale calibration of the terminal default, Merton

type model of Madan (2000). We examine the components of both the DJ.CDX.NA.HY

and the CDX.NA.IG indices. We work on a sample of about 18700 single firm credit

default swap (CDS) spreads, using firm specific market and accounting data for the

leverage ratio and payout rate.

As concerns default correlation too the pure jump literature is quite thin. Schoutens

(2006), as well as Moosbrucher (2006) and Baxter (2006), use a Gaussian copula,

together with Lévy type margins, to infer from collateralized debt obligations (CDO)

the implicit default correlation. By so doing, they impose equal pairwise correlation

among all names in the basket. We depart from their approach in that we do not impose

a copula on given VG margins. On the contrary, we move from a truly multivariate

VG model, in which each single asset value is driven by a common and an idiosyncratic

time change. This is made possible by the use of a novel version of the multivariate VG

model, introduced in Semeraro (2006). We calibrate the pairwise default dependence of

a sub-sample of the CDX pool to equity correlation, exactly as is done in traditional

Merton type asset models. In such a way, we do not need the equicorrelation assumption

and the large homogeneous portfolio hypothesis of the Gaussian copula.

The paper is structured as follows: section 1 recalls some basic properties of uni-

variate pure jump processes of the VG type and introduces their multivariate version

with common and idiosyncratic risk. Section 2 follows Madan (2000) in setting up a

Merton type structural default model, i.e. a model with terminal default only, when the

underlying asset follows a VG process. It then extends the structural model to multiple

defaults. Section 3 computes the theoretical CDS spreads, which will be needed for the

calibration. Section 4 presents the data and the single default probability calibration

approach; section 5 comments on the results of the calibration. Section 6 calibrates

default dependence and provides an example of its use, by pricing a First to Default

(FtD) on two names in the pool. In section 7 the conclusions follow.

1 The VG asset model

We consider a structural model in which the (logarithm of the forward) firm asset value

Vt, appropriately normalized so as to match the risk-neutral expectation property, fol-

lows a Lévy process of the Variance Gamma (VG) type. A symmetric version of this

process has been introduced in the financial literature by Madan and Seneta (1990).
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The asymmetric extension is due to Madan, Carr, Chang (1998) and Madan and Milne

(1991), further generalized by Carr, Madan, Geman, Yor (2002).

We select the VG process since it is a very simple version of time changed Brownian

motion, depending on three parameters, which induce asymmetry and kurtosis. Our

multivariate version introduces an additional parameter for asset dependence.

1.1 Univariate version

A VG process is a real Lévy process Y = {Y (t), t ≥ 0} obtained as a Brownian motion

with drift time-changed by a subordinator which is a gamma process.

A gamma process {G(t), t ≥ 0} with parameters (a, b) is a Lévy process so that

the defining distribution of Y (1) is gamma with parameters (a, b) (shortly L(Y (1)) =

Γ(a, b)). The parameters a and b are restricted to be positive.

Let {B(t), t ≥ 0} be a standard Brownian motion, {G(t), t ≥ 0) be a gamma process

with parameters ( 1
α
, 1

α
), α > 0, and let σ > 0, θ be real parameters; then the process

Y (t;σ, α, θ) -or simply Y (t)- is defined as

Y (t) = θG(t) + σB(G(t)).

The characteristic function of the VG returns at time t is

E[exp(iuY (t))] = φV G(u;σ
√
t, α/t, tθ)

= (φV G(u;σ, α, θ))t

= (1− iuθα+ σ2αu2/2)−t/α.

A VG-process has infinitely many jumps in any finite time interval, no Brownian

component and the following moments at time one:

mean θ

variance σ2 + αθ2

skewness θα(3σ2 + 2αθ2)/(σ2 + αθ2)3/2

kurtosis 3(1 + 2α− ασ4(σ2 + αθ2)−2)

The parameter θ is the instantaneous mean: negative values of θ give rise to negative

skewness, so that θ is interpreted as a skewness indicator too. The other parameters, σ

and α, control primarily the variance and kurtosis, as is evident from the case θ = 0.

Y (t;σ, α, θ) is assumed to represent asset returns, in excess of the risk-neutralizing

component.

The firm asset value at time t, under the risk-neutral measure, is then

Vt = V0 exp [(r − q + w) t+ Y (t;σ, α, θ)]
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where r is the constant riskless rate, q is the dividend rate, w makes the risk neutral

returns on V equal to r − q :

w = α−1ln

(
1− θα− 1

2
σ2α

)
.

The definition make sense provided that

1

α
> θ +

1

2
σ2 (1.1)

or, equivalently, that

−α(θ +
1

2
σ2) := k > 0. (1.2)

The VG process has been extensively tested in the equity return domain. It has been

shown to successfully describe stock indices behavior, since ”it corrects strike and matu-

rity biases in Black Scholes pricing (Madan, Carr, Chang, from now on MCC (1998))”.

Its estimates via options on stocks and stock indices, such as the S&P500, ”show that

the hypotheses of zero skewness and zero kurtosis can both be rejected (ibidem)”.

1.2 Multivariate version

A first multivariate version of the previous model, in which a single time change applies

to all the components of the process, is due to Madan and Seneta (1990). This version

has two main drawbacks:

• independence cannot be captured;

• linear correlation cannot be fitted, since it is given, once the marginal parameters

are fixed.

The multivariate extension studied here is due to Semeraro (2006) and further studied

in Luciano and Semeraro (2007).

It is based on a multivariate time change, whose single components are the sum of

an idiosyncratic and a common component.

Indeed, we define n subordinators as follows: let a, αj, j = 1, ..., n be positive real

parameters which satisfy
0 < a < 1

αj
j = 1, ..., n.

(1.3)

Let Xj, j = 1, ..., n and Z be independent gamma random variables with parameters

respectively ( 1
αj
−a, 1

αj
), j = 1, ..., n and (a, 1). Define the random vector W as the sum

W = (W1,W2, ...,Wn)
′
= (X1 + α1Z,X2 + α2Z, ..., Xn + αnZ)

′
, (1.4)
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where αj, j = 1, ..., n are real parameters.

Define G = {G(t), t ≥ 0} as the Lévy process which has the law L of W at time

one:

L(G(1)) = L(W ). (1.5)

The process G is a multivariate subordinator with gamma margins given by

L(Gj(t)) = Γ(t
1

αj

,
1

αj

), j = 1, ...n.

The multivariate version of the VG process is the subordination of a multivariate

Brownian motion with independent components by the subordinator G. Formally, let

Bj = {Bj(t), t ≥ 0} j = 1, ..., n be independent standard Brownian motions.

The Rn valued log price process Y = {Y (t), t > 0} is defined -analogously to the

multivariate case- as:

Y (t) =

 Y1(t)

...

Yn(t)

 =

 θ1G1(t) + σ1B1(G1(t))

....

θnGn(t) + σnBn(Gn(t))

 , (1.6)

where G is a multivariate subordinator defined by (1.5), independent from B. The

process Y , as given by (1.6), is a Lévy process named α-VG, with characteristic function

ψY (t)(u) =
n∏

j=1

(1− αj(iθjuj −
1

2
σ2

ju
2
j))

−t( 1
αj
−a)

(1−
n∑

j=1

αn(iθjuj −
1

2
σ2

ju
2
j))

−ta. (1.7)

The margins Yj, j = 1, ..., n, of Y are VG processes with parameters θj, σj, αj, so

that each firm asset behavior is modelled by a VG process.

The α-VG process depends on the three marginal parameters θj, σj, αj and on an

additional parameter a that will allow us to fit linear correlation.

The linear correlation coefficients between Yj and Yl, l = 1, ...n, j = 1, ...n are time

independent and equal to

ρl,j =
θlθjαlαja√

(σ2
l + θ2

l αl)(σ2
j + θ2

jαj)
, (1.8)

We can immediately observe that the correlation matrix ρ = [ρl,j], once the marginal

parameters are fixed, is a function of a.

Under this model the j−th firm asset value at time t, under the risk-neutral measure,

is

Vj(t) = Vj(0)exp((r − qj + ωj)t+ Yj(t)),

where for each j = 1, ...n, wj is chosen as in the univariate model. Therefore

ωj = α−1
j ln(1− αjθj −

1

2
σ2

jαj)), (1.9)

and the parameters have to verify the constraints discussed in the univariate case. We

stress that the linear correlation matrix of returns under the risk neutral measure remains

the same that under the historical one.
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2 The default triggering model

In the credit risk structural literature, the VG assumption has already been adopted

by Madan (2000) and Cariboni and Schoutens (2004): the former built a model with

terminal default only, the latter introduced the possibility of early default. Both have

shown that the assumed dynamics allows for positive credit spreads over the short run,

thus correcting the major theoretical drawback of diffusive structural models.

This section first reviews the structural model proposed by Madan (2000) and com-

putes the corresponding debt value, recovery rate and equity value, as needed for cali-

bration. Then it introduces multiple defaults.

2.1 Single name defaults

We start by assuming, as in the Merton’s original approach, that the firm has a unique,

zero-coupon debt issue with facial value F , maturity T . If default occurs, i.e. if V (T ) is

smaller than F , a strict priority rule is assumed to apply: debt holders receive the asset

value V (T ), while shareholders are deprived of any claim. If default does not occur,

they maintain the right to F and V (T )− F respectively. Therefore, bond holders have

a claim of F and are short a European put on the firm value, with final payoff

max(F − V (T ), 0)

We can use well known results from option pricing under the VG assumption (see

MCC(1998)) in order to compute

• the (risk-neutral) default probability, π(T );

• the debt value, D0;

• the corresponding recovery rate, R;

• the equity value, E0.

As for the default probability at time T , π(T ) , it coincides with the probability that

V (T ) < F , and it is the exercise probability of the above put option.

Taking the current date to be 0, and having defined the firm’s quasi-leverage ratio

as d :

d :=
F exp(−(r − q)T )

V0

(2.1)

it can be computed as

π(T ) = 1−Ψ

(
k(d)

√
1− c2
α

, β

√
α

1− c2
,
T

α

)
(2.2)
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where

k(d) :=
1

s

[
ln

(
1

d

)
+
T

α
ln

(
1− c1
1− c2

)]
c1 :=

α (β + s)2

2

c2 :=
αβ2

2

s :=
σ√

1 +
(

θ
σ

)2 α
2

β := −θ/σ2

and the function Ψ can be obtained from the Hypergeometric function of two variables

and the Bessel function of the second type1, as in MCC (1998).

As for the current value of debt, D0, it can then be obtained as the difference between

the present value of F , computed at the riskless rate r, and the current value of the put

option on V (T ) with strike F . Denote with V GP (V0, F, r, σ, α, θ) the VG European put

price, with current value of the underlying V0, strike F , riskless rate r. The debt value

D0 is then

D0 = F exp(−rT )− V GP (V0, F, r, σ, α, θ) (2.3)

Following MCC, its put component turns out to be:

V GP (V0, F, r, σ, α, θ) =

V0 exp(−qT )

[
Ψ

(
k(d)

√
1− c1
α

, (β + s)

√
α

1− c1
,
T

α

)
− 1

]
+

−F exp(−rT )

[
Ψ

(
k(d)

√
1− c2
α

, β

√
α

1− c2
,
T

α

)
− 1

]
(2.4)

and can be written in terms of the quasi-leverage ratio:

V GP (V0, F, r, σ, α, θ)

F exp(−rT )
=

= V GP

(
1

d
, 1, 0, σ, α, θ

)
=

1

d
V GP (1, d, 0, σ, α, θ) (2.5)

1The solution (2.2) for the exercise probability is closed in the sense of being obtained by integration
of elementary functions. It allows to perform some comparative statics, but has the main drawback of
being computationally expensive, as MCC (1998) recognize. In the calibration of the model indeed the
option price is found via partial integro differential equations (PIDEs).
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It follows, as in Madan (2000), that debt equals

D0 = F exp(−rT )− F exp(−rT )V GP

(
1

d
, 1, 0, σ, α, θ

)
=

= F exp(−rT )− V0V GP (1, d, 0, σ, α, θ) (2.6)

Combining (2.3) and (2.4) and simplifying according to (2.6) the debt value can be

finally obtained in closed form as

D0 = F exp(−rT )− V0 ×

×


[
Ψ
(
k(d)

√
1−c1

α
, (β + s)

√
α

1−c1
, T

α

)
− 1
]

−d
[
Ψ
(
k(d)

√
1−c2

α
, β
√

α
1−c2

, T
α

)
− 1
]


As concerns the recovery rate R, i.e. the proportion of the face value which is

recovered in case of default, it is endogenous, as in most structural models. It can be

found by equating D0 to the present value of its final expected payoff:

D0 = [π(T )RF + (1− π(T ))F ] exp(−rT )

Substituting for D0 from (2.3), we get the recovery rate as

R = 1− V GP (V0, F, r, σ, α, θ)

Fπ(T ) exp(−rT )
(2.7)

Based on (2.5) and on the default probability assessment (2.2), the recovery rate can be

explicitly quantified:

R =
1

d

Ψ
(
k(d)

√
1−c1

α
, (β + s)

√
α

1−c1
, T

α

)
− 1

Ψ
(
k(d)

√
1−c2

α
, β
√

α
1−c2

, T
α

)
− 1

(2.8)

As for equity, which is a call on V with strike F , from the option pricing results in MCC

(1998) we have:

E0 = V0 exp(−qT )Ψ

(
k(d)

√
1− c1
α

, (β + s)

√
α

1− c1
,
T

α

)
+

−F exp(−rT )Ψ

(
k(d)

√
1− c2
α

, β

√
α

1− c2
,
T

α

)
(2.9)

The model then provides us with explicit formulation for all the relevant quantities:

default probability, debt value, recovery rate and equity price.
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2.2 Multiple defaults

The straightforward extension of the structural model studied so far to multiple defaults

consists in considering that the n names will default at time T if and only if all of their

asset values happen to be below the corresponding threshold at that time: the (risk

neutral) joint default probability, π, is then

π̄(T ) = Pr(V1(T ) ≤ F1, V2(T ) ≤ F2, ..., Vn(T ) ≤ Fn).

Similarly, all the mixed survival and default probabilities could be obtained from the

joint distribution of asset values. Given the theoretical joint model of section 1.2 above,

these probabilities are uniquely determined once the parameter of the common time

change, a, is given. They cannot be computed in closed form, but can be obtained by

Monte Carlo simulation or by numerical integration of their conditional values. Consider

for simplicity the bivariate case and T = 1. Denote with Si the risk neutral log returns

on Vi, Si(t) = ln(Vi(t)/Vi0) = mit+ Yi(t), where mi = r − qi + ωi. It follows that

π̄(1) = Pr(V1(1) ≤ F1, V2(1) ≤ F2)

= P (S1(1) ≤ k1, S2(1) ≤ k2) = P (Y1(1) ≤ k1 −m1, Y2(1) ≤ k2 −m2),
(2.10)

where ki = ln(Fi/Vi0). The random variable

Si(1)−mi − θi(wi + αizi)

σi

√
wi + αizi

=
Yi(1)− θi(wi + αizi)

σi

√
wi + αizi

, i = 1, 2

has conditional distribution, given both the idiosyncratic and the common time changes,

that is unit normal. We can therefore compute the joint distribution function of Y (1)

(see the Appendix for the derivation of the following equation)

F (x1, x2) = P [Y1(1) ≤ x1, Y2(1) ≤ x2]

=

∫ +∞

0

∫ +∞

0

∫ +∞

0

Φ(
x1 − θ1(w1 + α1z)

σ1

√
w1 + α1z

)Φ(
x2 − θ2(w2 + α2z)

σ2

√
w2 + α2z

)

·
1

α1

( 1
α1
−a)
e
− 1

α1
(w1)

w
1

α1
−a−1

1

Γ( 1
α1
− a)

1
α2

( 1
α2
−a)
e
− 1

α2
(w2)

w
1

α2
−a−1

2

Γ( 1
α2
− a)

e−zza−1

Γ(a)
dw1dw2dz.

(2.11)

From (2.2) it follows that the probability π̄(1) is

π̄(1) = F (k1 −m1, k2 −m2). (2.12)

As a subcase, i.e. when one of the arguments diverges, we can also obtain from the

previous formula the marginal default probabilities:

π1(1) = F (k1 −m1,+∞) (2.13)

π2(1) = F (+∞, k2 −m2). (2.14)

which coincide with the closed form expression (2.2).
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3 CDS spreads

This section studies the CDS spreads corresponding to the structural model just es-

tablished. As it is known, a CDS with reference asset V is an OTC contract between

two parties, the credit risk seller and buyer, by which the former pays a periodic fee

against reimbursement by the latter of the loss given default on the underlying credit,

or reference asset. The seller and buyer’s streams of payments are called fee and default

leg respectively.

Let us consider a CDS with maturity T and fee payments vF , proportional to the

face debt value according to the constant v. Let the payment occur at the beginning of

each time period [ti−1, ti] , i ≥ 0. For simplicity, let us assume annual fees (ti = i). Let

ri be the yield to maturity i, and notice that the yield to the option maturity coincides

with the rate r of section 2 (rT = r ). The fee leg value is the present value of the

corresponding cash-flows, computed at the riskless rate:

T−1∑
i=0

vF exp(−iri)

Denoting the present value of an annuity as äT :=
∑T−1

i=0 exp(−iri), the fee leg value can

be written as

vF äT

As for the default leg, it consists of the loss given default, i.e. the difference between

the facial and the recovery value of the reference asset, F and R respectively. In order

to simplify the calibration procedure, let us assume that reimbursement takes place at

maturity of the contract only, even if default occurred before, and that this maturity

coincides with the debt maturity. The time-0 value of the loss given default, the so-called

discounted expected loss, is therefore obtained using the risk neutral default probability

at T, π(T ). In the option interpretation of structural models, if the CDS maturity is the

same as the debt maturity, as required above, the discounted expected loss, and then

the default leg, coincides with the put value, V GP (V0, F, r, σ, α, θ)

By definition, the no-arbitrage CDS fee is the one which equates the two legs:

v =
V GP (V0, F, r, σ, α, θ)

F äT

(3.1)

This is the spread for which we are going to collect data, and that will allow us, together

with additional balance sheet and market data, to calibrate the VG parameters.

When the put property (2.5) applies, i.e. when rT = r, the spread can be simplified
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into

v =
exp(−rT )V GP

(
1
d
, 1, 0, σ, α, θ

)
äT

=
exp(−rT )

äT

×

×

[
1−Ψ

(
k(d)

√
1− c2
α

, β

√
α

1− c2
,
T

α

)
+

+
Ψ
(
k(d)

√
1−c1

α
, (β + s)

√
α

1−c1
, T

α

)
− 1

d

 (3.2)

For given interest rates, maturity, leverage ratio, it is then a function of the asset pa-

rameters α, θ, σ.

4 Data choice and marginal calibration

One of the major difficulties in the calibration of structural models is the fact that

most corporate debt is not traded, and therefore, even for public firms, the asset value

cannot be obtained equating it to the liabilities one, namely the sum of the current debt

and equity values. As a response, traditional firm-specific calibrations of the Merton

structural approach move from the relationship between the equity and asset value

process on the one hand, and their volatilities on the other, to obtain the unobservable

current value and volatility of the firm assets from the (observable) equity ones, for given

debt facial value and maturity (see Crosbie and Bohn (2002)). This requires solving a

non linear system of equations, in order to price the put in Merton model. Only after

having solved the system they are able to compute in closed form the market value of

debt, the default probability and credit spread. More recent firm-specific calibrations of

structural models, such as Eom, Helwege, Huang (2004), from now on EHH, cope with

the fact that most corporate debt is not traded, by assuming that its market value can

be proxied by its book value. In turn, this assumption rests on the observation that

most of the traded corporate debt is close to par. We will use this assumption too.

As for the other unobservable parameter, the instantaneous asset volatility, EHH

(2004) proposes either to adjust the historical equity volatility for leverage or to use the

bond implied volatility. In the first case, of the two relationships traditionally employed,

only the relationship between the equity and asset value standard deviation is used. In

particular, the knowledge of the derivative of the asset value with respect to the equity

one is needed. As for the bond implied volatility, it is the one which matches previously

observed bond prices with the theoretical values, in the same spirit of Black-Scholes

implied volatility.

All the calibrations just mentioned use a diffusion model: with respect to them, we

start from a much more flexible theoretical model, with asymmetry and kurtosis. This
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means also that we have two more parameters in addition to the volatility, respectively

θ and α.

We decided to use an implied asset volatility, as well as implied asymmetry and kur-

tosis. These implied values will be obtained from CDS spreads instead of over Treasury

spreads (or prices). We chose the former spreads instead of the latter for a number of

reasons: CDSs are not subject to squeezes, are not in fixed supply, and have been shown

to incorporate less liquidity premium than spreads over Treasury, independently of the

definition of the riskless curve (see f.i. Longstaff, Mithal, Neis, 2004). Therefore, they

seem to better isolate the credit risk of the reference asset. The choice of the data was

as follows.

CDS spreads

We tried to collect a wide amount of observed spread data, s|ob, in terms of representation

of the universe of the US companies: to this end, we decided to consider the components

of the Dow Jones investment grade cdx index, CDX.NA.IG.3 and the high yield index,

CDX.NA.HY.3.

The first index, with its 125 names, is representative of the most liquid, investment

grade names in the US. The second, with its 100 names, represents high yield names in

the same market index. The ratings of the former, at the time of our data collection,

were between AAA and BBB, with a particular concentration on BBB, which represented

more than half of the index, immediately followed by A, which amounted to 38% of it.

In the investment grade index 15 sectors were represented; the ones heavily represented

- with a share of 10% or more - were basic industries, capital goods, consumer goods.

The ratings of the high yield group instead were between split BBB and unrated, with

more than 40% of the names in BB and more than 30% in B. As for sector, the high

yield index covers 24 sectors: six sectors weight more than 7% (chemicals, energy,

forest products, gaming and leisure, IT and utilities), while only IT is over 10%.

We considered the daily spreads along the observation period 9/21/04 –11/19/04:

the initial date is indeed the one in which the investment grade index started to trade,

while the high yield one had been introduced in July.

We looked at both the five and ten year maturity CDS, in order to have information

on the term structure of the parameters. However, we observe that five year contracts

are usually more liquid.

We had a total of approximately 18700 spreads referring to 224 names (for lack of

data on one of them, Burlington Northern Santa Fe Corporation). As a total, 95% of the

spreads were available, with at most 88 spreads for each name: with no missing data,

we would have had 19800 of them. In particular, 93% of the ten year data and 97% of

the five year ones were available.

Table 1 presents the CDS data statistics.

Table 1
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Distribution of Average Spreads

Whole Sample

percentiles 5 year spreads 10 year spreads

1% 17.386 27.432

5% 23.273 37.227

10% 28.273 42.102

25% 39.205 56.227

50% 87.045 101.955

75% 240.284 233.477

90% 386.545 386.034

95% 556.293 625.205

99% 1986.250 1880.614

mean .019 .020

st.deviation .0310 .029

skewness 4.560 4.249

kurtosis 28.234 24.608
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Seniority

The CDS of the two indices we are examining refer to senior debt. For each CDS but

one we determined at least a corresponding deliverable bond: the missing entry was an

investment grade name, MBIA insurance, which had to be eliminated from the sample,

thus reducing it to 223 names. For all the five year spreads and all but three issuers

among the ten year spread ones we had also a name-specific spread of the appropriate

seniority. All these data were for unsecured bonds. Among the ten year ones, Celestica,

Iron Mountain and Triton Pcs had only junior subordinated spreads available.

In the database, 54% of the spreads assume restructuring, the balance being non re-

structuring. This is a result of the fact that CDX.NA.IG.3 assumes no restructuring, in

spite of the fact that generally IG names are modified restructuring. HY names instead

generally trade with no restructuring.

Riskless rate

In order to extract from the CDS premium the implied put price, we considered as

riskless rate ri, i = 1, ..10, the LIBOR for the one year maturity and the US swap one

for the two to ten year maturities. The riskless rate choice is, as well known, a crucial

one, and most of the recent literature converges on suggesting the adoption of the swap

curve instead of the Treasury one, because of the different liquidity between corporate

and Treasuries. However, let us note that swap rates already include a counterparty risk

premium, which is not included in the Government ones. We do not report here the

riskless rates, which were taken from the Bloomberg database and updated daily both

over the in sample and over the out of sample period.

Recovery rate

We selected the observed recovery rate, R |ob, for each bond in the pool, adapting

Macgilchrist (2004). Basically, we took into consideration for the recovery assignment

the sector and the seniority (senior unsecured or junior subordinated) of the debt issue.

As for the sectors, they were defined based on the level 1 industry sector description

provided by Bloomberg (API field “INDUSTRY SECTOR”). This distinguishes the

following ten sectors: Basic Materials, Communications, Consumer Cyclical, Consumer

Non-cyclical, Diversified, Energy, Financial, Industrial, Technology, Utilities. Since the

original data of Macgilchrist do not follow exactly the same classification, we grouped

more detailed data when necessary.

As for seniority, the sector data of Macgilchrist referred to senior unsecured debt. As

mentioned above, all our ten year and five year deliverable bonds were senior unsecured,

with the exception of the ten year bonds for Celestica, Iron Mountain and Triton Pcs,

which were junior subordinated. In order to reconstruct the recovery for the latter issues,

we used the CMA data for recoveries by seniority, which aggregates all the sectors. We

determined the relative ratios of recoveries for different seniorities and applied this ratios

to the recovery rate found for each sector senior unsecured debt.
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Table 2 presents the recovery data statistics for senior unsecured debt, which repre-

sents most of our sample:

Table 2
Recovery rates

senior unsecured debt

Sector average recovery standard deviation

basic materials .6 .27

communication .3 .2

consumer cyclical .33 .24

consumer non-cyclical .42 .21

diversified .3 .25

energy .4 .29

financial .3 .29

industrial .375 .27

technology .3 .29

utilities .42 .28

Leverage ratio

We took as an estimate of the market valued-leverage ratio D0

V0
|ob, the book ratio, F

F+E0
,

as is done by most recent structural model calibrations. Instead of using median debt

ratios, we collected appropriate firm specific data from StockVal. We define the debt

ratio D0/V0 as

(short term liabilities - account payable) + long term liabilities

(short term liabilities - account payable) + long term liabilities + market cap

Since for some of the names in the pool the leverage ratio was not available, we

dropped them from the sample: as a result, the number of observations reduced to

11400 approximately , of which 5900 referred to the five year horizon, the rest to the

ten year. As for the number of names, depending on the observation date, we had from

133 to 136 firms at the five year level, from 122 to 129 at the ten year one.

Table 3 presents the summary statistics of the restricted sample : comparing it with

table 1 above the reader can appreciate the fact that, in spite of reducing the number of

data, we still have a sample representative of the two initial CDS indices, and therefore

of the Dow Jones groups. The percentiles of the whole and restricted sample, as well as

the other summary statistics, are indeed very close:
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Table 3
Distribution of Average Spreads

Restricted Sample

percentiles 5 year spreads 10 year spreads

1% 17.023 30.773

5% 22.227 37.477

10% 26.318 41.568

25% 38.136 56.360

50% 83.159 119.705

75% 187.432 219.706

90% 349.682 348.273

95% 556.293 531.114

99% 2173.295 2052.386

mean 186.351 202.075

st.deviation .034 .0314

skewness 4.836 4.531

kurtosis 29.016 25.707

Payout rate

The first step to determine the payout q was to match the cds names in the sample

with corresponding tickers for which we could automatically get the average coupons

paid. We in fact had only the CUSIP of a deliverable bond, but not the corresponding

ticker. The match CUSIP - ticker was done taking into consideration that, even when

the debt is issued by a subsidiary, the holding company is going to pay the dividends and

the stock trading on the market is the holding company. Whenever we had to choose

therefore, we selected the ticker of the holding company trading on the market.

Once the ticker assignment was complete, we took coupon rates from Bloomberg,

using the debt distribution weighted average coupon of the individual securities of the

ticker group. In the cases where this was not available, we used the debt distribution

weighted average coupon of the individual securities of the issuer and its subsidiaries

As for dividend yields, we chose the sum of the gross dividends per share that had

gone ex-dividend over the CDS observation period and approximatively the following six

months, divided by the stock price. By so doing, we produced a proxy for the expected

dividend, since we incorporated some (correct) new information, compared with the

spreads. The data provider was again Bloomberg.

We then used the following formula to compute the payout rate for each name:

q = c× D0

V0

|ob +m×
(

1− D0

V0

|ob

)
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where c is the average coupon, m is the dividend yield.

Table 4 shows statistics for the coupon, dividend and payout rate. From this we can

see that for the names for which we have the debt ratio, the median average coupon

is 6.7%, the median dividend yield is 1% and the median average payout is about 4%.

The corresponding average values are close to the median ones. For the payout ratio, in

particular, there is no particular evidence of skewness or kurtosis.

Table 4
Payout rate

percentiles average coupon dividend yield, 12 months payout rate

1% 428 0 72.093

5% 475 0 145.956

10% 539 0 195.401

25% 608 0 302.688

50% 673 .010 399.082

75% 761 .023 530.905

90% 811 .036 616.059

95% 870 .044 678.676

99% 976 .052 791.015

mean .067 .013 .0409

largest st.deviation .011 .014 .016

skewness -.088 .904 .119

kurtosis 3.706 2.966 2.553

Calibration method

We divided the CDS data available in two time series of approximately equal size and

we used the first half to calibrate the model, namely to select the parameters σ, α, θ, and

the second half to discuss their reliability, by a sort of ”out of sample test” of the results.

The ”in sample” choice for the parameters, which means having an implied vol, kurtosis

and skewness, was done by quadratic error minimization, with an accurate study of

multiple solutions. In the ”out of sample” test, we considered the parameters obtained

from the in sample calibration and we compared the corresponding CDS spreads with

the actual ones. We did this in order to stress the robustness of our in sample parameter

choice2.

2We are aware of the fact that the number of data points is low with respect to a traditional in sample
and out of sample study; however, the sense of the exercise is not that of a traditional in sample-out
of sample one: it is more a robustness check in a truly cross sectional estimate, even tough we will
maintain the vivid terminology ”in and out of sample”.
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We did the calibration or in sample choice separately for the five and ten years

spreads (T = 5, 10). For each maturity T we solved the following optimization problem:

min
α,σ,θ

N∑
k=1

(s|ob(k)− s|th(k))2 (4.1)

where N is the number of days for which we have in sample spreads, s|ob(k) and s|th(k)
are respectively the observed and theoretical spread in date k.

The theoretical spread in turn is

s|th(k) =
V GP (V0, F, r(k), σ, α, θ)

äT (k)

where, with respect to the formula (3.2) given above, we have now signalled that both the

riskless rate and the annuity values are updated daily, and therefore time (k) dependent.

This makes the theoretical spread change over time too.

After having solved the minimization problem in (4.1), for each name we computed

a number of out of sample pricing errors:

• the overall pricing error (OPE), defined as

OPE =
M∑

k=1

(s|ob(k)− s∗|th(k))2

where s∗|th(k) is the spread obtained using the optimal parameter values and M

is the number of days for which we have out of sample spreads. Indeed, we had

approximately 22 observations for the in sample piece, and an equal number for

the out of sample check;

• the square root of the OPE ratio with respect to the number of observations, the

so-called root mean square error or average daily error (ADE):

ADE =

√∑M
k=1 (s|ob(k)− s∗|th(k))2

M

• the average of the percentage pricing error (%PE), defined as

%PE =
1

M

M∑
k=1

s∗|th(k)− s|ob(k)

s|ob(k)

• and, last but not least, the average of the percentage error in absolute value

(%APE), namely

%APE =
1

M

N∑
k=1

| s|ob(k)− s∗|th(k) |
s|ob(k)

Based on the previous literature on stock pricing, we used the following constraints

on the value of the variables: 0.003 < σ < 4.0, 0.05 < α < 4.0, −4.0 < θ < 4.0.
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5 Empirical Results for single name spreads

To start with, tables 5 to 7 below report the statistics of the calibration results, in terms

of parameters for the asset value process, namely σ, for the volatility, α, for the kurtosis,

θ, for the asymmetry. The parameters were obtained from the minimization procedure

explained above, under the appropriate constraints, (4).

Table 5

Merton model calibrated parameters: σ

5 year horizon 10 year horizon

number of names excluded 3 3

percentiles

1% .037 .093

5% .066 .118

10% .077 .145

25% .149 .224

50% .224 .300

75% .312 .310

90% .384 .531

95% .440 .686

99% 2.312 3.225

mean .280 .412

st.deviation .387 .533

Table 6
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Merton model calibrated parameters: α

5 year horizon 10 year horizon

number of names excluded 3 3

percentiles

1% .057 .062

5% .067 .073

10% .901 .088

25% .194 .112

50% .268 .199

75% .528 .496

90% .649 .575

95% .757 .652

99% 1.937 .891

mean .389 .296

st.deviation .398 .208
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Table 7
Merton model calibrated parameters: θ

5 year horizon 10 year horizon

number of names excluded 3 3

percentiles

1% -.926 -.725

5% -.673 -.547

10% -.519 -.467

25% -.398 -.309

50% -.220 -.143

75% -.100 .039

90% .115 .394

95% .375 .484

99% .509 .545

mean -.223 -.111

st.deviation .290 .298

The reader must take into consideration that the minimization procedure slightly re-

duced the number of names, since for some of them either it did not converge, or it

generated a numerical error in the out of sample check3. For this reason, the top of

the table shows how many names have no meaningful solution: the reader can see that

the number of cases so excluded is around 2%. The tables above show the distribution

of the results obtained: the five year case is on the left, the ten year one on the right.

We can see that for the 5 year spreads, the median σ, α, θ across all the names are re-

spectively 22.4%, 26.8% and -22%. The corresponding average values are 28%, 39% and

-22%, with a standard deviation smaller than 40% for the first two parameters, smaller

than 30% for the last one. At the 10 year level, the median σ, α, θ are 30%, 19.9% and

-14.3%, with average values 41%, 29% and -11%, and standard deviations equal respec-

tively to 53%, 21% and 30%. Both in the five and ten year case, the variance parameter,

σ, as well as the kurtosis, α, and the asymmetry one, θ, are slightly higher than the

ones obtained in the previous literature for equities. In MCC (1998), for instance, they

were 0.12, 0.17, -0.14 respectively. Their calibration however is realized on SPX listed

options having shorter maturity than the CDS contracts considered here.

Having listed the features of the VG asset process, let us proceed to analyze the pricing

errors of the model. Tables 8 and 9 are devoted to the statistics of the out of sample

pricing errors. The ADE is in basis point.

3Whenever the minimization procedure gave more than one set of solutions, we chose the most
appropriate one, in the sense of giving the least pricing error - out of sample.
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Table 8
Pricing errors from 5-year CDS’s

percentiles ADE % PE %APE

1% 0.609 .532 .008

5% 1.793 .397 .030

10% 2.696 .282 .051

25% 4.152 .148 .071

50% 11.331 .067 .100

75% 22.716 .002 .194

90% 41.33 -.112 .295

95% 66.758 -.183 .425

99% 468.886 .358 .916

mean .002 .075 .150

st. deviation .007 .190 .143

Table 9
Pricing errors from 10-year CDS’s

percentiles ADE % PE %APE

1% 1.288 .439 .016

5% 2.738 .316 .031

10% 3.001 .239 .037

25% 5.219 .138 .069

50% 12.578 .073 .100

75% 25.309 -.004 .169

90% 48.403 -.082 .287

95% 75.925 -.163 .365

99% 1203.136 -.612 .625

mean .005 .066 .139

st. deviation .018 .171 .126

First of all, let us study the ADE, which gives an estimate of the average pricing error.

We remark that the median value for the ADE - both for the 5 year and 10 year spread

- is very low, slightly more than 10 basis points (bp). The mean of the ADE over 5

and 10 years is respectively 26 bp and 47 bp, while the standard deviation ranges from

0.7% to 1.8% bp. (The increase in the standard deviation over the longer horizon can

be explained with the smaller liquidity inherent in the ten year data).

In order to assess the fit of the model, we also present the %PE and %APE of the

model. The former is negative if on average the model underpredicts the actual spreads,
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and positive otherwise. The APE, on the contrary, gives an estimate of the pricing

error, without compensating between negative and positive errors: therefore, it does not

provide information about over or underpricing, but about the magnitude of the errors,

independent of their signs.

Both the ADE and percentage errors are small in comparison with standard results

in structural, diffusion based models. For the latter indeed errors are usually in the two

digits order of magnitude4.

In order to fully understand the advantages of the VG model with respect to diffu-

sions, and to point out a better fit property not due to us using CDS data instead of

spreads over Treasuries, let us show that we correct not only for the underestimation

error, but also for the accuracy or bias. Let us recall indeed that, according for instance

to the results in EHH, not only the Merton diffusion based model underpredicts spreads,

but more sophisticated models, such as Leland and Toft (1996) or Longstaff-Schwartz

(1995), severely overpredict spreads of high risk bonds and still underpredict safer bonds’

ones. EHH concludes that the major challenge facing structural bond pricing modelers

is to raise the average predicted spread for low risk bonds (typically short term invest-

ment grade bonds) and, at the same time, decreasing the spreads on risky bonds. In

order to do this, we determined not only the overall percentage of under and overpre-

dictions, through the %PE, but we separated the cases of overpricing from the ones of

underpricing, and we divided HY from IG bonds.

Let us start from the amount of over and underpricing: with our model, over five

years, on average, 29.43% of the spreads are underpriced by the jump model, with a

standard deviation of 35.07%. Over ten years, the percentages become respectively

30.11 and 36.56.

As concerns the possibility of decreasing the underprediction on low risk bonds,

without boosting the overprediction of high risk ones, let us present the %PE and APE

pricing error results not only for the whole sample, which contains both IG and HY

bonds, but also for the two classes separately Table 10 below contains the main statistics

4On their overall sample, EHH (2004) reports a mean %PE for the Merton model equal to -50.42%,
while we have 7.52% over five years, 6.58% over ten. From the %PE change of sign and reduction in
absolute value we infer that, considering the whole sample, underestimation of the Merton model is not
only reduced with respect to EHH, but substituted by a small overestimation: this is accompanied by
a strong reduction in the standard error, from 71.84% in EHH to 19% and 17.19% - respectively for 5
and 10 CDS’s spreads - in our sample.

As for the %APE, EHH has 78.02%, while we have 15.05% over five years, 13.88% over ten: we still
have a very strong reduction of the error. And also in the %APE case, there is an appreciable reduction
in the standard deviation, from almost 39.96% to 14.35% and 12.65% over respectively 5 and 10 years.

EHH analyzes the performance not only of the Merton model, but also of Geske (1977), Leland and
Toft (1996), Lonstaff and Schwartz (1995) and Collin-Dufresne and Goldstein (2001) models. Although
some of these models overperform the Merton model, none of them has better statistics than the VG
model we tested here, as the lowest %APE, obtained for the Geske model with face recovery, is 65.7%
with a standard deviation of 28.34%.
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of tables 8 and 9, for the two classes: for completeness, we also report the ADE results.

Over 5 years the average %PE on HY bonds is 7.56%, the one on IG is 7.5%. Over 10

years the mean %PE for the HY is 5.4%, the one for IG is 7.46%. Over both horizons

the two classes have errors of the same sign, so that the overall slight overpricing result

does not arise from the compensation of underpricing of IG and severe overpricing of

HY. The HY mispricing is even smaller than the other, in the ten year case, and very

close to the other over five years. The same happens for the average APE over five

years, which is respectively 12% and 17% for HY and IG. Over ten years, the difference

in ADE is of two percentage points only, even tough in favor of IG bonds: we have 15%

and 13% for HY and IG respectively.

Table 10
Pricing errors from 5-year IG CDS’s

percentiles ADE % PE %APE

1% 0.231 -1.000 .010

5% 1.460 -.172 .040

10% 2.007 -.120 .059

25% 3.054 -.044 .078

50% 5.053 .065 .106

75% 12.700 .140 .194

90% 18.868 .342 .383

95% 22.716 .457 .465

99% 37.000 .916 1.000

mean .001 .075 .171

st. deviation .001 .227 .172
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Table 11
Pricing errors from 5-year HY CDS’s

percentiles ADE % PE %APE

1% 0.609 -.235 .001

5% 5.071 -.197 .022

10% 10.450 -.060 .042

25% 13.267 .014 .062

50% 23.340 .069 .094

75% 41.032 .150 .193

90% 72.811 .236 .244

95% 146.873 .282 .282

99% 644.226 .332 .332

mean .005 .076 .122

st. deviation .010 .121 .082

Table 12
Pricing errors from 10-year IG CDS’s

percentiles ADE % PE %APE

1% 1.030 -.330 .016

5% 1.483 -.121 .033

10% 2.880 -.082 .040

25% 4.170 -.002 .069

50% 6.152 .070 .099

75% 12.398 .134 .145

90% 20.747 .232 .247

95% 24.706 .332 .336

99% 38.775 .764 .774

mean .001 .075 .130

st. deviation .001 .151 .114
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Table 13
Pricing errors from 10-year HY CDS’s

percentiles ADE % PE %APE

1% 2.781 -.625 .007

5% 5.385 -.601 .025

10% 10.183 -.067 .034

25% 16.217 -.006 .067

50% 29.140 .078 .104

75% 47.227 .170 .179

90% 86.107 .239 .308

95% 1202.504 .308 .601

99% 1255.854 .412 .625

mean .010 .054 .150

st. deviation .027 .197 .141

We can state therefore that a VG asset model, at least on the sample at hand,

reduces both the underprediction for IG bonds and the overprediction for HY ones.

Indeed, while on average the VG model is overestimating the credit spreads (positive

%PE), this overestimation is not only slight, but also unbiased.

6 Default correlation calibration

For the multivariate process introduced in section 1.2 and applied to credit in 2.2 to be

helpful in risk assessment, we need a calibration procedure for dependence. Diffusion

based structural models are usually calibrated using equity correlation and assuming no

correlation premium. Namely, the historical equity correlation matrix is used in order

to infer risk neutral dependence. We will adopt the same device here5. In this section

we will first illustrate how the calibration can proceed and then provide a numerical

illustration, on a sub-sample of the CDX group.

5Indeed, one can show (see section 1.2) that the change of measure adopted here guarantees coinci-
dence of the two matrixes. Numerical explorations by other authors found different estimates for the
marginal parameters under the two measures, due to different time windows of the data and therefore
to different information sets. One can argue that risk neutral correlations should be obtained with
the same time window for data that we use for marginal calibration. We use a bigger time window
for the correlation matrix in order to get accuracy. That is the reason why, in spite of the theoretical
coincidence of the correlation coefficients, we introduce an explicit assumption.

26



6.1 Procedure

Assume that we have calibrated the parameters of the marginal distributions of returns,

namely σj, θj, αj. In order to calibrate the multivariate VG model we have also to

determine a. This parameter is calibrated so as to fit the pairwise correlation between

each couple of assets.

Assume indeed that we can also provide an estimate r = (rij) of the (risk neutral

and historical) linear correlation matrix ρ = [ρij]. As we can infer by (1.8) ρij, for given

margins, is a function of the parameter a only. Therefore the whole linear correlation

matrix ρ, given the marginal parameters, is a function of a.

In practice we find a by minimizing the distance between the estimate r of the

linear correlation matrix and the theoretical ρ. We minimize the root mean square error

(rmse) between the estimated correlation coefficients and the model coefficients, which

is given by

rmse =

√√√√∑
i<j

(rij − ρij)2

(n2 − n)/2
(6.1)

under the constraint6 a ≤ 1/αj, j = 1, ...n.

We end up having fitted both the marginal distributions and (in a minimum distance

sense) the dependence structure. Thanks to this calibration possibility, the α VG-

process truly extends the multivariate Variance Gamma with a single subordinator used

in the previous literature. In the latter case, one solves for the parameters of the margins,

under the constraint

αj = αi, i, j = 1, ...n.

Given the previous constraint, the linear correlation is uniquely determined, and can

also be different from the observed (risk neutral and/or historical) one. This drawback

does not exist in the extended model provided in the present paper, since there is one

more parameter, a, in order to take linear correlation into consideration.

6.2 Results

For the sake of simplicity, we considered a sub-sample of the CDX names, made by

eighteen obligors. For privacy reasons, we do not report their exact name, but denote

them with a number. We describe the implementation of the procedure on these names

in several steps.

6Please note that the constraint is weakened with respect to its formulation in (1.3). The relaxed
constraint allows us to include perfect correlation of the subordinator. This case was not included in
section 1.2 since it requires some provisos, which are discussed in Semeraro (2006)

27



6.2.1 Step 1: marginal parameters

For each single name the marginal parameters have been estimated according to the

procedure in section 5 above.

Company number sigma 1/alpha theta k
1 0.096 0.693 -0.586 1.403
2 0.232 0.545 -0.822 1.434
3 0.069 0.716 -0.397 1.282
4 0.377 0.065 -1.254 1.077
5 0.114 0.650 -0.427 1.274
6 0.186 0.708 -0.402 1.272
7 0.160 0.233 -0.795 1.183
8 0.406 0.089 -0.271 1.017
9 0.200 0.257 -0.662 1.165

10 0.151 0.563 -0.418 1.229
11 0.066 0.431 -0.506 1.217
12 0.282 0.075 -0.192 1.011
13 0.384 0.079 -0.187 1.009
14 0.157 0.744 -0.400 1.289
15 0.225 0.647 -0.502 1.309
16 0.060 3.798 -0.519 2.963
17 0.134 0.575 -0.836 1.475
18 2.312 0.396 -0.220 0.028

As concerns the marginal data, let us stress that all of the corresponding standard

deviations -computed from the parameters according to the formulas in section 1.1 - are

smaller than 100%; all of the θ parameters are negative, signalling, as usual with stock

prices, negative skewness; the values of all ratios 1/αj, j = 1, .., n are positive, as needed.

The constraints (1.1) are satisfied, as shown by the number reported in the last column,

k, defined in (1.2). This means that the conditions for well-posedness of the risk neutral

measure are satisfied.

6.2.2 Step 2: correlation coefficients

According to the procedure illustrated above, we also need an estimate of the obligor’s

correlation coefficients, rij. This estimate was obtained considering the daily stock

returns from 7/7/2003 to 7/7/2006. Having a total of 758 data, the standard error of

the estimate was equal to 3.64%. We report below the corresponding correlation matrix.
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1 2 3 4 5 6 7 8 9 10 11 12 13 17 15 16 17 18
1 1
2 0.064 1
3 0.025 0.116 1
4 0.164 0.483 0.1743 1
5 0.103 0.268 0.1639 0.271 1
6 0.142 0.179 0.1116 0.166 0.225 1
7 0.147 0.194 0.1626 0.292 0.211 0.195 1
8 0.113 0.338 0.1318 0.32 0.272 0.137 0.189 1
9 0.5 0.106 0.0776 0.162 0.139 0.147 0.177 0.146 1

10 0.166 0.342 0.1249 0.37 0.321 0.214 0.27 0.319 0.196 1
11 0.193 0.229 0.1741 0.281 0.236 0.308 0.332 0.194 0.248 0.252 1
12 0.12 0.156 0.1709 0.171 0.188 0.171 0.202 0.145 0.169 0.243 0.218 1
13 0.071 0.229 0.2139 0.278 0.223 0.228 0.251 0.237 0.141 0.258 0.256 0.236 1
14 -0.01 0.087 0.6334 0.174 0.152 0.131 0.169 0.097 0.062 0.093 0.182 0.171 0.208
15 0.104 0.093 0.1391 0.138 0.108 0.199 0.194 0.152 0.139 0.106 0.201 0.138 0.123 0.1544 1
16 0.073 0.128 0.0725 0.186 0.202 0.124 0.151 0.138 0.091 0.19 0.183 0.135 0.136 0.066 0.08 1
17 0.138 0.467 0.0831 0.445 0.253 0.116 0.265 0.318 0.173 0.325 0.279 0.22 0.266 0.2661 0.09 0.107 1
18 0.193 0.244 -0.081 0.25 0.202 0.287 0.243 0.148 0.215 0.278 0.33 0.21 0.258 0.1698 0.17 0.17 0.239 1

6.2.3 Step 3: calibration of the parameter a

From the estimate of the correlation coefficient, together with the marginal parameters,

we can obtain a value for the a parameter. The appropriate a is obtained using (6.1),

under the constraint a ≤ min(1/αj), j = 1, ...n. The constraint in turn sums up the

constraints on the parameters used in the process construction, (1.3), namely a ≤ 1/αj

for every j. The estimated value for a is a = .219 and the corresponding rmse is 0.184.

6.2.4 Step 4: a pricing application

Given the calibrated value of a, we can price - either by numerical integration or through

a Monte Carlo approach - any credit derivative price written on the 18 names chosen

as sub-sample. Suppose for instance that we want to price a first to default (FtD) on

the first two names, with maturity one year and paying at expiration, not at the time

of default. It is known that the forward value of a first to default is the complement to

one of the (risk neutral) survival probability. In the structural model of section (2.2),

this probability in turn is

Pr(V1(T ) > F1, V2(T ) > F2) = 1− π1(1)− π2(1) + π̄(1),

where πj(1), j = 1, 2, is the marginal default probability of firm i, given by (2.2) or

-equivalently - by (2.13), while π̄(1) is the joint one, given by ((2.12)).

29



The FtD price is then

exp(−r)(π1(1) + π2(1)− π̄(1)).

Consider that, on the last observation day, the names 1 and 2 had a leverage ratio Fi/Vi0

respectively of 22.67% and 28.89%. Assume that they were going to pay no dividends

in the incoming year and consider that the observed one year riskless rate (US Treasury

bills) on the same day was 2.579%. The marginal parameter values in the previous table,

together with these market data, gave respectively m1 = 44.8%,m2 = 51.6%.

As a whole, the corresponding marginal and joint default probability were very mod-

est, and the fair price of a FtD on those two names, at the closing date of the observation

period, was close to zero. However, if we consider an increase in the leverage ratio, for

instance if we increase it by one, the FtD no arbitrage price becomes positive. More

precisely, the corresponding default probabilities, in basis points, become

π1(1) = 2.544× 10−9

π2(1) = 2.325

π̄(1) = 1.93× 10−11

and the FtD price is 2.266 basis points.

7 Conclusions

This paper presents a multivariate extension of a terminal default model à la Merton

with a VG asset value. It provides an empirical application of it, based on an extensive

single name univariate calibration of the CDX NA HY and IG components.

At the univariate level, our analysis is based on the comparison between predicted

and actual CDS spreads of both the DJ CDX NA IG and CDX NA HY components. We

show that VG jumps in asset values are able to give small prediction errors and biases.

Indeed, the VG Merton model seems to address appropriately the main problems left

unsolved by diffusion based structural models, namely the understatement of credit

spreads of the basic Merton case and the overstatement of the other diffusion models.

The unpredictability of default which is a result of a pure jump asset value - such as

the VG - seems therefore to be important not only at the theoretical, but also at the

calibration level.

Based on the univariate credit risk calibration, we build the multivariate one. At the

joint default level we are able to fit default dependence from equity correlation, without

imposing a specific, exogenously given copula. At the opposite, we fit dependence con-

sistently with the existence of a dynamic asset process which drives default. Opposite

to the existing multivariate models with VG asset values, we do not need to resort to

equicorrelation. Our procedure can be used as a first step for multiple default derivative

pricing, such as first to default or k to default. We present an example in this sense.
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At the multivariate level we consider the possibility of fitting default correlation with-

out equicorrelation, when asset values are pure jump processes, as the main contribution

of the paper.

Appendix

Derivation of equation (2.11). Let B̃i(t) = θit+ σiB(t), then

FT (x1, x2) := P [Y1(T ) ≤ x1, Y2(T ) ≤ x2]

= P [B̃1(X1(T ) + α1Z(T )) ≤ x1, B̃2(X2(T ) + α2Z(T )) ≤ x2]

=

∫ +∞

0

P [B̃1(X1(T ) + α1z) ≤ x1, B̃2(X2(T ) + α2z) ≤ x2|Z(T ) = z]fZ(T )(z)dz

=

∫ +∞

0

P [B̃1(X1(T ) + α1z) ≤ x1]P [B̃2(X2(T ) + α2z) ≤ x2]fZ(T )(z)dz

=

∫ +∞

0

{
∫ +∞

0

P [B̃1(w1 + αz) ≤ x1|X1(T ) = w1]fX1(T )(w1)dw1

·
∫
P [B̃2(w2 + α2z) ≤ x2|X2(T ) = w2]fX2(T )(w2)dw2}fZ(T )(z)dz

=

∫ +∞

0

∫ +∞

0

∫ +∞

0

P [B̃1(w1 + α1z) ≤ x1]P [B̃2(w2 + α2z) ≤ x2]

· fX1(T )(w1)fX2(T )(w2)fZ(T )(z)dw1dw2dz

=

∫ +∞

0

∫ +∞

0

∫ +∞

0

Φ(
x1 − θ1(w1 + α1z)

σ1

√
w1 + α2z

)Φ(
x2 − θ2(w2 + α2z)

σ2

√
w2 + α2z

)

· fX1(T )(w1)fX2(T )(w2)fZ(T )(z)dw1dw2dz.

In case T = 1:

F (x1, x2) := P [Y1(1) ≤ x1, Y2(1) ≤ x2]

=

∫ +∞

0

∫ +∞

0

∫ +∞

0

Φ(
x1 − θ1(w1 + α1z)

σ1

√
w1 + α1z

)Φ(
x2 − θ2(w2 + α2z)

σ2

√
w2 + α2z

)

· fX1(w1)fX2(w2)fZ(z)dw1dw2dz

=

∫ +∞

0

∫ +∞

0

∫ +∞

0

Φ(
x1 − θ1(w1 + α1z)

σ1

√
w1 + α1z

)Φ(
x2 − θ2(w2 + α2z)

σ2

√
w2 + α2z

)

·
1

α1

( 1
α1
−a)
e
− 1

α1
(w1)

w
1

α1
−a−1

1

Γ( 1
α1
− a)

1
α2

( 1
α2
−a)
e
− 1

α2
(w2)

w
1

α2
−a−1

2

Γ( 1
α2
− a)

e−zza−1

Γ(a)
dw1dw2dz.
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